Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1434 lines
47 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "message.h"
#include "convert.h"
#include "defs.h"
#include "map.h"
#include "protobuf.h"
#include "repeated_field.h"
static VALUE cParseError = Qnil;
static VALUE cAbstractMessage = Qnil;
static ID descriptor_instancevar_interned;
static VALUE initialize_rb_class_with_no_args(VALUE klass) {
return rb_funcall(klass, rb_intern("new"), 0);
}
VALUE MessageOrEnum_GetDescriptor(VALUE klass) {
return rb_ivar_get(klass, descriptor_instancevar_interned);
}
// -----------------------------------------------------------------------------
// Class/module creation from msgdefs and enumdefs, respectively.
// -----------------------------------------------------------------------------
typedef struct {
// IMPORTANT: WB_PROTECTED objects must only use the RB_OBJ_WRITE()
// macro to update VALUE references, as to trigger write barriers.
VALUE arena;
const upb_Message* msg; // Can get as mutable when non-frozen.
const upb_MessageDef*
msgdef; // kept alive by self.class.descriptor reference.
} Message;
static void Message_mark(void* _self) {
Message* self = (Message*)_self;
rb_gc_mark(self->arena);
}
static rb_data_type_t Message_type = {
"Google::Protobuf::Message",
{Message_mark, RUBY_DEFAULT_FREE, NULL},
.flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED,
};
static Message* ruby_to_Message(VALUE msg_rb) {
Message* msg;
TypedData_Get_Struct(msg_rb, Message, &Message_type, msg);
return msg;
}
static VALUE Message_alloc(VALUE klass) {
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
Message* msg = ALLOC(Message);
VALUE ret;
msg->msgdef = Descriptor_GetMsgDef(descriptor);
msg->arena = Qnil;
msg->msg = NULL;
ret = TypedData_Wrap_Struct(klass, &Message_type, msg);
rb_ivar_set(ret, descriptor_instancevar_interned, descriptor);
return ret;
}
const upb_Message* Message_Get(VALUE msg_rb, const upb_MessageDef** m) {
Message* msg = ruby_to_Message(msg_rb);
if (m) *m = msg->msgdef;
return msg->msg;
}
upb_Message* Message_GetMutable(VALUE msg_rb, const upb_MessageDef** m) {
rb_check_frozen(msg_rb);
return (upb_Message*)Message_Get(msg_rb, m);
}
void Message_InitPtr(VALUE self_, upb_Message* msg, VALUE arena) {
Message* self = ruby_to_Message(self_);
self->msg = msg;
RB_OBJ_WRITE(self_, &self->arena, arena);
ObjectCache_Add(msg, self_);
}
VALUE Message_GetArena(VALUE msg_rb) {
Message* msg = ruby_to_Message(msg_rb);
return msg->arena;
}
void Message_CheckClass(VALUE klass) {
if (rb_get_alloc_func(klass) != &Message_alloc) {
rb_raise(rb_eArgError,
"Message class was not returned by the DescriptorPool.");
}
}
VALUE Message_GetRubyWrapper(upb_Message* msg, const upb_MessageDef* m,
VALUE arena) {
if (msg == NULL) return Qnil;
VALUE val = ObjectCache_Get(msg);
if (val == Qnil) {
VALUE klass = Descriptor_DefToClass(m);
val = Message_alloc(klass);
Message_InitPtr(val, msg, arena);
}
return val;
}
void Message_PrintMessage(StringBuilder* b, const upb_Message* msg,
const upb_MessageDef* m) {
bool first = true;
int n = upb_MessageDef_FieldCount(m);
VALUE klass = Descriptor_DefToClass(m);
StringBuilder_Printf(b, "<%s: ", rb_class2name(klass));
for (int i = 0; i < n; i++) {
const upb_FieldDef* field = upb_MessageDef_Field(m, i);
if (upb_FieldDef_HasPresence(field) &&
!upb_Message_HasFieldByDef(msg, field)) {
continue;
}
if (!first) {
StringBuilder_Printf(b, ", ");
} else {
first = false;
}
upb_MessageValue msgval = upb_Message_GetFieldByDef(msg, field);
StringBuilder_Printf(b, "%s: ", upb_FieldDef_Name(field));
if (upb_FieldDef_IsMap(field)) {
const upb_MessageDef* entry_m = upb_FieldDef_MessageSubDef(field);
const upb_FieldDef* key_f = upb_MessageDef_FindFieldByNumber(entry_m, 1);
const upb_FieldDef* val_f = upb_MessageDef_FindFieldByNumber(entry_m, 2);
TypeInfo val_info = TypeInfo_get(val_f);
Map_Inspect(b, msgval.map_val, upb_FieldDef_CType(key_f), val_info);
} else if (upb_FieldDef_IsRepeated(field)) {
RepeatedField_Inspect(b, msgval.array_val, TypeInfo_get(field));
} else {
StringBuilder_PrintMsgval(b, msgval, TypeInfo_get(field));
}
}
StringBuilder_Printf(b, ">");
}
// Helper functions for #method_missing ////////////////////////////////////////
enum {
METHOD_UNKNOWN = 0,
METHOD_GETTER = 1,
METHOD_SETTER = 2,
METHOD_CLEAR = 3,
METHOD_PRESENCE = 4,
METHOD_ENUM_GETTER = 5,
METHOD_WRAPPER_GETTER = 6,
METHOD_WRAPPER_SETTER = 7
};
// Check if the field is a well known wrapper type
static bool IsWrapper(const upb_MessageDef* m) {
if (!m) return false;
switch (upb_MessageDef_WellKnownType(m)) {
case kUpb_WellKnown_DoubleValue:
case kUpb_WellKnown_FloatValue:
case kUpb_WellKnown_Int64Value:
case kUpb_WellKnown_UInt64Value:
case kUpb_WellKnown_Int32Value:
case kUpb_WellKnown_UInt32Value:
case kUpb_WellKnown_StringValue:
case kUpb_WellKnown_BytesValue:
case kUpb_WellKnown_BoolValue:
return true;
default:
return false;
}
}
static bool IsFieldWrapper(const upb_FieldDef* f) {
return IsWrapper(upb_FieldDef_MessageSubDef(f));
}
static bool Match(const upb_MessageDef* m, const char* name,
const upb_FieldDef** f, const upb_OneofDef** o,
const char* prefix, const char* suffix) {
size_t sp = strlen(prefix);
size_t ss = strlen(suffix);
size_t sn = strlen(name);
if (sn <= sp + ss) return false;
if (memcmp(name, prefix, sp) != 0 ||
memcmp(name + sn - ss, suffix, ss) != 0) {
return false;
}
return upb_MessageDef_FindByNameWithSize(m, name + sp, sn - sp - ss, f, o);
}
static int extract_method_call(VALUE method_name, Message* self,
const upb_FieldDef** f, const upb_OneofDef** o) {
const upb_MessageDef* m = self->msgdef;
const char* name;
Check_Type(method_name, T_SYMBOL);
name = rb_id2name(SYM2ID(method_name));
if (Match(m, name, f, o, "", "")) return METHOD_GETTER;
if (Match(m, name, f, o, "", "=")) return METHOD_SETTER;
if (Match(m, name, f, o, "clear_", "")) return METHOD_CLEAR;
if (Match(m, name, f, o, "has_", "?") &&
(*o || (*f && upb_FieldDef_HasPresence(*f)))) {
return METHOD_PRESENCE;
}
if (Match(m, name, f, o, "", "_as_value") && *f &&
!upb_FieldDef_IsRepeated(*f) && IsFieldWrapper(*f)) {
return METHOD_WRAPPER_GETTER;
}
if (Match(m, name, f, o, "", "_as_value=") && *f &&
!upb_FieldDef_IsRepeated(*f) && IsFieldWrapper(*f)) {
return METHOD_WRAPPER_SETTER;
}
if (Match(m, name, f, o, "", "_const") && *f &&
upb_FieldDef_CType(*f) == kUpb_CType_Enum) {
return METHOD_ENUM_GETTER;
}
return METHOD_UNKNOWN;
}
static VALUE Message_oneof_accessor(VALUE _self, const upb_OneofDef* o,
int accessor_type) {
Message* self = ruby_to_Message(_self);
const upb_FieldDef* oneof_field = upb_Message_WhichOneof(self->msg, o);
switch (accessor_type) {
case METHOD_PRESENCE:
return oneof_field == NULL ? Qfalse : Qtrue;
case METHOD_CLEAR:
if (oneof_field != NULL) {
upb_Message_ClearFieldByDef(Message_GetMutable(_self, NULL),
oneof_field);
}
return Qnil;
case METHOD_GETTER:
return oneof_field == NULL
? Qnil
: ID2SYM(rb_intern(upb_FieldDef_Name(oneof_field)));
case METHOD_SETTER:
rb_raise(rb_eRuntimeError, "Oneof accessors are read-only.");
}
rb_raise(rb_eRuntimeError, "Invalid access of oneof field.");
}
static void Message_setfield(upb_Message* msg, const upb_FieldDef* f, VALUE val,
upb_Arena* arena) {
upb_MessageValue msgval;
if (upb_FieldDef_IsMap(f)) {
msgval.map_val = Map_GetUpbMap(val, f, arena);
} else if (upb_FieldDef_IsRepeated(f)) {
msgval.array_val = RepeatedField_GetUpbArray(val, f, arena);
} else {
if (val == Qnil &&
(upb_FieldDef_IsSubMessage(f) || upb_FieldDef_RealContainingOneof(f))) {
upb_Message_ClearFieldByDef(msg, f);
return;
}
msgval =
Convert_RubyToUpb(val, upb_FieldDef_Name(f), TypeInfo_get(f), arena);
}
upb_Message_SetFieldByDef(msg, f, msgval, arena);
}
VALUE Message_getfield(VALUE _self, const upb_FieldDef* f) {
Message* self = ruby_to_Message(_self);
// This is a special-case: upb_Message_Mutable() for map & array are logically
// const (they will not change what is serialized) but physically
// non-const, as they do allocate a repeated field or map. The logical
// constness means it's ok to do even if the message is frozen.
upb_Message* msg = (upb_Message*)self->msg;
upb_Arena* arena = Arena_get(self->arena);
if (upb_FieldDef_IsMap(f)) {
upb_Map* map = upb_Message_Mutable(msg, f, arena).map;
const upb_FieldDef* key_f = map_field_key(f);
const upb_FieldDef* val_f = map_field_value(f);
upb_CType key_type = upb_FieldDef_CType(key_f);
TypeInfo value_type_info = TypeInfo_get(val_f);
return Map_GetRubyWrapper(map, key_type, value_type_info, self->arena);
} else if (upb_FieldDef_IsRepeated(f)) {
upb_Array* arr = upb_Message_Mutable(msg, f, arena).array;
return RepeatedField_GetRubyWrapper(arr, TypeInfo_get(f), self->arena);
} else if (upb_FieldDef_IsSubMessage(f)) {
if (!upb_Message_HasFieldByDef(self->msg, f)) return Qnil;
upb_Message* submsg = upb_Message_Mutable(msg, f, arena).msg;
const upb_MessageDef* m = upb_FieldDef_MessageSubDef(f);
return Message_GetRubyWrapper(submsg, m, self->arena);
} else {
upb_MessageValue msgval = upb_Message_GetFieldByDef(self->msg, f);
return Convert_UpbToRuby(msgval, TypeInfo_get(f), self->arena);
}
}
static VALUE Message_field_accessor(VALUE _self, const upb_FieldDef* f,
int accessor_type, int argc, VALUE* argv) {
upb_Arena* arena = Arena_get(Message_GetArena(_self));
switch (accessor_type) {
case METHOD_SETTER:
Message_setfield(Message_GetMutable(_self, NULL), f, argv[1], arena);
return Qnil;
case METHOD_CLEAR:
upb_Message_ClearFieldByDef(Message_GetMutable(_self, NULL), f);
return Qnil;
case METHOD_PRESENCE:
if (!upb_FieldDef_HasPresence(f)) {
rb_raise(rb_eRuntimeError, "Field does not have presence.");
}
return upb_Message_HasFieldByDef(Message_Get(_self, NULL), f);
case METHOD_WRAPPER_GETTER: {
Message* self = ruby_to_Message(_self);
if (upb_Message_HasFieldByDef(self->msg, f)) {
PBRUBY_ASSERT(upb_FieldDef_IsSubMessage(f) &&
!upb_FieldDef_IsRepeated(f));
upb_MessageValue wrapper = upb_Message_GetFieldByDef(self->msg, f);
const upb_MessageDef* wrapper_m = upb_FieldDef_MessageSubDef(f);
const upb_FieldDef* value_f =
upb_MessageDef_FindFieldByNumber(wrapper_m, 1);
upb_MessageValue value =
upb_Message_GetFieldByDef(wrapper.msg_val, value_f);
return Convert_UpbToRuby(value, TypeInfo_get(value_f), self->arena);
} else {
return Qnil;
}
}
case METHOD_WRAPPER_SETTER: {
upb_Message* msg = Message_GetMutable(_self, NULL);
if (argv[1] == Qnil) {
upb_Message_ClearFieldByDef(msg, f);
} else {
const upb_FieldDef* val_f =
upb_MessageDef_FindFieldByNumber(upb_FieldDef_MessageSubDef(f), 1);
upb_MessageValue msgval = Convert_RubyToUpb(
argv[1], upb_FieldDef_Name(f), TypeInfo_get(val_f), arena);
upb_Message* wrapper = upb_Message_Mutable(msg, f, arena).msg;
upb_Message_SetFieldByDef(wrapper, val_f, msgval, arena);
}
return Qnil;
}
case METHOD_ENUM_GETTER: {
upb_MessageValue msgval =
upb_Message_GetFieldByDef(Message_Get(_self, NULL), f);
if (upb_FieldDef_Label(f) == kUpb_Label_Repeated) {
// Map repeated fields to a new type with ints
VALUE arr = rb_ary_new();
size_t i, n = upb_Array_Size(msgval.array_val);
for (i = 0; i < n; i++) {
upb_MessageValue elem = upb_Array_Get(msgval.array_val, i);
rb_ary_push(arr, INT2NUM(elem.int32_val));
}
return arr;
} else {
return INT2NUM(msgval.int32_val);
}
}
case METHOD_GETTER:
return Message_getfield(_self, f);
default:
rb_raise(rb_eRuntimeError, "Internal error, no such accessor: %d",
accessor_type);
}
}
/*
* call-seq:
* Message.method_missing(*args)
*
* Provides accessors and setters and methods to clear and check for presence of
* message fields according to their field names.
*
* For any field whose name does not conflict with a built-in method, an
* accessor is provided with the same name as the field, and a setter is
* provided with the name of the field plus the '=' suffix. Thus, given a
* message instance 'msg' with field 'foo', the following code is valid:
*
* msg.foo = 42
* puts msg.foo
*
* This method also provides read-only accessors for oneofs. If a oneof exists
* with name 'my_oneof', then msg.my_oneof will return a Ruby symbol equal to
* the name of the field in that oneof that is currently set, or nil if none.
*
* It also provides methods of the form 'clear_fieldname' to clear the value
* of the field 'fieldname'. For basic data types, this will set the default
* value of the field.
*
* Additionally, it provides methods of the form 'has_fieldname?', which returns
* true if the field 'fieldname' is set in the message object, else false. For
* 'proto3' syntax, calling this for a basic type field will result in an error.
*/
static VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self) {
Message* self = ruby_to_Message(_self);
const upb_OneofDef* o;
const upb_FieldDef* f;
int accessor_type;
if (argc < 1) {
rb_raise(rb_eArgError, "Expected method name as first argument.");
}
accessor_type = extract_method_call(argv[0], self, &f, &o);
if (accessor_type == METHOD_UNKNOWN) return rb_call_super(argc, argv);
// Validate argument count.
switch (accessor_type) {
case METHOD_SETTER:
case METHOD_WRAPPER_SETTER:
if (argc != 2) {
rb_raise(rb_eArgError, "Expected 2 arguments, received %d", argc);
}
rb_check_frozen(_self);
break;
default:
if (argc != 1) {
rb_raise(rb_eArgError, "Expected 1 argument, received %d", argc);
}
break;
}
// Dispatch accessor.
if (o != NULL) {
return Message_oneof_accessor(_self, o, accessor_type);
} else {
return Message_field_accessor(_self, f, accessor_type, argc, argv);
}
}
static VALUE Message_respond_to_missing(int argc, VALUE* argv, VALUE _self) {
Message* self = ruby_to_Message(_self);
const upb_OneofDef* o;
const upb_FieldDef* f;
int accessor_type;
if (argc < 1) {
rb_raise(rb_eArgError, "Expected method name as first argument.");
}
accessor_type = extract_method_call(argv[0], self, &f, &o);
if (accessor_type == METHOD_UNKNOWN) {
return rb_call_super(argc, argv);
} else if (o != NULL) {
return accessor_type == METHOD_SETTER ? Qfalse : Qtrue;
} else {
return Qtrue;
}
}
void Message_InitFromValue(upb_Message* msg, const upb_MessageDef* m, VALUE val,
upb_Arena* arena);
typedef struct {
upb_Map* map;
TypeInfo key_type;
TypeInfo val_type;
upb_Arena* arena;
} MapInit;
static int Map_initialize_kwarg(VALUE key, VALUE val, VALUE _self) {
MapInit* map_init = (MapInit*)_self;
upb_MessageValue k, v;
k = Convert_RubyToUpb(key, "", map_init->key_type, NULL);
if (map_init->val_type.type == kUpb_CType_Message && TYPE(val) == T_HASH) {
upb_MiniTable* t = upb_MessageDef_MiniTable(map_init->val_type.def.msgdef);
upb_Message* msg = upb_Message_New(t, map_init->arena);
Message_InitFromValue(msg, map_init->val_type.def.msgdef, val,
map_init->arena);
v.msg_val = msg;
} else {
v = Convert_RubyToUpb(val, "", map_init->val_type, map_init->arena);
}
upb_Map_Set(map_init->map, k, v, map_init->arena);
return ST_CONTINUE;
}
static void Map_InitFromValue(upb_Map* map, const upb_FieldDef* f, VALUE val,
upb_Arena* arena) {
const upb_MessageDef* entry_m = upb_FieldDef_MessageSubDef(f);
const upb_FieldDef* key_f = upb_MessageDef_FindFieldByNumber(entry_m, 1);
const upb_FieldDef* val_f = upb_MessageDef_FindFieldByNumber(entry_m, 2);
if (TYPE(val) != T_HASH) {
rb_raise(rb_eArgError,
"Expected Hash object as initializer value for map field '%s' "
"(given %s).",
upb_FieldDef_Name(f), rb_class2name(CLASS_OF(val)));
}
MapInit map_init = {map, TypeInfo_get(key_f), TypeInfo_get(val_f), arena};
rb_hash_foreach(val, Map_initialize_kwarg, (VALUE)&map_init);
}
static upb_MessageValue MessageValue_FromValue(VALUE val, TypeInfo info,
upb_Arena* arena) {
if (info.type == kUpb_CType_Message) {
upb_MessageValue msgval;
upb_MiniTable* t = upb_MessageDef_MiniTable(info.def.msgdef);
upb_Message* msg = upb_Message_New(t, arena);
Message_InitFromValue(msg, info.def.msgdef, val, arena);
msgval.msg_val = msg;
return msgval;
} else {
return Convert_RubyToUpb(val, "", info, arena);
}
}
static void RepeatedField_InitFromValue(upb_Array* arr, const upb_FieldDef* f,
VALUE val, upb_Arena* arena) {
TypeInfo type_info = TypeInfo_get(f);
if (TYPE(val) != T_ARRAY) {
rb_raise(rb_eArgError,
"Expected array as initializer value for repeated field '%s' "
"(given %s).",
upb_FieldDef_Name(f), rb_class2name(CLASS_OF(val)));
}
for (int i = 0; i < RARRAY_LEN(val); i++) {
VALUE entry = rb_ary_entry(val, i);
upb_MessageValue msgval;
if (upb_FieldDef_IsSubMessage(f) && TYPE(entry) == T_HASH) {
msgval = MessageValue_FromValue(entry, type_info, arena);
} else {
msgval = Convert_RubyToUpb(entry, upb_FieldDef_Name(f), type_info, arena);
}
upb_Array_Append(arr, msgval, arena);
}
}
static void Message_InitFieldFromValue(upb_Message* msg, const upb_FieldDef* f,
VALUE val, upb_Arena* arena) {
if (TYPE(val) == T_NIL) return;
if (upb_FieldDef_IsMap(f)) {
upb_Map* map = upb_Message_Mutable(msg, f, arena).map;
Map_InitFromValue(map, f, val, arena);
} else if (upb_FieldDef_Label(f) == kUpb_Label_Repeated) {
upb_Array* arr = upb_Message_Mutable(msg, f, arena).array;
RepeatedField_InitFromValue(arr, f, val, arena);
} else if (upb_FieldDef_IsSubMessage(f)) {
if (TYPE(val) == T_HASH) {
upb_Message* submsg = upb_Message_Mutable(msg, f, arena).msg;
Message_InitFromValue(submsg, upb_FieldDef_MessageSubDef(f), val, arena);
} else {
Message_setfield(msg, f, val, arena);
}
} else {
upb_MessageValue msgval =
Convert_RubyToUpb(val, upb_FieldDef_Name(f), TypeInfo_get(f), arena);
upb_Message_SetFieldByDef(msg, f, msgval, arena);
}
}
typedef struct {
upb_Message* msg;
const upb_MessageDef* msgdef;
upb_Arena* arena;
} MsgInit;
static int Message_initialize_kwarg(VALUE key, VALUE val, VALUE _self) {
MsgInit* msg_init = (MsgInit*)_self;
const char* name;
if (TYPE(key) == T_STRING) {
name = RSTRING_PTR(key);
} else if (TYPE(key) == T_SYMBOL) {
name = RSTRING_PTR(rb_id2str(SYM2ID(key)));
} else {
rb_raise(rb_eArgError,
"Expected string or symbols as hash keys when initializing proto "
"from hash.");
}
const upb_FieldDef* f =
upb_MessageDef_FindFieldByName(msg_init->msgdef, name);
if (f == NULL) {
rb_raise(rb_eArgError,
"Unknown field name '%s' in initialization map entry.", name);
}
Message_InitFieldFromValue(msg_init->msg, f, val, msg_init->arena);
return ST_CONTINUE;
}
void Message_InitFromValue(upb_Message* msg, const upb_MessageDef* m, VALUE val,
upb_Arena* arena) {
MsgInit msg_init = {msg, m, arena};
if (TYPE(val) == T_HASH) {
rb_hash_foreach(val, Message_initialize_kwarg, (VALUE)&msg_init);
} else {
rb_raise(rb_eArgError, "Expected hash arguments or message, not %s",
rb_class2name(CLASS_OF(val)));
}
}
/*
* call-seq:
* Message.new(kwargs) => new_message
*
* Creates a new instance of the given message class. Keyword arguments may be
* provided with keywords corresponding to field names.
*
* Note that no literal Message class exists. Only concrete classes per message
* type exist, as provided by the #msgclass method on Descriptors after they
* have been added to a pool. The method definitions described here on the
* Message class are provided on each concrete message class.
*/
static VALUE Message_initialize(int argc, VALUE* argv, VALUE _self) {
Message* self = ruby_to_Message(_self);
VALUE arena_rb = Arena_new();
upb_Arena* arena = Arena_get(arena_rb);
upb_MiniTable* t = upb_MessageDef_MiniTable(self->msgdef);
upb_Message* msg = upb_Message_New(t, arena);
Message_InitPtr(_self, msg, arena_rb);
if (argc == 0) {
return Qnil;
}
if (argc != 1) {
rb_raise(rb_eArgError, "Expected 0 or 1 arguments.");
}
Message_InitFromValue((upb_Message*)self->msg, self->msgdef, argv[0], arena);
return Qnil;
}
/*
* call-seq:
* Message.dup => new_message
*
* Performs a shallow copy of this message and returns the new copy.
*/
static VALUE Message_dup(VALUE _self) {
Message* self = ruby_to_Message(_self);
VALUE new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self));
Message* new_msg_self = ruby_to_Message(new_msg);
size_t size = upb_MessageDef_MiniTable(self->msgdef)->size;
// TODO(copy unknown fields?)
// TODO(use official upb msg copy function)
memcpy((upb_Message*)new_msg_self->msg, self->msg, size);
Arena_fuse(self->arena, Arena_get(new_msg_self->arena));
return new_msg;
}
// Support function for Message_eq, and also used by other #eq functions.
bool Message_Equal(const upb_Message* m1, const upb_Message* m2,
const upb_MessageDef* m) {
if (m1 == m2) return true;
size_t size1, size2;
int encode_opts =
kUpb_EncodeOption_SkipUnknown | kUpb_EncodeOption_Deterministic;
upb_Arena* arena_tmp = upb_Arena_New();
const upb_MiniTable* layout = upb_MessageDef_MiniTable(m);
// Compare deterministically serialized payloads with no unknown fields.
char* data1;
char* data2;
upb_EncodeStatus status1 =
upb_Encode(m1, layout, encode_opts, arena_tmp, &data1, &size1);
upb_EncodeStatus status2 =
upb_Encode(m2, layout, encode_opts, arena_tmp, &data2, &size2);
if (status1 == kUpb_EncodeStatus_Ok && status2 == kUpb_EncodeStatus_Ok) {
bool ret = (size1 == size2) && (memcmp(data1, data2, size1) == 0);
upb_Arena_Free(arena_tmp);
return ret;
} else {
upb_Arena_Free(arena_tmp);
rb_raise(cParseError, "Error comparing messages");
}
}
/*
* call-seq:
* Message.==(other) => boolean
*
* Performs a deep comparison of this message with another. Messages are equal
* if they have the same type and if each field is equal according to the :==
* method's semantics (a more efficient comparison may actually be done if the
* field is of a primitive type).
*/
static VALUE Message_eq(VALUE _self, VALUE _other) {
if (CLASS_OF(_self) != CLASS_OF(_other)) return Qfalse;
Message* self = ruby_to_Message(_self);
Message* other = ruby_to_Message(_other);
assert(self->msgdef == other->msgdef);
return Message_Equal(self->msg, other->msg, self->msgdef) ? Qtrue : Qfalse;
}
uint64_t Message_Hash(const upb_Message* msg, const upb_MessageDef* m,
uint64_t seed) {
upb_Arena* arena = upb_Arena_New();
char* data;
size_t size;
// Hash a deterministically serialized payloads with no unknown fields.
upb_EncodeStatus status = upb_Encode(
msg, upb_MessageDef_MiniTable(m),
kUpb_EncodeOption_SkipUnknown | kUpb_EncodeOption_Deterministic, arena,
&data, &size);
if (status == kUpb_EncodeStatus_Ok) {
uint64_t ret = _upb_Hash(data, size, seed);
upb_Arena_Free(arena);
return ret;
} else {
upb_Arena_Free(arena);
rb_raise(cParseError, "Error calculating hash");
}
}
/*
* call-seq:
* Message.hash => hash_value
*
* Returns a hash value that represents this message's field values.
*/
static VALUE Message_hash(VALUE _self) {
Message* self = ruby_to_Message(_self);
uint64_t hash_value = Message_Hash(self->msg, self->msgdef, 0);
// RUBY_FIXNUM_MAX should be one less than a power of 2.
assert((RUBY_FIXNUM_MAX & (RUBY_FIXNUM_MAX + 1)) == 0);
return INT2FIX(hash_value & RUBY_FIXNUM_MAX);
}
/*
* call-seq:
* Message.inspect => string
*
* Returns a human-readable string representing this message. It will be
* formatted as "<MessageType: field1: value1, field2: value2, ...>". Each
* field's value is represented according to its own #inspect method.
*/
static VALUE Message_inspect(VALUE _self) {
Message* self = ruby_to_Message(_self);
StringBuilder* builder = StringBuilder_New();
Message_PrintMessage(builder, self->msg, self->msgdef);
VALUE ret = StringBuilder_ToRubyString(builder);
StringBuilder_Free(builder);
return ret;
}
// Support functions for Message_to_h //////////////////////////////////////////
static VALUE RepeatedField_CreateArray(const upb_Array* arr,
TypeInfo type_info) {
int size = arr ? upb_Array_Size(arr) : 0;
VALUE ary = rb_ary_new2(size);
for (int i = 0; i < size; i++) {
upb_MessageValue msgval = upb_Array_Get(arr, i);
VALUE val = Scalar_CreateHash(msgval, type_info);
rb_ary_push(ary, val);
}
return ary;
}
static VALUE Message_CreateHash(const upb_Message* msg,
const upb_MessageDef* m) {
if (!msg) return Qnil;
VALUE hash = rb_hash_new();
int n = upb_MessageDef_FieldCount(m);
bool is_proto2;
// We currently have a few behaviors that are specific to proto2.
// This is unfortunate, we should key behaviors off field attributes (like
// whether a field has presence), not proto2 vs. proto3. We should see if we
// can change this without breaking users.
is_proto2 = upb_MessageDef_Syntax(m) == kUpb_Syntax_Proto2;
for (int i = 0; i < n; i++) {
const upb_FieldDef* field = upb_MessageDef_Field(m, i);
TypeInfo type_info = TypeInfo_get(field);
upb_MessageValue msgval;
VALUE msg_value;
VALUE msg_key;
if (!is_proto2 && upb_FieldDef_IsSubMessage(field) &&
!upb_FieldDef_IsRepeated(field) &&
!upb_Message_HasFieldByDef(msg, field)) {
// TODO: Legacy behavior, remove when we fix the is_proto2 differences.
msg_key = ID2SYM(rb_intern(upb_FieldDef_Name(field)));
rb_hash_aset(hash, msg_key, Qnil);
continue;
}
// Do not include fields that are not present (oneof or optional fields).
if (is_proto2 && upb_FieldDef_HasPresence(field) &&
!upb_Message_HasFieldByDef(msg, field)) {
continue;
}
msg_key = ID2SYM(rb_intern(upb_FieldDef_Name(field)));
msgval = upb_Message_GetFieldByDef(msg, field);
// Proto2 omits empty map/repeated filds also.
if (upb_FieldDef_IsMap(field)) {
const upb_MessageDef* entry_m = upb_FieldDef_MessageSubDef(field);
const upb_FieldDef* key_f = upb_MessageDef_FindFieldByNumber(entry_m, 1);
const upb_FieldDef* val_f = upb_MessageDef_FindFieldByNumber(entry_m, 2);
upb_CType key_type = upb_FieldDef_CType(key_f);
msg_value = Map_CreateHash(msgval.map_val, key_type, TypeInfo_get(val_f));
} else if (upb_FieldDef_IsRepeated(field)) {
if (is_proto2 &&
(!msgval.array_val || upb_Array_Size(msgval.array_val) == 0)) {
continue;
}
msg_value = RepeatedField_CreateArray(msgval.array_val, type_info);
} else {
msg_value = Scalar_CreateHash(msgval, type_info);
}
rb_hash_aset(hash, msg_key, msg_value);
}
return hash;
}
VALUE Scalar_CreateHash(upb_MessageValue msgval, TypeInfo type_info) {
if (type_info.type == kUpb_CType_Message) {
return Message_CreateHash(msgval.msg_val, type_info.def.msgdef);
} else {
return Convert_UpbToRuby(msgval, type_info, Qnil);
}
}
/*
* call-seq:
* Message.to_h => {}
*
* Returns the message as a Ruby Hash object, with keys as symbols.
*/
static VALUE Message_to_h(VALUE _self) {
Message* self = ruby_to_Message(_self);
return Message_CreateHash(self->msg, self->msgdef);
}
/*
* call-seq:
* Message.freeze => self
*
* Freezes the message object. We have to intercept this so we can pin the
* Ruby object into memory so we don't forget it's frozen.
*/
static VALUE Message_freeze(VALUE _self) {
Message* self = ruby_to_Message(_self);
if (!RB_OBJ_FROZEN(_self)) {
Arena_Pin(self->arena, _self);
RB_OBJ_FREEZE(_self);
}
return _self;
}
/*
* call-seq:
* Message.[](index) => value
*
* Accesses a field's value by field name. The provided field name should be a
* string.
*/
static VALUE Message_index(VALUE _self, VALUE field_name) {
Message* self = ruby_to_Message(_self);
const upb_FieldDef* field;
Check_Type(field_name, T_STRING);
field = upb_MessageDef_FindFieldByName(self->msgdef, RSTRING_PTR(field_name));
if (field == NULL) {
return Qnil;
}
return Message_getfield(_self, field);
}
/*
* call-seq:
* Message.[]=(index, value)
*
* Sets a field's value by field name. The provided field name should be a
* string.
*/
static VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value) {
Message* self = ruby_to_Message(_self);
const upb_FieldDef* f;
upb_MessageValue val;
upb_Arena* arena = Arena_get(self->arena);
Check_Type(field_name, T_STRING);
f = upb_MessageDef_FindFieldByName(self->msgdef, RSTRING_PTR(field_name));
if (f == NULL) {
rb_raise(rb_eArgError, "Unknown field: %s", RSTRING_PTR(field_name));
}
val = Convert_RubyToUpb(value, upb_FieldDef_Name(f), TypeInfo_get(f), arena);
upb_Message_SetFieldByDef(Message_GetMutable(_self, NULL), f, val, arena);
return Qnil;
}
/*
* call-seq:
* MessageClass.decode(data, options) => message
*
* Decodes the given data (as a string containing bytes in protocol buffers wire
* format) under the interpretration given by this message class's definition
* and returns a message object with the corresponding field values.
* @param options [Hash] options for the decoder
* recursion_limit: set to maximum decoding depth for message (default is 64)
*/
static VALUE Message_decode(int argc, VALUE* argv, VALUE klass) {
VALUE data = argv[0];
int options = 0;
if (argc < 1 || argc > 2) {
rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
}
if (argc == 2) {
VALUE hash_args = argv[1];
if (TYPE(hash_args) != T_HASH) {
rb_raise(rb_eArgError, "Expected hash arguments.");
}
VALUE depth =
rb_hash_lookup(hash_args, ID2SYM(rb_intern("recursion_limit")));
if (depth != Qnil && TYPE(depth) == T_FIXNUM) {
options |= upb_DecodeOptions_MaxDepth(FIX2INT(depth));
}
}
if (TYPE(data) != T_STRING) {
rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
}
VALUE msg_rb = initialize_rb_class_with_no_args(klass);
Message* msg = ruby_to_Message(msg_rb);
upb_DecodeStatus status =
upb_Decode(RSTRING_PTR(data), RSTRING_LEN(data), (upb_Message*)msg->msg,
upb_MessageDef_MiniTable(msg->msgdef), NULL, options,
Arena_get(msg->arena));
if (status != kUpb_DecodeStatus_Ok) {
rb_raise(cParseError, "Error occurred during parsing");
}
return msg_rb;
}
/*
* call-seq:
* MessageClass.decode_json(data, options = {}) => message
*
* Decodes the given data (as a string containing bytes in protocol buffers wire
* format) under the interpretration given by this message class's definition
* and returns a message object with the corresponding field values.
*
* @param options [Hash] options for the decoder
* ignore_unknown_fields: set true to ignore unknown fields (default is to
* raise an error)
*/
static VALUE Message_decode_json(int argc, VALUE* argv, VALUE klass) {
VALUE data = argv[0];
int options = 0;
upb_Status status;
// TODO(haberman): use this message's pool instead.
const upb_DefPool* symtab = DescriptorPool_GetSymtab(generated_pool);
if (argc < 1 || argc > 2) {
rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
}
if (argc == 2) {
VALUE hash_args = argv[1];
if (TYPE(hash_args) != T_HASH) {
rb_raise(rb_eArgError, "Expected hash arguments.");
}
if (RTEST(rb_hash_lookup2(
hash_args, ID2SYM(rb_intern("ignore_unknown_fields")), Qfalse))) {
options |= upb_JsonDecode_IgnoreUnknown;
}
}
if (TYPE(data) != T_STRING) {
rb_raise(rb_eArgError, "Expected string for JSON data.");
}
// TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
// convert, because string handlers pass data directly to message string
// fields.
VALUE msg_rb = initialize_rb_class_with_no_args(klass);
Message* msg = ruby_to_Message(msg_rb);
// We don't allow users to decode a wrapper type directly.
if (IsWrapper(msg->msgdef)) {
rb_raise(rb_eRuntimeError, "Cannot parse a wrapper directly.");
}
upb_Status_Clear(&status);
if (!upb_JsonDecode(RSTRING_PTR(data), RSTRING_LEN(data),
(upb_Message*)msg->msg, msg->msgdef, symtab, options,
Arena_get(msg->arena), &status)) {
rb_raise(cParseError, "Error occurred during parsing: %s",
upb_Status_ErrorMessage(&status));
}
return msg_rb;
}
/*
* call-seq:
* MessageClass.encode(msg, options) => bytes
*
* Encodes the given message object to its serialized form in protocol buffers
* wire format.
* @param options [Hash] options for the encoder
* recursion_limit: set to maximum encoding depth for message (default is 64)
*/
static VALUE Message_encode(int argc, VALUE* argv, VALUE klass) {
Message* msg = ruby_to_Message(argv[0]);
int options = 0;
char* data;
size_t size;
if (CLASS_OF(argv[0]) != klass) {
rb_raise(rb_eArgError, "Message of wrong type.");
}
if (argc < 1 || argc > 2) {
rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
}
if (argc == 2) {
VALUE hash_args = argv[1];
if (TYPE(hash_args) != T_HASH) {
rb_raise(rb_eArgError, "Expected hash arguments.");
}
VALUE depth =
rb_hash_lookup(hash_args, ID2SYM(rb_intern("recursion_limit")));
if (depth != Qnil && TYPE(depth) == T_FIXNUM) {
options |= upb_DecodeOptions_MaxDepth(FIX2INT(depth));
}
}
upb_Arena* arena = upb_Arena_New();
upb_EncodeStatus status =
upb_Encode(msg->msg, upb_MessageDef_MiniTable(msg->msgdef), options,
arena, &data, &size);
if (status == kUpb_EncodeStatus_Ok) {
VALUE ret = rb_str_new(data, size);
rb_enc_associate(ret, rb_ascii8bit_encoding());
upb_Arena_Free(arena);
return ret;
} else {
upb_Arena_Free(arena);
rb_raise(rb_eRuntimeError, "Exceeded maximum depth (possibly cycle)");
}
}
/*
* call-seq:
* MessageClass.encode_json(msg, options = {}) => json_string
*
* Encodes the given message object into its serialized JSON representation.
* @param options [Hash] options for the decoder
* preserve_proto_fieldnames: set true to use original fieldnames (default is
* to camelCase) emit_defaults: set true to emit 0/false values (default is to
* omit them)
*/
static VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) {
Message* msg = ruby_to_Message(argv[0]);
int options = 0;
char buf[1024];
size_t size;
upb_Status status;
// TODO(haberman): use this message's pool instead.
const upb_DefPool* symtab = DescriptorPool_GetSymtab(generated_pool);
if (argc < 1 || argc > 2) {
rb_raise(rb_eArgError, "Expected 1 or 2 arguments.");
}
if (argc == 2) {
VALUE hash_args = argv[1];
if (TYPE(hash_args) != T_HASH) {
if (RTEST(rb_funcall(hash_args, rb_intern("respond_to?"), 1,
rb_str_new2("to_h")))) {
hash_args = rb_funcall(hash_args, rb_intern("to_h"), 0);
} else {
rb_raise(rb_eArgError, "Expected hash arguments.");
}
}
if (RTEST(rb_hash_lookup2(hash_args,
ID2SYM(rb_intern("preserve_proto_fieldnames")),
Qfalse))) {
options |= upb_JsonEncode_UseProtoNames;
}
if (RTEST(rb_hash_lookup2(hash_args, ID2SYM(rb_intern("emit_defaults")),
Qfalse))) {
options |= upb_JsonEncode_EmitDefaults;
}
if (RTEST(rb_hash_lookup2(hash_args,
ID2SYM(rb_intern("format_enums_as_integers")),
Qfalse))) {
options |= upb_JsonEncode_FormatEnumsAsIntegers;
}
}
upb_Status_Clear(&status);
size = upb_JsonEncode(msg->msg, msg->msgdef, symtab, options, buf,
sizeof(buf), &status);
if (!upb_Status_IsOk(&status)) {
rb_raise(cParseError, "Error occurred during encoding: %s",
upb_Status_ErrorMessage(&status));
}
VALUE ret;
if (size >= sizeof(buf)) {
char* buf2 = malloc(size + 1);
upb_JsonEncode(msg->msg, msg->msgdef, symtab, options, buf2, size + 1,
&status);
ret = rb_str_new(buf2, size);
free(buf2);
} else {
ret = rb_str_new(buf, size);
}
rb_enc_associate(ret, rb_utf8_encoding());
return ret;
}
/*
* call-seq:
* Message.descriptor => descriptor
*
* Class method that returns the Descriptor instance corresponding to this
* message class's type.
*/
static VALUE Message_descriptor(VALUE klass) {
return rb_ivar_get(klass, descriptor_instancevar_interned);
}
VALUE build_class_from_descriptor(VALUE descriptor) {
const char* name;
VALUE klass;
name = upb_MessageDef_FullName(Descriptor_GetMsgDef(descriptor));
if (name == NULL) {
rb_raise(rb_eRuntimeError, "Descriptor does not have assigned name.");
}
klass = rb_define_class_id(
// Docs say this parameter is ignored. User will assign return value to
// their own toplevel constant class name.
rb_intern("Message"), cAbstractMessage);
rb_ivar_set(klass, descriptor_instancevar_interned, descriptor);
return klass;
}
/*
* call-seq:
* Enum.lookup(number) => name
*
* This module method, provided on each generated enum module, looks up an enum
* value by number and returns its name as a Ruby symbol, or nil if not found.
*/
static VALUE enum_lookup(VALUE self, VALUE number) {
int32_t num = NUM2INT(number);
VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
const upb_EnumDef* e = EnumDescriptor_GetEnumDef(desc);
const upb_EnumValueDef* ev = upb_EnumDef_FindValueByNumber(e, num);
if (ev) {
return ID2SYM(rb_intern(upb_EnumValueDef_Name(ev)));
} else {
return Qnil;
}
}
/*
* call-seq:
* Enum.resolve(name) => number
*
* This module method, provided on each generated enum module, looks up an enum
* value by name (as a Ruby symbol) and returns its name, or nil if not found.
*/
static VALUE enum_resolve(VALUE self, VALUE sym) {
const char* name = rb_id2name(SYM2ID(sym));
VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned);
const upb_EnumDef* e = EnumDescriptor_GetEnumDef(desc);
const upb_EnumValueDef* ev = upb_EnumDef_FindValueByName(e, name);
if (ev) {
return INT2NUM(upb_EnumValueDef_Number(ev));
} else {
return Qnil;
}
}
/*
* call-seq:
* Enum.descriptor
*
* This module method, provided on each generated enum module, returns the
* EnumDescriptor corresponding to this enum type.
*/
static VALUE enum_descriptor(VALUE self) {
return rb_ivar_get(self, descriptor_instancevar_interned);
}
VALUE build_module_from_enumdesc(VALUE _enumdesc) {
const upb_EnumDef* e = EnumDescriptor_GetEnumDef(_enumdesc);
VALUE mod = rb_define_module_id(rb_intern(upb_EnumDef_FullName(e)));
int n = upb_EnumDef_ValueCount(e);
for (int i = 0; i < n; i++) {
const upb_EnumValueDef* ev = upb_EnumDef_Value(e, i);
upb_Arena* arena = upb_Arena_New();
const char* src_name = upb_EnumValueDef_Name(ev);
char* name = upb_strdup2(src_name, strlen(src_name), arena);
int32_t value = upb_EnumValueDef_Number(ev);
if (name[0] < 'A' || name[0] > 'Z') {
if (name[0] >= 'a' && name[0] <= 'z') {
name[0] -= 32; // auto capitalize
} else {
rb_warn(
"Enum value '%s' does not start with an uppercase letter "
"as is required for Ruby constants.",
name);
}
}
rb_define_const(mod, name, INT2NUM(value));
upb_Arena_Free(arena);
}
rb_define_singleton_method(mod, "lookup", enum_lookup, 1);
rb_define_singleton_method(mod, "resolve", enum_resolve, 1);
rb_define_singleton_method(mod, "descriptor", enum_descriptor, 0);
rb_ivar_set(mod, descriptor_instancevar_interned, _enumdesc);
return mod;
}
// Internal to the library; used by Google::Protobuf.deep_copy.
upb_Message* Message_deep_copy(const upb_Message* msg, const upb_MessageDef* m,
upb_Arena* arena) {
// Serialize and parse.
upb_Arena* tmp_arena = upb_Arena_New();
const upb_MiniTable* layout = upb_MessageDef_MiniTable(m);
size_t size;
upb_Message* new_msg = upb_Message_New(layout, arena);
char* data;
if (upb_Encode(msg, layout, 0, tmp_arena, &data, &size) !=
kUpb_EncodeStatus_Ok ||
upb_Decode(data, size, new_msg, layout, NULL, 0, arena) !=
kUpb_DecodeStatus_Ok) {
upb_Arena_Free(tmp_arena);
rb_raise(cParseError, "Error occurred copying proto");
}
upb_Arena_Free(tmp_arena);
return new_msg;
}
const upb_Message* Message_GetUpbMessage(VALUE value, const upb_MessageDef* m,
const char* name, upb_Arena* arena) {
if (value == Qnil) {
rb_raise(cTypeError, "nil message not allowed here.");
}
VALUE klass = CLASS_OF(value);
VALUE desc_rb = rb_ivar_get(klass, descriptor_instancevar_interned);
const upb_MessageDef* val_m =
desc_rb == Qnil ? NULL : Descriptor_GetMsgDef(desc_rb);
if (val_m != m) {
// Check for possible implicit conversions
// TODO: hash conversion?
switch (upb_MessageDef_WellKnownType(m)) {
case kUpb_WellKnown_Timestamp: {
// Time -> Google::Protobuf::Timestamp
const upb_MiniTable* t = upb_MessageDef_MiniTable(m);
upb_Message* msg = upb_Message_New(t, arena);
upb_MessageValue sec, nsec;
struct timespec time;
const upb_FieldDef* sec_f = upb_MessageDef_FindFieldByNumber(m, 1);
const upb_FieldDef* nsec_f = upb_MessageDef_FindFieldByNumber(m, 2);
if (!rb_obj_is_kind_of(value, rb_cTime)) goto badtype;
time = rb_time_timespec(value);
sec.int64_val = time.tv_sec;
nsec.int32_val = time.tv_nsec;
upb_Message_SetFieldByDef(msg, sec_f, sec, arena);
upb_Message_SetFieldByDef(msg, nsec_f, nsec, arena);
return msg;
}
case kUpb_WellKnown_Duration: {
// Numeric -> Google::Protobuf::Duration
const upb_MiniTable* t = upb_MessageDef_MiniTable(m);
upb_Message* msg = upb_Message_New(t, arena);
upb_MessageValue sec, nsec;
const upb_FieldDef* sec_f = upb_MessageDef_FindFieldByNumber(m, 1);
const upb_FieldDef* nsec_f = upb_MessageDef_FindFieldByNumber(m, 2);
if (!rb_obj_is_kind_of(value, rb_cNumeric)) goto badtype;
sec.int64_val = NUM2LL(value);
nsec.int32_val = round((NUM2DBL(value) - NUM2LL(value)) * 1000000000);
upb_Message_SetFieldByDef(msg, sec_f, sec, arena);
upb_Message_SetFieldByDef(msg, nsec_f, nsec, arena);
return msg;
}
default:
badtype:
rb_raise(cTypeError,
"Invalid type %s to assign to submessage field '%s'.",
rb_class2name(CLASS_OF(value)), name);
}
}
Message* self = ruby_to_Message(value);
Arena_fuse(self->arena, arena);
return self->msg;
}
static void Message_define_class(VALUE klass) {
rb_define_alloc_func(klass, Message_alloc);
rb_require("google/protobuf/message_exts");
rb_define_method(klass, "method_missing", Message_method_missing, -1);
rb_define_method(klass, "respond_to_missing?", Message_respond_to_missing,
-1);
rb_define_method(klass, "initialize", Message_initialize, -1);
rb_define_method(klass, "dup", Message_dup, 0);
// Also define #clone so that we don't inherit Object#clone.
rb_define_method(klass, "clone", Message_dup, 0);
rb_define_method(klass, "==", Message_eq, 1);
rb_define_method(klass, "eql?", Message_eq, 1);
rb_define_method(klass, "freeze", Message_freeze, 0);
rb_define_method(klass, "hash", Message_hash, 0);
rb_define_method(klass, "to_h", Message_to_h, 0);
rb_define_method(klass, "inspect", Message_inspect, 0);
rb_define_method(klass, "to_s", Message_inspect, 0);
rb_define_method(klass, "[]", Message_index, 1);
rb_define_method(klass, "[]=", Message_index_set, 2);
rb_define_singleton_method(klass, "decode", Message_decode, -1);
rb_define_singleton_method(klass, "encode", Message_encode, -1);
rb_define_singleton_method(klass, "decode_json", Message_decode_json, -1);
rb_define_singleton_method(klass, "encode_json", Message_encode_json, -1);
rb_define_singleton_method(klass, "descriptor", Message_descriptor, 0);
}
void Message_register(VALUE protobuf) {
cParseError = rb_const_get(protobuf, rb_intern("ParseError"));
cAbstractMessage =
rb_define_class_under(protobuf, "AbstractMessage", rb_cObject);
Message_define_class(cAbstractMessage);
rb_gc_register_address(&cAbstractMessage);
// Ruby-interned string: "descriptor". We use this identifier to store an
// instance variable on message classes we create in order to link them back
// to their descriptors.
descriptor_instancevar_interned = rb_intern("@descriptor");
}