Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
674 lines
18 KiB
674 lines
18 KiB
/* |
|
* upb - a minimalist implementation of protocol buffers. |
|
* |
|
* Copyright (c) 2009 Google Inc. See LICENSE for details. |
|
* Author: Josh Haberman <jhaberman@gmail.com> |
|
* |
|
* Implementation is heavily inspired by Lua's ltable.c. |
|
*/ |
|
|
|
#include "upb/table.int.h" |
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#define UPB_MAXARRSIZE 16 // 64k. |
|
|
|
// From Chromium. |
|
#define ARRAY_SIZE(x) \ |
|
((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) |
|
|
|
static const double MAX_LOAD = 0.85; |
|
|
|
// The minimum utilization of the array part of a mixed hash/array table. This |
|
// is a speed/memory-usage tradeoff (though it's not straightforward because of |
|
// cache effects). The lower this is, the more memory we'll use. |
|
static const double MIN_DENSITY = 0.1; |
|
|
|
bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } |
|
|
|
int log2ceil(uint64_t v) { |
|
int ret = 0; |
|
bool pow2 = is_pow2(v); |
|
while (v >>= 1) ret++; |
|
ret = pow2 ? ret : ret + 1; // Ceiling. |
|
return UPB_MIN(UPB_MAXARRSIZE, ret); |
|
} |
|
|
|
char *upb_strdup(const char *s) { |
|
size_t n = strlen(s) + 1; |
|
char *p = malloc(n); |
|
if (p) memcpy(p, s, n); |
|
return p; |
|
} |
|
|
|
static upb_tabkey strkey(const char *str) { |
|
upb_tabkey k; |
|
k.str = (char*)str; |
|
return k; |
|
} |
|
|
|
typedef const upb_tabent *hashfunc_t(const upb_table *t, upb_tabkey key); |
|
typedef bool eqlfunc_t(upb_tabkey k1, upb_tabkey k2); |
|
|
|
/* Base table (shared code) ***************************************************/ |
|
|
|
static bool isfull(upb_table *t) { |
|
return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD; |
|
} |
|
|
|
static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2) { |
|
t->count = 0; |
|
t->ctype = ctype; |
|
t->size_lg2 = size_lg2; |
|
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; |
|
size_t bytes = upb_table_size(t) * sizeof(upb_tabent); |
|
if (bytes > 0) { |
|
t->entries = malloc(bytes); |
|
if (!t->entries) return false; |
|
memset((void*)t->entries, 0, bytes); |
|
} else { |
|
t->entries = NULL; |
|
} |
|
return true; |
|
} |
|
|
|
static void uninit(upb_table *t) { free((void*)t->entries); } |
|
|
|
static upb_tabent *emptyent(upb_table *t) { |
|
upb_tabent *e = (upb_tabent*)t->entries + upb_table_size(t); |
|
while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); } |
|
} |
|
|
|
static const upb_tabent *findentry(const upb_table *t, upb_tabkey key, |
|
hashfunc_t *hash, eqlfunc_t *eql) { |
|
if (t->size_lg2 == 0) return NULL; |
|
const upb_tabent *e = hash(t, key); |
|
if (upb_tabent_isempty(e)) return NULL; |
|
while (1) { |
|
if (eql(e->key, key)) return e; |
|
if ((e = e->next) == NULL) return NULL; |
|
} |
|
} |
|
|
|
static bool lookup(const upb_table *t, upb_tabkey key, upb_value *v, |
|
hashfunc_t *hash, eqlfunc_t *eql) { |
|
const upb_tabent *e = findentry(t, key, hash, eql); |
|
if (e) { |
|
if (v) { |
|
_upb_value_setval(v, e->val, t->ctype); |
|
} |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
// The given key must not already exist in the table. |
|
static void insert(upb_table *t, upb_tabkey key, upb_value val, |
|
hashfunc_t *hash, eqlfunc_t *eql) { |
|
assert(findentry(t, key, hash, eql) == NULL); |
|
assert(val.ctype == t->ctype); |
|
t->count++; |
|
upb_tabent *mainpos_e = (upb_tabent*)hash(t, key); |
|
upb_tabent *our_e = mainpos_e; |
|
if (upb_tabent_isempty(mainpos_e)) { |
|
// Our main position is empty; use it. |
|
our_e->next = NULL; |
|
} else { |
|
// Collision. |
|
upb_tabent *new_e = emptyent(t); |
|
// Head of collider's chain. |
|
upb_tabent *chain = (upb_tabent*)hash(t, mainpos_e->key); |
|
if (chain == mainpos_e) { |
|
// Existing ent is in its main posisiton (it has the same hash as us, and |
|
// is the head of our chain). Insert to new ent and append to this chain. |
|
new_e->next = mainpos_e->next; |
|
mainpos_e->next = new_e; |
|
our_e = new_e; |
|
} else { |
|
// Existing ent is not in its main position (it is a node in some other |
|
// chain). This implies that no existing ent in the table has our hash. |
|
// Evict it (updating its chain) and use its ent for head of our chain. |
|
*new_e = *mainpos_e; // copies next. |
|
while (chain->next != mainpos_e) { |
|
chain = (upb_tabent*)chain->next; |
|
assert(chain); |
|
} |
|
chain->next = new_e; |
|
our_e = mainpos_e; |
|
our_e->next = NULL; |
|
} |
|
} |
|
our_e->key = key; |
|
our_e->val = val.val; |
|
assert(findentry(t, key, hash, eql) == our_e); |
|
} |
|
|
|
static bool rm(upb_table *t, upb_tabkey key, upb_value *val, |
|
upb_tabkey *removed, hashfunc_t *hash, eqlfunc_t *eql) { |
|
upb_tabent *chain = (upb_tabent*)hash(t, key); |
|
if (upb_tabent_isempty(chain)) return false; |
|
if (eql(chain->key, key)) { |
|
// Element to remove is at the head of its chain. |
|
t->count--; |
|
if (val) { |
|
_upb_value_setval(val, chain->val, t->ctype); |
|
} |
|
if (chain->next) { |
|
upb_tabent *move = (upb_tabent*)chain->next; |
|
*chain = *move; |
|
if (removed) *removed = move->key; |
|
move->key.num = 0; // Make the slot empty. |
|
} else { |
|
if (removed) *removed = chain->key; |
|
chain->key.num = 0; // Make the slot empty. |
|
} |
|
return true; |
|
} else { |
|
// Element to remove is either in a non-head position or not in the table. |
|
while (chain->next && !eql(chain->next->key, key)) |
|
chain = (upb_tabent*)chain->next; |
|
if (chain->next) { |
|
// Found element to remove. |
|
if (val) { |
|
_upb_value_setval(val, chain->next->val, t->ctype); |
|
} |
|
upb_tabent *rm = (upb_tabent*)chain->next; |
|
if (removed) *removed = rm->key; |
|
rm->key.num = 0; |
|
chain->next = rm->next; |
|
t->count--; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
static const upb_tabent *next(const upb_table *t, const upb_tabent *e) { |
|
const upb_tabent *end = t->entries + upb_table_size(t); |
|
do { if (++e == end) return NULL; } while(e->key.num == 0); |
|
return e; |
|
} |
|
|
|
// TODO: is calculating t->entries - 1 undefined behavior? If so find a better |
|
// solution. |
|
static const upb_tabent *begin(const upb_table *t) { |
|
return next(t, t->entries - 1); |
|
} |
|
|
|
|
|
/* upb_strtable ***************************************************************/ |
|
|
|
// A simple "subclass" of upb_table that only adds a hash function for strings. |
|
|
|
static const upb_tabent *strhash(const upb_table *t, upb_tabkey key) { |
|
// Could avoid the strlen() by using a hash function that terminates on NULL. |
|
return t->entries + (MurmurHash2(key.str, strlen(key.str), 0) & t->mask); |
|
} |
|
|
|
static bool streql(upb_tabkey k1, upb_tabkey k2) { |
|
return strcmp(k1.str, k2.str) == 0; |
|
} |
|
|
|
bool upb_strtable_init(upb_strtable *t, upb_ctype_t ctype) { |
|
return init(&t->t, ctype, 2); |
|
} |
|
|
|
void upb_strtable_uninit(upb_strtable *t) { |
|
for (size_t i = 0; i < upb_table_size(&t->t); i++) |
|
free((void*)t->t.entries[i].key.str); |
|
uninit(&t->t); |
|
} |
|
|
|
bool upb_strtable_insert(upb_strtable *t, const char *k, upb_value v) { |
|
if (isfull(&t->t)) { |
|
// Need to resize. New table of double the size, add old elements to it. |
|
upb_strtable new_table; |
|
if (!init(&new_table.t, t->t.ctype, t->t.size_lg2 + 1)) |
|
return false; |
|
upb_strtable_iter i; |
|
upb_strtable_begin(&i, t); |
|
for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) { |
|
upb_strtable_insert( |
|
&new_table, upb_strtable_iter_key(&i), upb_strtable_iter_value(&i)); |
|
} |
|
upb_strtable_uninit(t); |
|
*t = new_table; |
|
} |
|
if ((k = upb_strdup(k)) == NULL) return false; |
|
insert(&t->t, strkey(k), v, &strhash, &streql); |
|
return true; |
|
} |
|
|
|
bool upb_strtable_lookup(const upb_strtable *t, const char *key, upb_value *v) { |
|
return lookup(&t->t, strkey(key), v, &strhash, &streql); |
|
} |
|
|
|
bool upb_strtable_remove(upb_strtable *t, const char *key, upb_value *val) { |
|
upb_tabkey tabkey; |
|
if (rm(&t->t, strkey(key), val, &tabkey, &strhash, &streql)) { |
|
free((void*)tabkey.str); |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) { |
|
i->t = t; |
|
i->e = begin(&t->t); |
|
} |
|
|
|
void upb_strtable_next(upb_strtable_iter *i) { |
|
i->e = next(&i->t->t, i->e); |
|
} |
|
|
|
|
|
/* upb_inttable ***************************************************************/ |
|
|
|
// For inttables we use a hybrid structure where small keys are kept in an |
|
// array and large keys are put in the hash table. |
|
|
|
static bool inteql(upb_tabkey k1, upb_tabkey k2) { |
|
return k1.num == k2.num; |
|
} |
|
|
|
static _upb_value *inttable_val(upb_inttable *t, uintptr_t key) { |
|
if (key < t->array_size) { |
|
return upb_arrhas(t->array[key]) ? (_upb_value*)&t->array[key] : NULL; |
|
} else { |
|
upb_tabent *e = |
|
(upb_tabent*)findentry(&t->t, upb_intkey(key), &upb_inthash, &inteql); |
|
return e ? &e->val : NULL; |
|
} |
|
} |
|
|
|
static const _upb_value *inttable_val_const(const upb_inttable *t, |
|
uintptr_t key) { |
|
return inttable_val((upb_inttable*)t, key); |
|
} |
|
|
|
size_t upb_inttable_count(const upb_inttable *t) { |
|
return t->t.count + t->array_count; |
|
} |
|
|
|
static void check(upb_inttable *t) { |
|
UPB_UNUSED(t); |
|
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) |
|
// This check is very expensive (makes inserts/deletes O(N)). |
|
size_t count = 0; |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, t); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { |
|
assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); |
|
} |
|
assert(count == upb_inttable_count(t)); |
|
#endif |
|
} |
|
|
|
bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype, |
|
size_t asize, int hsize_lg2) { |
|
if (!init(&t->t, ctype, hsize_lg2)) return false; |
|
// Always make the array part at least 1 long, so that we know key 0 |
|
// won't be in the hash part, which simplifies things. |
|
t->array_size = UPB_MAX(1, asize); |
|
t->array_count = 0; |
|
size_t array_bytes = t->array_size * sizeof(upb_value); |
|
t->array = malloc(array_bytes); |
|
if (!t->array) { |
|
uninit(&t->t); |
|
return false; |
|
} |
|
memset((void*)t->array, 0xff, array_bytes); |
|
check(t); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_init(upb_inttable *t, upb_ctype_t ctype) { |
|
return upb_inttable_sizedinit(t, ctype, 0, 4); |
|
} |
|
|
|
void upb_inttable_uninit(upb_inttable *t) { |
|
uninit(&t->t); |
|
free((void*)t->array); |
|
} |
|
|
|
bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) { |
|
assert(upb_arrhas(val.val)); |
|
if (key < t->array_size) { |
|
assert(!upb_arrhas(t->array[key])); |
|
t->array_count++; |
|
((_upb_value*)t->array)[key] = val.val; |
|
} else { |
|
if (isfull(&t->t)) { |
|
// Need to resize the hash part, but we re-use the array part. |
|
upb_table new_table; |
|
if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1)) |
|
return false; |
|
const upb_tabent *e; |
|
for (e = begin(&t->t); e; e = next(&t->t, e)) { |
|
upb_value v; |
|
_upb_value_setval(&v, e->val, t->t.ctype); |
|
insert(&new_table, e->key, v, &upb_inthash, &inteql); |
|
} |
|
|
|
assert(t->t.count == new_table.count); |
|
|
|
uninit(&t->t); |
|
t->t = new_table; |
|
} |
|
insert(&t->t, upb_intkey(key), val, &upb_inthash, &inteql); |
|
} |
|
check(t); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) { |
|
const _upb_value *table_v = inttable_val_const(t, key); |
|
if (!table_v) return false; |
|
if (v) _upb_value_setval(v, *table_v, t->t.ctype); |
|
return true; |
|
} |
|
|
|
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) { |
|
_upb_value *table_v = inttable_val(t, key); |
|
if (!table_v) return false; |
|
*table_v = val.val; |
|
return true; |
|
} |
|
|
|
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) { |
|
bool success; |
|
if (key < t->array_size) { |
|
if (upb_arrhas(t->array[key])) { |
|
t->array_count--; |
|
if (val) { |
|
_upb_value_setval(val, t->array[key], t->t.ctype); |
|
} |
|
((upb_value*)t->array)[key] = upb_value_uint64(-1); |
|
success = true; |
|
} else { |
|
success = false; |
|
} |
|
} else { |
|
upb_tabkey removed; |
|
success = rm(&t->t, upb_intkey(key), val, &removed, &upb_inthash, &inteql); |
|
} |
|
check(t); |
|
return success; |
|
} |
|
|
|
bool upb_inttable_push(upb_inttable *t, upb_value val) { |
|
return upb_inttable_insert(t, upb_inttable_count(t), val); |
|
} |
|
|
|
upb_value upb_inttable_pop(upb_inttable *t) { |
|
upb_value val; |
|
bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return val; |
|
} |
|
|
|
bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) { |
|
return upb_inttable_insert(t, (uintptr_t)key, val); |
|
} |
|
|
|
bool upb_inttable_lookupptr(const upb_inttable *t, const void *key, |
|
upb_value *v) { |
|
return upb_inttable_lookup(t, (uintptr_t)key, v); |
|
} |
|
|
|
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) { |
|
return upb_inttable_remove(t, (uintptr_t)key, val); |
|
} |
|
|
|
void upb_inttable_compact(upb_inttable *t) { |
|
// Create a power-of-two histogram of the table keys. |
|
int counts[UPB_MAXARRSIZE + 1] = {0}; |
|
uintptr_t max_key = 0; |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, t); |
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
uintptr_t key = upb_inttable_iter_key(&i); |
|
if (key > max_key) { |
|
max_key = key; |
|
} |
|
counts[log2ceil(key)]++; |
|
} |
|
|
|
int arr_size; |
|
int arr_count = upb_inttable_count(t); |
|
|
|
if (upb_inttable_count(t) >= max_key * MIN_DENSITY) { |
|
// We can put 100% of the entries in the array part. |
|
arr_size = max_key + 1; |
|
} else { |
|
// Find the largest power of two that satisfies the MIN_DENSITY definition. |
|
for (int size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 1; size_lg2--) { |
|
arr_size = 1 << size_lg2; |
|
arr_count -= counts[size_lg2]; |
|
if (arr_count >= arr_size * MIN_DENSITY) { |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// Array part must always be at least 1 entry large to catch lookups of key |
|
// 0. Key 0 must always be in the array part because "0" in the hash part |
|
// denotes an empty entry. |
|
arr_size = UPB_MAX(arr_size, 1); |
|
|
|
// Insert all elements into new, perfectly-sized table. |
|
int hash_count = upb_inttable_count(t) - arr_count; |
|
int hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; |
|
int hashsize_lg2 = log2ceil(hash_size); |
|
assert(hash_count >= 0); |
|
|
|
upb_inttable new_t; |
|
upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2); |
|
upb_inttable_begin(&i, t); |
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
uintptr_t k = upb_inttable_iter_key(&i); |
|
upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i)); |
|
} |
|
assert(new_t.array_size == arr_size); |
|
assert(new_t.t.size_lg2 == hashsize_lg2); |
|
upb_inttable_uninit(t); |
|
*t = new_t; |
|
} |
|
|
|
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) { |
|
i->t = t; |
|
i->arrkey = -1; |
|
i->array_part = true; |
|
upb_inttable_next(i); |
|
} |
|
|
|
void upb_inttable_next(upb_inttable_iter *iter) { |
|
const upb_inttable *t = iter->t; |
|
if (iter->array_part) { |
|
for (size_t i = iter->arrkey; ++i < t->array_size; ) |
|
if (upb_arrhas(t->array[i])) { |
|
iter->ptr.val = &t->array[i]; |
|
iter->arrkey = i; |
|
return; |
|
} |
|
iter->array_part = false; |
|
iter->ptr.ent = t->t.entries - 1; |
|
} |
|
iter->ptr.ent = next(&t->t, iter->ptr.ent); |
|
} |
|
|
|
#ifdef UPB_UNALIGNED_READS_OK |
|
//----------------------------------------------------------------------------- |
|
// MurmurHash2, by Austin Appleby (released as public domain). |
|
// Reformatted and C99-ified by Joshua Haberman. |
|
// Note - This code makes a few assumptions about how your machine behaves - |
|
// 1. We can read a 4-byte value from any address without crashing |
|
// 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t |
|
// And it has a few limitations - |
|
// 1. It will not work incrementally. |
|
// 2. It will not produce the same results on little-endian and big-endian |
|
// machines. |
|
uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) { |
|
// 'm' and 'r' are mixing constants generated offline. |
|
// They're not really 'magic', they just happen to work well. |
|
const uint32_t m = 0x5bd1e995; |
|
const int32_t r = 24; |
|
|
|
// Initialize the hash to a 'random' value |
|
uint32_t h = seed ^ len; |
|
|
|
// Mix 4 bytes at a time into the hash |
|
const uint8_t * data = (const uint8_t *)key; |
|
while(len >= 4) { |
|
uint32_t k = *(uint32_t *)data; |
|
|
|
k *= m; |
|
k ^= k >> r; |
|
k *= m; |
|
|
|
h *= m; |
|
h ^= k; |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
// Handle the last few bytes of the input array |
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
|
|
// Do a few final mixes of the hash to ensure the last few |
|
// bytes are well-incorporated. |
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} |
|
|
|
#else // !UPB_UNALIGNED_READS_OK |
|
|
|
//----------------------------------------------------------------------------- |
|
// MurmurHashAligned2, by Austin Appleby |
|
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer |
|
// on certain platforms. |
|
// Performance will be lower than MurmurHash2 |
|
|
|
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } |
|
|
|
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) { |
|
const uint32_t m = 0x5bd1e995; |
|
const int32_t r = 24; |
|
const uint8_t * data = (const uint8_t *)key; |
|
uint32_t h = seed ^ len; |
|
uint8_t align = (uintptr_t)data & 3; |
|
|
|
if(align && (len >= 4)) { |
|
// Pre-load the temp registers |
|
uint32_t t = 0, d = 0; |
|
|
|
switch(align) { |
|
case 1: t |= data[2] << 16; |
|
case 2: t |= data[1] << 8; |
|
case 3: t |= data[0]; |
|
} |
|
|
|
t <<= (8 * align); |
|
|
|
data += 4-align; |
|
len -= 4-align; |
|
|
|
int32_t sl = 8 * (4-align); |
|
int32_t sr = 8 * align; |
|
|
|
// Mix |
|
|
|
while(len >= 4) { |
|
d = *(uint32_t *)data; |
|
t = (t >> sr) | (d << sl); |
|
|
|
uint32_t k = t; |
|
|
|
MIX(h,k,m); |
|
|
|
t = d; |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
// Handle leftover data in temp registers |
|
|
|
d = 0; |
|
|
|
if(len >= align) { |
|
switch(align) { |
|
case 3: d |= data[2] << 16; |
|
case 2: d |= data[1] << 8; |
|
case 1: d |= data[0]; |
|
} |
|
|
|
uint32_t k = (t >> sr) | (d << sl); |
|
MIX(h,k,m); |
|
|
|
data += align; |
|
len -= align; |
|
|
|
//---------- |
|
// Handle tail bytes |
|
|
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
} else { |
|
switch(len) { |
|
case 3: d |= data[2] << 16; |
|
case 2: d |= data[1] << 8; |
|
case 1: d |= data[0]; |
|
case 0: h ^= (t >> sr) | (d << sl); h *= m; |
|
} |
|
} |
|
|
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} else { |
|
while(len >= 4) { |
|
uint32_t k = *(uint32_t *)data; |
|
|
|
MIX(h,k,m); |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
//---------- |
|
// Handle tail bytes |
|
|
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
|
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} |
|
} |
|
#undef MIX |
|
|
|
#endif // UPB_UNALIGNED_READS_OK
|
|
|