Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

13345 lines
392 KiB

/* Amalgamated source file */
#include "upb.h"
/*
* This is where we define macros used across upb.
*
* All of these macros are undef'd in port_undef.inc to avoid leaking them to
* users.
*
* The correct usage is:
*
* #include "upb/foobar.h"
* #include "upb/baz.h"
*
* // MUST be last included header.
* #include "upb/port_def.inc"
*
* // Code for this file.
* // <...>
*
* // Can be omitted for .c files, required for .h.
* #include "upb/port_undef.inc"
*
* This file is private and must not be included by users!
*/
#ifndef UINTPTR_MAX
#error must include stdint.h first
#endif
#if UINTPTR_MAX == 0xffffffff
#define UPB_SIZE(size32, size64) size32
#else
#define UPB_SIZE(size32, size64) size64
#endif
#define UPB_FIELD_AT(msg, fieldtype, offset) \
*(fieldtype*)((const char*)(msg) + offset)
#define UPB_READ_ONEOF(msg, fieldtype, offset, case_offset, case_val, default) \
UPB_FIELD_AT(msg, int, case_offset) == case_val \
? UPB_FIELD_AT(msg, fieldtype, offset) \
: default
#define UPB_WRITE_ONEOF(msg, fieldtype, offset, value, case_offset, case_val) \
UPB_FIELD_AT(msg, int, case_offset) = case_val; \
UPB_FIELD_AT(msg, fieldtype, offset) = value;
/* UPB_INLINE: inline if possible, emit standalone code if required. */
#ifdef __cplusplus
#define UPB_INLINE inline
#elif defined (__GNUC__) || defined(__clang__)
#define UPB_INLINE static __inline__
#else
#define UPB_INLINE static
#endif
/* Hints to the compiler about likely/unlikely branches. */
#if defined (__GNUC__) || defined(__clang__)
#define UPB_LIKELY(x) __builtin_expect((x),1)
#define UPB_UNLIKELY(x) __builtin_expect((x),0)
#else
#define UPB_LIKELY(x) (x)
#define UPB_UNLIKELY(x) (x)
#endif
/* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler
* doesn't provide these preprocessor symbols. */
#if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#define UPB_BIG_ENDIAN
#endif
/* Macros for function attributes on compilers that support them. */
#ifdef __GNUC__
#define UPB_FORCEINLINE __inline__ __attribute__((always_inline))
#define UPB_NOINLINE __attribute__((noinline))
#define UPB_NORETURN __attribute__((__noreturn__))
#else /* !defined(__GNUC__) */
#define UPB_FORCEINLINE
#define UPB_NOINLINE
#define UPB_NORETURN
#endif
#if __STDC_VERSION__ >= 199901L || __cplusplus >= 201103L
/* C99/C++11 versions. */
#include <stdio.h>
#define _upb_snprintf snprintf
#define _upb_vsnprintf vsnprintf
#define _upb_va_copy(a, b) va_copy(a, b)
#elif defined(_MSC_VER)
/* Microsoft C/C++ versions. */
#include <stdarg.h>
#include <stdio.h>
#if _MSC_VER < 1900
int msvc_snprintf(char* s, size_t n, const char* format, ...);
int msvc_vsnprintf(char* s, size_t n, const char* format, va_list arg);
#define UPB_MSVC_VSNPRINTF
#define _upb_snprintf msvc_snprintf
#define _upb_vsnprintf msvc_vsnprintf
#else
#define _upb_snprintf snprintf
#define _upb_vsnprintf vsnprintf
#endif
#define _upb_va_copy(a, b) va_copy(a, b)
#elif defined __GNUC__
/* A few hacky workarounds for functions not in C89.
* For internal use only!
* TODO(haberman): fix these by including our own implementations, or finding
* another workaround.
*/
#define _upb_snprintf __builtin_snprintf
#define _upb_vsnprintf __builtin_vsnprintf
#define _upb_va_copy(a, b) __va_copy(a, b)
#else
#error Need implementations of [v]snprintf and va_copy
#endif
#ifdef __cplusplus
#if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) || \
(defined(_MSC_VER) && _MSC_VER >= 1900)
// C++11 is present
#else
#error upb requires C++11 for C++ support
#endif
#endif
#define UPB_MAX(x, y) ((x) > (y) ? (x) : (y))
#define UPB_MIN(x, y) ((x) < (y) ? (x) : (y))
#define UPB_UNUSED(var) (void)var
/* UPB_ASSERT(): in release mode, we use the expression without letting it be
* evaluated. This prevents "unused variable" warnings. */
#ifdef NDEBUG
#define UPB_ASSERT(expr) do {} while (false && (expr))
#else
#define UPB_ASSERT(expr) assert(expr)
#endif
/* UPB_ASSERT_DEBUGVAR(): assert that uses functions or variables that only
* exist in debug mode. This turns into regular assert. */
#define UPB_ASSERT_DEBUGVAR(expr) assert(expr)
#if defined(__GNUC__) || defined(__clang__)
#define UPB_UNREACHABLE() do { assert(0); __builtin_unreachable(); } while(0)
#else
#define UPB_UNREACHABLE() do { assert(0); } while(0)
#endif
/* UPB_INFINITY representing floating-point positive infinity. */
#include <math.h>
#ifdef INFINITY
#define UPB_INFINITY INFINITY
#else
#define UPB_INFINITY (1.0 / 0.0)
#endif
#include <string.h>
/* Maps descriptor type -> upb field type. */
const uint8_t upb_desctype_to_fieldtype[] = {
UPB_WIRE_TYPE_END_GROUP, /* ENDGROUP */
UPB_TYPE_DOUBLE, /* DOUBLE */
UPB_TYPE_FLOAT, /* FLOAT */
UPB_TYPE_INT64, /* INT64 */
UPB_TYPE_UINT64, /* UINT64 */
UPB_TYPE_INT32, /* INT32 */
UPB_TYPE_UINT64, /* FIXED64 */
UPB_TYPE_UINT32, /* FIXED32 */
UPB_TYPE_BOOL, /* BOOL */
UPB_TYPE_STRING, /* STRING */
UPB_TYPE_MESSAGE, /* GROUP */
UPB_TYPE_MESSAGE, /* MESSAGE */
UPB_TYPE_BYTES, /* BYTES */
UPB_TYPE_UINT32, /* UINT32 */
UPB_TYPE_ENUM, /* ENUM */
UPB_TYPE_INT32, /* SFIXED32 */
UPB_TYPE_INT64, /* SFIXED64 */
UPB_TYPE_INT32, /* SINT32 */
UPB_TYPE_INT64, /* SINT64 */
};
/* Data pertaining to the parse. */
typedef struct {
const char *ptr; /* Current parsing position. */
const char *field_start; /* Start of this field. */
const char *limit; /* End of delimited region or end of buffer. */
upb_arena *arena;
int depth;
uint32_t end_group; /* Set to field number of END_GROUP tag, if any. */
} upb_decstate;
/* Data passed by value to each parsing function. */
typedef struct {
char *msg;
const upb_msglayout *layout;
upb_decstate *state;
} upb_decframe;
#define CHK(x) if (!(x)) { return 0; }
static bool upb_skip_unknowngroup(upb_decstate *d, int field_number);
static bool upb_decode_message(upb_decstate *d, char *msg,
const upb_msglayout *l);
static bool upb_decode_varint(const char **ptr, const char *limit,
uint64_t *val) {
uint8_t byte;
int bitpos = 0;
const char *p = *ptr;
*val = 0;
do {
CHK(bitpos < 70 && p < limit);
byte = *p;
*val |= (uint64_t)(byte & 0x7F) << bitpos;
p++;
bitpos += 7;
} while (byte & 0x80);
*ptr = p;
return true;
}
static bool upb_decode_varint32(const char **ptr, const char *limit,
uint32_t *val) {
uint64_t u64;
CHK(upb_decode_varint(ptr, limit, &u64) && u64 <= UINT32_MAX);
*val = (uint32_t)u64;
return true;
}
static bool upb_decode_64bit(const char **ptr, const char *limit,
uint64_t *val) {
CHK(limit - *ptr >= 8);
memcpy(val, *ptr, 8);
*ptr += 8;
return true;
}
static bool upb_decode_32bit(const char **ptr, const char *limit,
uint32_t *val) {
CHK(limit - *ptr >= 4);
memcpy(val, *ptr, 4);
*ptr += 4;
return true;
}
static int32_t upb_zzdecode_32(uint32_t n) {
return (n >> 1) ^ -(int32_t)(n & 1);
}
static int64_t upb_zzdecode_64(uint64_t n) {
return (n >> 1) ^ -(int64_t)(n & 1);
}
static bool upb_decode_string(const char **ptr, const char *limit,
int *outlen) {
uint32_t len;
CHK(upb_decode_varint32(ptr, limit, &len) &&
len < INT32_MAX &&
limit - *ptr >= (int32_t)len);
*outlen = len;
return true;
}
static void upb_set32(void *msg, size_t ofs, uint32_t val) {
memcpy((char*)msg + ofs, &val, sizeof(val));
}
static bool upb_append_unknown(upb_decstate *d, upb_decframe *frame) {
upb_msg_addunknown(frame->msg, d->field_start, d->ptr - d->field_start,
d->arena);
return true;
}
static bool upb_skip_unknownfielddata(upb_decstate *d, uint32_t tag,
uint32_t group_fieldnum) {
switch (tag & 7) {
case UPB_WIRE_TYPE_VARINT: {
uint64_t val;
return upb_decode_varint(&d->ptr, d->limit, &val);
}
case UPB_WIRE_TYPE_32BIT: {
uint32_t val;
return upb_decode_32bit(&d->ptr, d->limit, &val);
}
case UPB_WIRE_TYPE_64BIT: {
uint64_t val;
return upb_decode_64bit(&d->ptr, d->limit, &val);
}
case UPB_WIRE_TYPE_DELIMITED: {
int len;
CHK(upb_decode_string(&d->ptr, d->limit, &len));
d->ptr += len;
return true;
}
case UPB_WIRE_TYPE_START_GROUP:
return upb_skip_unknowngroup(d, tag >> 3);
case UPB_WIRE_TYPE_END_GROUP:
return (tag >> 3) == group_fieldnum;
}
return false;
}
static bool upb_skip_unknowngroup(upb_decstate *d, int field_number) {
while (d->ptr < d->limit && d->end_group == 0) {
uint32_t tag = 0;
CHK(upb_decode_varint32(&d->ptr, d->limit, &tag));
CHK(upb_skip_unknownfielddata(d, tag, field_number));
}
CHK(d->end_group == field_number);
d->end_group = 0;
return true;
}
static bool upb_array_grow(upb_array *arr, size_t elements, size_t elem_size,
upb_arena *arena) {
size_t needed = arr->len + elements;
size_t new_size = UPB_MAX(arr->size, 8);
size_t new_bytes;
size_t old_bytes;
void *new_data;
upb_alloc *alloc = upb_arena_alloc(arena);
while (new_size < needed) {
new_size *= 2;
}
old_bytes = arr->len * elem_size;
new_bytes = new_size * elem_size;
new_data = upb_realloc(alloc, arr->data, old_bytes, new_bytes);
CHK(new_data);
arr->data = new_data;
arr->size = new_size;
return true;
}
static void *upb_array_reserve(upb_array *arr, size_t elements,
size_t elem_size, upb_arena *arena) {
if (arr->size - arr->len < elements) {
CHK(upb_array_grow(arr, elements, elem_size, arena));
}
return (char*)arr->data + (arr->len * elem_size);
}
bool upb_array_add(upb_array *arr, size_t elements, size_t elem_size,
const void *data, upb_arena *arena) {
void *dest = upb_array_reserve(arr, elements, elem_size, arena);
CHK(dest);
arr->len += elements;
memcpy(dest, data, elements * elem_size);
return true;
}
static upb_array *upb_getarr(upb_decframe *frame,
const upb_msglayout_field *field) {
UPB_ASSERT(field->label == UPB_LABEL_REPEATED);
return *(upb_array**)&frame->msg[field->offset];
}
static upb_array *upb_getorcreatearr(upb_decframe *frame,
const upb_msglayout_field *field) {
upb_array *arr = upb_getarr(frame, field);
if (!arr) {
arr = upb_array_new(frame->state->arena);
CHK(arr);
*(upb_array**)&frame->msg[field->offset] = arr;
}
return arr;
}
static upb_msg *upb_getorcreatemsg(upb_decframe *frame,
const upb_msglayout_field *field,
const upb_msglayout **subm) {
upb_msg **submsg = (void*)(frame->msg + field->offset);
*subm = frame->layout->submsgs[field->submsg_index];
UPB_ASSERT(field->label != UPB_LABEL_REPEATED);
if (!*submsg) {
*submsg = upb_msg_new(*subm, frame->state->arena);
CHK(*submsg);
}
return *submsg;
}
static upb_msg *upb_addmsg(upb_decframe *frame,
const upb_msglayout_field *field,
const upb_msglayout **subm) {
upb_msg *submsg;
upb_array *arr = upb_getorcreatearr(frame, field);
*subm = frame->layout->submsgs[field->submsg_index];
submsg = upb_msg_new(*subm, frame->state->arena);
CHK(submsg);
upb_array_add(arr, 1, sizeof(submsg), &submsg, frame->state->arena);
return submsg;
}
static void upb_sethasbit(upb_decframe *frame,
const upb_msglayout_field *field) {
int32_t hasbit = field->presence;
UPB_ASSERT(field->presence > 0);
frame->msg[hasbit / 8] |= (1 << (hasbit % 8));
}
static void upb_setoneofcase(upb_decframe *frame,
const upb_msglayout_field *field) {
UPB_ASSERT(field->presence < 0);
upb_set32(frame->msg, ~field->presence, field->number);
}
static bool upb_decode_addval(upb_decframe *frame,
const upb_msglayout_field *field, void *val,
size_t size) {
char *field_mem = frame->msg + field->offset;
upb_array *arr;
if (field->label == UPB_LABEL_REPEATED) {
arr = upb_getorcreatearr(frame, field);
CHK(arr);
field_mem = upb_array_reserve(arr, 1, size, frame->state->arena);
CHK(field_mem);
}
memcpy(field_mem, val, size);
return true;
}
static void upb_decode_setpresent(upb_decframe *frame,
const upb_msglayout_field *field) {
if (field->label == UPB_LABEL_REPEATED) {
upb_array *arr = upb_getarr(frame, field);
UPB_ASSERT(arr->len < arr->size);
arr->len++;
} else if (field->presence < 0) {
upb_setoneofcase(frame, field);
} else if (field->presence > 0) {
upb_sethasbit(frame, field);
}
}
static bool upb_decode_msgfield(upb_decstate *d, upb_msg *msg,
const upb_msglayout *layout, int limit) {
const char* saved_limit = d->limit;
d->limit = d->ptr + limit;
CHK(--d->depth >= 0);
upb_decode_message(d, msg, layout);
d->depth++;
d->limit = saved_limit;
CHK(d->end_group == 0);
return true;
}
static bool upb_decode_groupfield(upb_decstate *d, upb_msg *msg,
const upb_msglayout *layout,
int field_number) {
CHK(--d->depth >= 0);
upb_decode_message(d, msg, layout);
d->depth++;
CHK(d->end_group == field_number);
d->end_group = 0;
return true;
}
static bool upb_decode_varintfield(upb_decstate *d, upb_decframe *frame,
const upb_msglayout_field *field) {
uint64_t val;
CHK(upb_decode_varint(&d->ptr, d->limit, &val));
switch (field->descriptortype) {
case UPB_DESCRIPTOR_TYPE_INT64:
case UPB_DESCRIPTOR_TYPE_UINT64:
CHK(upb_decode_addval(frame, field, &val, sizeof(val)));
break;
case UPB_DESCRIPTOR_TYPE_INT32:
case UPB_DESCRIPTOR_TYPE_UINT32:
case UPB_DESCRIPTOR_TYPE_ENUM: {
uint32_t val32 = (uint32_t)val;
CHK(upb_decode_addval(frame, field, &val32, sizeof(val32)));
break;
}
case UPB_DESCRIPTOR_TYPE_BOOL: {
bool valbool = val != 0;
CHK(upb_decode_addval(frame, field, &valbool, sizeof(valbool)));
break;
}
case UPB_DESCRIPTOR_TYPE_SINT32: {
int32_t decoded = upb_zzdecode_32((uint32_t)val);
CHK(upb_decode_addval(frame, field, &decoded, sizeof(decoded)));
break;
}
case UPB_DESCRIPTOR_TYPE_SINT64: {
int64_t decoded = upb_zzdecode_64(val);
CHK(upb_decode_addval(frame, field, &decoded, sizeof(decoded)));
break;
}
default:
return upb_append_unknown(d, frame);
}
upb_decode_setpresent(frame, field);
return true;
}
static bool upb_decode_64bitfield(upb_decstate *d, upb_decframe *frame,
const upb_msglayout_field *field) {
uint64_t val;
CHK(upb_decode_64bit(&d->ptr, d->limit, &val));
switch (field->descriptortype) {
case UPB_DESCRIPTOR_TYPE_DOUBLE:
case UPB_DESCRIPTOR_TYPE_FIXED64:
case UPB_DESCRIPTOR_TYPE_SFIXED64:
CHK(upb_decode_addval(frame, field, &val, sizeof(val)));
break;
default:
return upb_append_unknown(d, frame);
}
upb_decode_setpresent(frame, field);
return true;
}
static bool upb_decode_32bitfield(upb_decstate *d, upb_decframe *frame,
const upb_msglayout_field *field) {
uint32_t val;
CHK(upb_decode_32bit(&d->ptr, d->limit, &val));
switch (field->descriptortype) {
case UPB_DESCRIPTOR_TYPE_FLOAT:
case UPB_DESCRIPTOR_TYPE_FIXED32:
case UPB_DESCRIPTOR_TYPE_SFIXED32:
CHK(upb_decode_addval(frame, field, &val, sizeof(val)));
break;
default:
return upb_append_unknown(d, frame);
}
upb_decode_setpresent(frame, field);
return true;
}
static bool upb_decode_fixedpacked(upb_decstate *d, upb_array *arr,
uint32_t len, int elem_size) {
size_t elements = len / elem_size;
CHK((size_t)(elements * elem_size) == len);
CHK(upb_array_add(arr, elements, elem_size, d->ptr, d->arena));
d->ptr += len;
return true;
}
static upb_strview upb_decode_strfield(upb_decstate *d, uint32_t len) {
upb_strview ret;
ret.data = d->ptr;
ret.size = len;
d->ptr += len;
return ret;
}
static bool upb_decode_toarray(upb_decstate *d, upb_decframe *frame,
const upb_msglayout_field *field, int len) {
upb_array *arr = upb_getorcreatearr(frame, field);
CHK(arr);
#define VARINT_CASE(ctype, decode) \
VARINT_CASE_EX(ctype, decode, decode)
#define VARINT_CASE_EX(ctype, decode, dtype) \
{ \
const char *ptr = d->ptr; \
const char *limit = ptr + len; \
while (ptr < limit) { \
uint64_t val; \
ctype decoded; \
CHK(upb_decode_varint(&ptr, limit, &val)); \
decoded = (decode)((dtype)val); \
CHK(upb_array_add(arr, 1, sizeof(decoded), &decoded, d->arena)); \
} \
d->ptr = ptr; \
return true; \
}
switch (field->descriptortype) {
case UPB_DESCRIPTOR_TYPE_STRING:
case UPB_DESCRIPTOR_TYPE_BYTES: {
upb_strview str = upb_decode_strfield(d, len);
return upb_array_add(arr, 1, sizeof(str), &str, d->arena);
}
case UPB_DESCRIPTOR_TYPE_FLOAT:
case UPB_DESCRIPTOR_TYPE_FIXED32:
case UPB_DESCRIPTOR_TYPE_SFIXED32:
return upb_decode_fixedpacked(d, arr, len, sizeof(int32_t));
case UPB_DESCRIPTOR_TYPE_DOUBLE:
case UPB_DESCRIPTOR_TYPE_FIXED64:
case UPB_DESCRIPTOR_TYPE_SFIXED64:
return upb_decode_fixedpacked(d, arr, len, sizeof(int64_t));
case UPB_DESCRIPTOR_TYPE_INT32:
case UPB_DESCRIPTOR_TYPE_UINT32:
case UPB_DESCRIPTOR_TYPE_ENUM:
VARINT_CASE(uint32_t, uint32_t);
case UPB_DESCRIPTOR_TYPE_INT64:
case UPB_DESCRIPTOR_TYPE_UINT64:
VARINT_CASE(uint64_t, uint64_t);
case UPB_DESCRIPTOR_TYPE_BOOL:
VARINT_CASE(bool, bool);
case UPB_DESCRIPTOR_TYPE_SINT32:
VARINT_CASE_EX(int32_t, upb_zzdecode_32, uint32_t);
case UPB_DESCRIPTOR_TYPE_SINT64:
VARINT_CASE_EX(int64_t, upb_zzdecode_64, uint64_t);
case UPB_DESCRIPTOR_TYPE_MESSAGE: {
const upb_msglayout *subm;
upb_msg *submsg = upb_addmsg(frame, field, &subm);
CHK(submsg);
return upb_decode_msgfield(d, submsg, subm, len);
}
case UPB_DESCRIPTOR_TYPE_GROUP:
return upb_append_unknown(d, frame);
}
#undef VARINT_CASE
UPB_UNREACHABLE();
}
static bool upb_decode_delimitedfield(upb_decstate *d, upb_decframe *frame,
const upb_msglayout_field *field) {
int len;
CHK(upb_decode_string(&d->ptr, d->limit, &len));
if (field->label == UPB_LABEL_REPEATED) {
return upb_decode_toarray(d, frame, field, len);
} else {
switch (field->descriptortype) {
case UPB_DESCRIPTOR_TYPE_STRING:
case UPB_DESCRIPTOR_TYPE_BYTES: {
upb_strview str = upb_decode_strfield(d, len);
CHK(upb_decode_addval(frame, field, &str, sizeof(str)));
break;
}
case UPB_DESCRIPTOR_TYPE_MESSAGE: {
const upb_msglayout *subm;
upb_msg *submsg = upb_getorcreatemsg(frame, field, &subm);
CHK(submsg);
CHK(upb_decode_msgfield(d, submsg, subm, len));
break;
}
default:
/* TODO(haberman): should we accept the last element of a packed? */
d->ptr += len;
return upb_append_unknown(d, frame);
}
upb_decode_setpresent(frame, field);
return true;
}
}
static const upb_msglayout_field *upb_find_field(const upb_msglayout *l,
uint32_t field_number) {
/* Lots of optimization opportunities here. */
int i;
for (i = 0; i < l->field_count; i++) {
if (l->fields[i].number == field_number) {
return &l->fields[i];
}
}
return NULL; /* Unknown field. */
}
static bool upb_decode_field(upb_decstate *d, upb_decframe *frame) {
uint32_t tag;
const upb_msglayout_field *field;
int field_number;
d->field_start = d->ptr;
CHK(upb_decode_varint32(&d->ptr, d->limit, &tag));
field_number = tag >> 3;
field = upb_find_field(frame->layout, field_number);
if (field) {
switch (tag & 7) {
case UPB_WIRE_TYPE_VARINT:
return upb_decode_varintfield(d, frame, field);
case UPB_WIRE_TYPE_32BIT:
return upb_decode_32bitfield(d, frame, field);
case UPB_WIRE_TYPE_64BIT:
return upb_decode_64bitfield(d, frame, field);
case UPB_WIRE_TYPE_DELIMITED:
return upb_decode_delimitedfield(d, frame, field);
case UPB_WIRE_TYPE_START_GROUP: {
const upb_msglayout *layout;
upb_msg *group;
if (field->label == UPB_LABEL_REPEATED) {
group = upb_addmsg(frame, field, &layout);
} else {
group = upb_getorcreatemsg(frame, field, &layout);
}
return upb_decode_groupfield(d, group, layout, field_number);
}
case UPB_WIRE_TYPE_END_GROUP:
d->end_group = field_number;
return true;
default:
CHK(false);
}
} else {
CHK(field_number != 0);
CHK(upb_skip_unknownfielddata(d, tag, -1));
CHK(upb_append_unknown(d, frame));
return true;
}
}
static bool upb_decode_message(upb_decstate *d, char *msg, const upb_msglayout *l) {
upb_decframe frame;
frame.msg = msg;
frame.layout = l;
frame.state = d;
while (d->ptr < d->limit) {
CHK(upb_decode_field(d, &frame));
}
return true;
}
bool upb_decode(const char *buf, size_t size, void *msg, const upb_msglayout *l,
upb_arena *arena) {
upb_decstate state;
state.ptr = buf;
state.limit = buf + size;
state.arena = arena;
state.depth = 64;
state.end_group = 0;
CHK(upb_decode_message(&state, msg, l));
return state.end_group == 0;
}
#undef CHK
/* We encode backwards, to avoid pre-computing lengths (one-pass encode). */
#include <string.h>
#define UPB_PB_VARINT_MAX_LEN 10
#define CHK(x) do { if (!(x)) { return false; } } while(0)
static size_t upb_encode_varint(uint64_t val, char *buf) {
size_t i;
if (val < 128) { buf[0] = val; return 1; }
i = 0;
while (val) {
uint8_t byte = val & 0x7fU;
val >>= 7;
if (val) byte |= 0x80U;
buf[i++] = byte;
}
return i;
}
static uint32_t upb_zzencode_32(int32_t n) { return ((uint32_t)n << 1) ^ (n >> 31); }
static uint64_t upb_zzencode_64(int64_t n) { return ((uint64_t)n << 1) ^ (n >> 63); }
typedef struct {
upb_alloc *alloc;
char *buf, *ptr, *limit;
} upb_encstate;
static size_t upb_roundup_pow2(size_t bytes) {
size_t ret = 128;
while (ret < bytes) {
ret *= 2;
}
return ret;
}
static bool upb_encode_growbuffer(upb_encstate *e, size_t bytes) {
size_t old_size = e->limit - e->buf;
size_t new_size = upb_roundup_pow2(bytes + (e->limit - e->ptr));
char *new_buf = upb_realloc(e->alloc, e->buf, old_size, new_size);
CHK(new_buf);
/* We want previous data at the end, realloc() put it at the beginning. */
if (old_size > 0) {
memmove(new_buf + new_size - old_size, e->buf, old_size);
}
e->ptr = new_buf + new_size - (e->limit - e->ptr);
e->limit = new_buf + new_size;
e->buf = new_buf;
return true;
}
/* Call to ensure that at least "bytes" bytes are available for writing at
* e->ptr. Returns false if the bytes could not be allocated. */
static bool upb_encode_reserve(upb_encstate *e, size_t bytes) {
CHK(UPB_LIKELY((size_t)(e->ptr - e->buf) >= bytes) ||
upb_encode_growbuffer(e, bytes));
e->ptr -= bytes;
return true;
}
/* Writes the given bytes to the buffer, handling reserve/advance. */
static bool upb_put_bytes(upb_encstate *e, const void *data, size_t len) {
CHK(upb_encode_reserve(e, len));
memcpy(e->ptr, data, len);
return true;
}
static bool upb_put_fixed64(upb_encstate *e, uint64_t val) {
/* TODO(haberman): byte-swap for big endian. */
return upb_put_bytes(e, &val, sizeof(uint64_t));
}
static bool upb_put_fixed32(upb_encstate *e, uint32_t val) {
/* TODO(haberman): byte-swap for big endian. */
return upb_put_bytes(e, &val, sizeof(uint32_t));
}
static bool upb_put_varint(upb_encstate *e, uint64_t val) {
size_t len;
char *start;
CHK(upb_encode_reserve(e, UPB_PB_VARINT_MAX_LEN));
len = upb_encode_varint(val, e->ptr);
start = e->ptr + UPB_PB_VARINT_MAX_LEN - len;
memmove(start, e->ptr, len);
e->ptr = start;
return true;
}
static bool upb_put_double(upb_encstate *e, double d) {
uint64_t u64;
UPB_ASSERT(sizeof(double) == sizeof(uint64_t));
memcpy(&u64, &d, sizeof(uint64_t));
return upb_put_fixed64(e, u64);
}
static bool upb_put_float(upb_encstate *e, float d) {
uint32_t u32;
UPB_ASSERT(sizeof(float) == sizeof(uint32_t));
memcpy(&u32, &d, sizeof(uint32_t));
return upb_put_fixed32(e, u32);
}
static uint32_t upb_readcase(const char *msg, const upb_msglayout_field *f) {
uint32_t ret;
uint32_t offset = ~f->presence;
memcpy(&ret, msg + offset, sizeof(ret));
return ret;
}
static bool upb_readhasbit(const char *msg, const upb_msglayout_field *f) {
uint32_t hasbit = f->presence;
UPB_ASSERT(f->presence > 0);
return msg[hasbit / 8] & (1 << (hasbit % 8));
}
static bool upb_put_tag(upb_encstate *e, int field_number, int wire_type) {
return upb_put_varint(e, (field_number << 3) | wire_type);
}
static bool upb_put_fixedarray(upb_encstate *e, const upb_array *arr,
size_t size) {
size_t bytes = arr->len * size;
return upb_put_bytes(e, arr->data, bytes) && upb_put_varint(e, bytes);
}
bool upb_encode_message(upb_encstate *e, const char *msg,
const upb_msglayout *m, size_t *size);
static bool upb_encode_array(upb_encstate *e, const char *field_mem,
const upb_msglayout *m,
const upb_msglayout_field *f) {
const upb_array *arr = *(const upb_array**)field_mem;
if (arr == NULL || arr->len == 0) {
return true;
}
#define VARINT_CASE(ctype, encode) { \
ctype *start = arr->data; \
ctype *ptr = start + arr->len; \
size_t pre_len = e->limit - e->ptr; \
do { \
ptr--; \
CHK(upb_put_varint(e, encode)); \
} while (ptr != start); \
CHK(upb_put_varint(e, e->limit - e->ptr - pre_len)); \
} \
break; \
do { ; } while(0)
switch (f->descriptortype) {
case UPB_DESCRIPTOR_TYPE_DOUBLE:
CHK(upb_put_fixedarray(e, arr, sizeof(double)));
break;
case UPB_DESCRIPTOR_TYPE_FLOAT:
CHK(upb_put_fixedarray(e, arr, sizeof(float)));
break;
case UPB_DESCRIPTOR_TYPE_SFIXED64:
case UPB_DESCRIPTOR_TYPE_FIXED64:
CHK(upb_put_fixedarray(e, arr, sizeof(uint64_t)));
break;
case UPB_DESCRIPTOR_TYPE_FIXED32:
case UPB_DESCRIPTOR_TYPE_SFIXED32:
CHK(upb_put_fixedarray(e, arr, sizeof(uint32_t)));
break;
case UPB_DESCRIPTOR_TYPE_INT64:
case UPB_DESCRIPTOR_TYPE_UINT64:
VARINT_CASE(uint64_t, *ptr);
case UPB_DESCRIPTOR_TYPE_UINT32:
VARINT_CASE(uint32_t, *ptr);
case UPB_DESCRIPTOR_TYPE_INT32:
case UPB_DESCRIPTOR_TYPE_ENUM:
VARINT_CASE(int32_t, (int64_t)*ptr);
case UPB_DESCRIPTOR_TYPE_BOOL:
VARINT_CASE(bool, *ptr);
case UPB_DESCRIPTOR_TYPE_SINT32:
VARINT_CASE(int32_t, upb_zzencode_32(*ptr));
case UPB_DESCRIPTOR_TYPE_SINT64:
VARINT_CASE(int64_t, upb_zzencode_64(*ptr));
case UPB_DESCRIPTOR_TYPE_STRING:
case UPB_DESCRIPTOR_TYPE_BYTES: {
upb_strview *start = arr->data;
upb_strview *ptr = start + arr->len;
do {
ptr--;
CHK(upb_put_bytes(e, ptr->data, ptr->size) &&
upb_put_varint(e, ptr->size) &&
upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED));
} while (ptr != start);
return true;
}
case UPB_DESCRIPTOR_TYPE_GROUP: {
void **start = arr->data;
void **ptr = start + arr->len;
const upb_msglayout *subm = m->submsgs[f->submsg_index];
do {
size_t size;
ptr--;
CHK(upb_put_tag(e, f->number, UPB_WIRE_TYPE_END_GROUP) &&
upb_encode_message(e, *ptr, subm, &size) &&
upb_put_tag(e, f->number, UPB_WIRE_TYPE_START_GROUP));
} while (ptr != start);
return true;
}
case UPB_DESCRIPTOR_TYPE_MESSAGE: {
void **start = arr->data;
void **ptr = start + arr->len;
const upb_msglayout *subm = m->submsgs[f->submsg_index];
do {
size_t size;
ptr--;
CHK(upb_encode_message(e, *ptr, subm, &size) &&
upb_put_varint(e, size) &&
upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED));
} while (ptr != start);
return true;
}
}
#undef VARINT_CASE
/* We encode all primitive arrays as packed, regardless of what was specified
* in the .proto file. Could special case 1-sized arrays. */
CHK(upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED));
return true;
}
static bool upb_encode_scalarfield(upb_encstate *e, const char *field_mem,
const upb_msglayout *m,
const upb_msglayout_field *f,
bool skip_zero_value) {
#define CASE(ctype, type, wire_type, encodeval) do { \
ctype val = *(ctype*)field_mem; \
if (skip_zero_value && val == 0) { \
return true; \
} \
return upb_put_ ## type(e, encodeval) && \
upb_put_tag(e, f->number, wire_type); \
} while(0)
switch (f->descriptortype) {
case UPB_DESCRIPTOR_TYPE_DOUBLE:
CASE(double, double, UPB_WIRE_TYPE_64BIT, val);
case UPB_DESCRIPTOR_TYPE_FLOAT:
CASE(float, float, UPB_WIRE_TYPE_32BIT, val);
case UPB_DESCRIPTOR_TYPE_INT64:
case UPB_DESCRIPTOR_TYPE_UINT64:
CASE(uint64_t, varint, UPB_WIRE_TYPE_VARINT, val);
case UPB_DESCRIPTOR_TYPE_UINT32:
CASE(uint32_t, varint, UPB_WIRE_TYPE_VARINT, val);
case UPB_DESCRIPTOR_TYPE_INT32:
case UPB_DESCRIPTOR_TYPE_ENUM:
CASE(int32_t, varint, UPB_WIRE_TYPE_VARINT, (int64_t)val);
case UPB_DESCRIPTOR_TYPE_SFIXED64:
case UPB_DESCRIPTOR_TYPE_FIXED64:
CASE(uint64_t, fixed64, UPB_WIRE_TYPE_64BIT, val);
case UPB_DESCRIPTOR_TYPE_FIXED32:
case UPB_DESCRIPTOR_TYPE_SFIXED32:
CASE(uint32_t, fixed32, UPB_WIRE_TYPE_32BIT, val);
case UPB_DESCRIPTOR_TYPE_BOOL:
CASE(bool, varint, UPB_WIRE_TYPE_VARINT, val);
case UPB_DESCRIPTOR_TYPE_SINT32:
CASE(int32_t, varint, UPB_WIRE_TYPE_VARINT, upb_zzencode_32(val));
case UPB_DESCRIPTOR_TYPE_SINT64:
CASE(int64_t, varint, UPB_WIRE_TYPE_VARINT, upb_zzencode_64(val));
case UPB_DESCRIPTOR_TYPE_STRING:
case UPB_DESCRIPTOR_TYPE_BYTES: {
upb_strview view = *(upb_strview*)field_mem;
if (skip_zero_value && view.size == 0) {
return true;
}
return upb_put_bytes(e, view.data, view.size) &&
upb_put_varint(e, view.size) &&
upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED);
}
case UPB_DESCRIPTOR_TYPE_GROUP: {
size_t size;
void *submsg = *(void **)field_mem;
const upb_msglayout *subm = m->submsgs[f->submsg_index];
if (submsg == NULL) {
return true;
}
return upb_put_tag(e, f->number, UPB_WIRE_TYPE_END_GROUP) &&
upb_encode_message(e, submsg, subm, &size) &&
upb_put_tag(e, f->number, UPB_WIRE_TYPE_START_GROUP);
}
case UPB_DESCRIPTOR_TYPE_MESSAGE: {
size_t size;
void *submsg = *(void **)field_mem;
const upb_msglayout *subm = m->submsgs[f->submsg_index];
if (submsg == NULL) {
return true;
}
return upb_encode_message(e, submsg, subm, &size) &&
upb_put_varint(e, size) &&
upb_put_tag(e, f->number, UPB_WIRE_TYPE_DELIMITED);
}
}
#undef CASE
UPB_UNREACHABLE();
}
bool upb_encode_message(upb_encstate *e, const char *msg,
const upb_msglayout *m, size_t *size) {
int i;
size_t pre_len = e->limit - e->ptr;
const char *unknown;
size_t unknown_size;
for (i = m->field_count - 1; i >= 0; i--) {
const upb_msglayout_field *f = &m->fields[i];
if (f->label == UPB_LABEL_REPEATED) {
CHK(upb_encode_array(e, msg + f->offset, m, f));
} else {
bool skip_empty = false;
if (f->presence == 0) {
/* Proto3 presence. */
skip_empty = true;
} else if (f->presence > 0) {
/* Proto2 presence: hasbit. */
if (!upb_readhasbit(msg, f)) {
continue;
}
} else {
/* Field is in a oneof. */
if (upb_readcase(msg, f) != f->number) {
continue;
}
}
CHK(upb_encode_scalarfield(e, msg + f->offset, m, f, skip_empty));
}
}
unknown = upb_msg_getunknown(msg, &unknown_size);
if (unknown) {
upb_put_bytes(e, unknown, unknown_size);
}
*size = (e->limit - e->ptr) - pre_len;
return true;
}
char *upb_encode(const void *msg, const upb_msglayout *m, upb_arena *arena,
size_t *size) {
upb_encstate e;
e.alloc = upb_arena_alloc(arena);
e.buf = NULL;
e.limit = NULL;
e.ptr = NULL;
if (!upb_encode_message(&e, msg, m, size)) {
*size = 0;
return NULL;
}
*size = e.limit - e.ptr;
if (*size == 0) {
static char ch;
return &ch;
} else {
UPB_ASSERT(e.ptr);
return e.ptr;
}
}
#undef CHK
#define VOIDPTR_AT(msg, ofs) (void*)((char*)msg + (int)ofs)
/* Internal members of a upb_msg. We can change this without breaking binary
* compatibility. We put these before the user's data. The user's upb_msg*
* points after the upb_msg_internal. */
/* Used when a message is not extendable. */
typedef struct {
char *unknown;
size_t unknown_len;
size_t unknown_size;
} upb_msg_internal;
/* Used when a message is extendable. */
typedef struct {
upb_inttable *extdict;
upb_msg_internal base;
} upb_msg_internal_withext;
static int upb_msg_internalsize(const upb_msglayout *l) {
return sizeof(upb_msg_internal) - l->extendable * sizeof(void *);
}
static size_t upb_msg_sizeof(const upb_msglayout *l) {
return l->size + upb_msg_internalsize(l);
}
static upb_msg_internal *upb_msg_getinternal(upb_msg *msg) {
return VOIDPTR_AT(msg, -sizeof(upb_msg_internal));
}
static const upb_msg_internal *upb_msg_getinternal_const(const upb_msg *msg) {
return VOIDPTR_AT(msg, -sizeof(upb_msg_internal));
}
static upb_msg_internal_withext *upb_msg_getinternalwithext(
upb_msg *msg, const upb_msglayout *l) {
UPB_ASSERT(l->extendable);
return VOIDPTR_AT(msg, -sizeof(upb_msg_internal_withext));
}
upb_msg *upb_msg_new(const upb_msglayout *l, upb_arena *a) {
upb_alloc *alloc = upb_arena_alloc(a);
void *mem = upb_malloc(alloc, upb_msg_sizeof(l));
upb_msg_internal *in;
upb_msg *msg;
if (!mem) {
return NULL;
}
msg = VOIDPTR_AT(mem, upb_msg_internalsize(l));
/* Initialize normal members. */
memset(msg, 0, l->size);
/* Initialize internal members. */
in = upb_msg_getinternal(msg);
in->unknown = NULL;
in->unknown_len = 0;
in->unknown_size = 0;
if (l->extendable) {
upb_msg_getinternalwithext(msg, l)->extdict = NULL;
}
return msg;
}
upb_array *upb_array_new(upb_arena *a) {
upb_array *ret = upb_arena_malloc(a, sizeof(upb_array));
if (!ret) {
return NULL;
}
ret->data = NULL;
ret->len = 0;
ret->size = 0;
return ret;
}
void upb_msg_addunknown(upb_msg *msg, const char *data, size_t len,
upb_arena *arena) {
upb_msg_internal *in = upb_msg_getinternal(msg);
if (len > in->unknown_size - in->unknown_len) {
upb_alloc *alloc = upb_arena_alloc(arena);
size_t need = in->unknown_size + len;
size_t newsize = UPB_MAX(in->unknown_size * 2, need);
in->unknown = upb_realloc(alloc, in->unknown, in->unknown_size, newsize);
in->unknown_size = newsize;
}
memcpy(in->unknown + in->unknown_len, data, len);
in->unknown_len += len;
}
const char *upb_msg_getunknown(const upb_msg *msg, size_t *len) {
const upb_msg_internal* in = upb_msg_getinternal_const(msg);
*len = in->unknown_len;
return in->unknown;
}
#undef VOIDPTR_AT
#ifdef UPB_MSVC_VSNPRINTF
/* Visual C++ earlier than 2015 doesn't have standard C99 snprintf and
* vsnprintf. To support them, missing functions are manually implemented
* using the existing secure functions. */
int msvc_vsnprintf(char* s, size_t n, const char* format, va_list arg) {
if (!s) {
return _vscprintf(format, arg);
}
int ret = _vsnprintf_s(s, n, _TRUNCATE, format, arg);
if (ret < 0) {
ret = _vscprintf(format, arg);
}
return ret;
}
int msvc_snprintf(char* s, size_t n, const char* format, ...) {
va_list arg;
va_start(arg, format);
int ret = msvc_vsnprintf(s, n, format, arg);
va_end(arg);
return ret;
}
#endif
/*
** upb_table Implementation
**
** Implementation is heavily inspired by Lua's ltable.c.
*/
#include <string.h>
#define UPB_MAXARRSIZE 16 /* 64k. */
/* From Chromium. */
#define ARRAY_SIZE(x) \
((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x])))))
static void upb_check_alloc(upb_table *t, upb_alloc *a) {
UPB_UNUSED(t);
UPB_UNUSED(a);
UPB_ASSERT_DEBUGVAR(t->alloc == a);
}
static const double MAX_LOAD = 0.85;
/* The minimum utilization of the array part of a mixed hash/array table. This
* is a speed/memory-usage tradeoff (though it's not straightforward because of
* cache effects). The lower this is, the more memory we'll use. */
static const double MIN_DENSITY = 0.1;
bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; }
int log2ceil(uint64_t v) {
int ret = 0;
bool pow2 = is_pow2(v);
while (v >>= 1) ret++;
ret = pow2 ? ret : ret + 1; /* Ceiling. */
return UPB_MIN(UPB_MAXARRSIZE, ret);
}
char *upb_strdup(const char *s, upb_alloc *a) {
return upb_strdup2(s, strlen(s), a);
}
char *upb_strdup2(const char *s, size_t len, upb_alloc *a) {
size_t n;
char *p;
/* Prevent overflow errors. */
if (len == SIZE_MAX) return NULL;
/* Always null-terminate, even if binary data; but don't rely on the input to
* have a null-terminating byte since it may be a raw binary buffer. */
n = len + 1;
p = upb_malloc(a, n);
if (p) {
memcpy(p, s, len);
p[len] = 0;
}
return p;
}
/* A type to represent the lookup key of either a strtable or an inttable. */
typedef union {
uintptr_t num;
struct {
const char *str;
size_t len;
} str;
} lookupkey_t;
static lookupkey_t strkey2(const char *str, size_t len) {
lookupkey_t k;
k.str.str = str;
k.str.len = len;
return k;
}
static lookupkey_t intkey(uintptr_t key) {
lookupkey_t k;
k.num = key;
return k;
}
typedef uint32_t hashfunc_t(upb_tabkey key);
typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2);
/* Base table (shared code) ***************************************************/
/* For when we need to cast away const. */
static upb_tabent *mutable_entries(upb_table *t) {
return (upb_tabent*)t->entries;
}
static bool isfull(upb_table *t) {
if (upb_table_size(t) == 0) {
return true;
} else {
return ((double)(t->count + 1) / upb_table_size(t)) > MAX_LOAD;
}
}
static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2,
upb_alloc *a) {
size_t bytes;
t->count = 0;
t->ctype = ctype;
t->size_lg2 = size_lg2;
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0;
#ifndef NDEBUG
t->alloc = a;
#endif
bytes = upb_table_size(t) * sizeof(upb_tabent);
if (bytes > 0) {
t->entries = upb_malloc(a, bytes);
if (!t->entries) return false;
memset(mutable_entries(t), 0, bytes);
} else {
t->entries = NULL;
}
return true;
}
static void uninit(upb_table *t, upb_alloc *a) {
upb_check_alloc(t, a);
upb_free(a, mutable_entries(t));
}
static upb_tabent *emptyent(upb_table *t) {
upb_tabent *e = mutable_entries(t) + upb_table_size(t);
while (1) { if (upb_tabent_isempty(--e)) return e; UPB_ASSERT(e > t->entries); }
}
static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) {
return (upb_tabent*)upb_getentry(t, hash);
}
static const upb_tabent *findentry(const upb_table *t, lookupkey_t key,
uint32_t hash, eqlfunc_t *eql) {
const upb_tabent *e;
if (t->size_lg2 == 0) return NULL;
e = upb_getentry(t, hash);
if (upb_tabent_isempty(e)) return NULL;
while (1) {
if (eql(e->key, key)) return e;
if ((e = e->next) == NULL) return NULL;
}
}
static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key,
uint32_t hash, eqlfunc_t *eql) {
return (upb_tabent*)findentry(t, key, hash, eql);
}
static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v,
uint32_t hash, eqlfunc_t *eql) {
const upb_tabent *e = findentry(t, key, hash, eql);
if (e) {
if (v) {
_upb_value_setval(v, e->val.val, t->ctype);
}
return true;
} else {
return false;
}
}
/* The given key must not already exist in the table. */
static void insert(upb_table *t, lookupkey_t key, upb_tabkey tabkey,
upb_value val, uint32_t hash,
hashfunc_t *hashfunc, eqlfunc_t *eql) {
upb_tabent *mainpos_e;
upb_tabent *our_e;
UPB_ASSERT(findentry(t, key, hash, eql) == NULL);
UPB_ASSERT_DEBUGVAR(val.ctype == t->ctype);
t->count++;
mainpos_e = getentry_mutable(t, hash);
our_e = mainpos_e;
if (upb_tabent_isempty(mainpos_e)) {
/* Our main position is empty; use it. */
our_e->next = NULL;
} else {
/* Collision. */
upb_tabent *new_e = emptyent(t);
/* Head of collider's chain. */
upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key));
if (chain == mainpos_e) {
/* Existing ent is in its main posisiton (it has the same hash as us, and
* is the head of our chain). Insert to new ent and append to this chain. */
new_e->next = mainpos_e->next;
mainpos_e->next = new_e;
our_e = new_e;
} else {
/* Existing ent is not in its main position (it is a node in some other
* chain). This implies that no existing ent in the table has our hash.
* Evict it (updating its chain) and use its ent for head of our chain. */
*new_e = *mainpos_e; /* copies next. */
while (chain->next != mainpos_e) {
chain = (upb_tabent*)chain->next;
UPB_ASSERT(chain);
}
chain->next = new_e;
our_e = mainpos_e;
our_e->next = NULL;
}
}
our_e->key = tabkey;
our_e->val.val = val.val;
UPB_ASSERT(findentry(t, key, hash, eql) == our_e);
}
static bool rm(upb_table *t, lookupkey_t key, upb_value *val,
upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) {
upb_tabent *chain = getentry_mutable(t, hash);
if (upb_tabent_isempty(chain)) return false;
if (eql(chain->key, key)) {
/* Element to remove is at the head of its chain. */
t->count--;
if (val) _upb_value_setval(val, chain->val.val, t->ctype);
if (removed) *removed = chain->key;
if (chain->next) {
upb_tabent *move = (upb_tabent*)chain->next;
*chain = *move;
move->key = 0; /* Make the slot empty. */
} else {
chain->key = 0; /* Make the slot empty. */
}
return true;
} else {
/* Element to remove is either in a non-head position or not in the
* table. */
while (chain->next && !eql(chain->next->key, key)) {
chain = (upb_tabent*)chain->next;
}
if (chain->next) {
/* Found element to remove. */
upb_tabent *rm = (upb_tabent*)chain->next;
t->count--;
if (val) _upb_value_setval(val, chain->next->val.val, t->ctype);
if (removed) *removed = rm->key;
rm->key = 0; /* Make the slot empty. */
chain->next = rm->next;
return true;
} else {
/* Element to remove is not in the table. */
return false;
}
}
}
static size_t next(const upb_table *t, size_t i) {
do {
if (++i >= upb_table_size(t))
return SIZE_MAX;
} while(upb_tabent_isempty(&t->entries[i]));
return i;
}
static size_t begin(const upb_table *t) {
return next(t, -1);
}
/* upb_strtable ***************************************************************/
/* A simple "subclass" of upb_table that only adds a hash function for strings. */
static upb_tabkey strcopy(lookupkey_t k2, upb_alloc *a) {
uint32_t len = (uint32_t) k2.str.len;
char *str = upb_malloc(a, k2.str.len + sizeof(uint32_t) + 1);
if (str == NULL) return 0;
memcpy(str, &len, sizeof(uint32_t));
memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len + 1);
return (uintptr_t)str;
}
static uint32_t strhash(upb_tabkey key) {
uint32_t len;
char *str = upb_tabstr(key, &len);
return upb_murmur_hash2(str, len, 0);
}
static bool streql(upb_tabkey k1, lookupkey_t k2) {
uint32_t len;
char *str = upb_tabstr(k1, &len);
return len == k2.str.len && memcmp(str, k2.str.str, len) == 0;
}
bool upb_strtable_init2(upb_strtable *t, upb_ctype_t ctype, upb_alloc *a) {
return init(&t->t, ctype, 2, a);
}
void upb_strtable_uninit2(upb_strtable *t, upb_alloc *a) {
size_t i;
for (i = 0; i < upb_table_size(&t->t); i++)
upb_free(a, (void*)t->t.entries[i].key);
uninit(&t->t, a);
}
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a) {
upb_strtable new_table;
upb_strtable_iter i;
upb_check_alloc(&t->t, a);
if (!init(&new_table.t, t->t.ctype, size_lg2, a))
return false;
upb_strtable_begin(&i, t);
for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) {
upb_strtable_insert3(
&new_table,
upb_strtable_iter_key(&i),
upb_strtable_iter_keylength(&i),
upb_strtable_iter_value(&i),
a);
}
upb_strtable_uninit2(t, a);
*t = new_table;
return true;
}
bool upb_strtable_insert3(upb_strtable *t, const char *k, size_t len,
upb_value v, upb_alloc *a) {
lookupkey_t key;
upb_tabkey tabkey;
uint32_t hash;
upb_check_alloc(&t->t, a);
if (isfull(&t->t)) {
/* Need to resize. New table of double the size, add old elements to it. */
if (!upb_strtable_resize(t, t->t.size_lg2 + 1, a)) {
return false;
}
}
key = strkey2(k, len);
tabkey = strcopy(key, a);
if (tabkey == 0) return false;
hash = upb_murmur_hash2(key.str.str, key.str.len, 0);
insert(&t->t, key, tabkey, v, hash, &strhash, &streql);
return true;
}
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
upb_value *v) {
uint32_t hash = upb_murmur_hash2(key, len, 0);
return lookup(&t->t, strkey2(key, len), v, hash, &streql);
}
bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len,
upb_value *val, upb_alloc *alloc) {
uint32_t hash = upb_murmur_hash2(key, len, 0);
upb_tabkey tabkey;
if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) {
upb_free(alloc, (void*)tabkey);
return true;
} else {
return false;
}
}
/* Iteration */
static const upb_tabent *str_tabent(const upb_strtable_iter *i) {
return &i->t->t.entries[i->index];
}
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) {
i->t = t;
i->index = begin(&t->t);
}
void upb_strtable_next(upb_strtable_iter *i) {
i->index = next(&i->t->t, i->index);
}
bool upb_strtable_done(const upb_strtable_iter *i) {
if (!i->t) return true;
return i->index >= upb_table_size(&i->t->t) ||
upb_tabent_isempty(str_tabent(i));
}
const char *upb_strtable_iter_key(const upb_strtable_iter *i) {
UPB_ASSERT(!upb_strtable_done(i));
return upb_tabstr(str_tabent(i)->key, NULL);
}
size_t upb_strtable_iter_keylength(const upb_strtable_iter *i) {
uint32_t len;
UPB_ASSERT(!upb_strtable_done(i));
upb_tabstr(str_tabent(i)->key, &len);
return len;
}
upb_value upb_strtable_iter_value(const upb_strtable_iter *i) {
UPB_ASSERT(!upb_strtable_done(i));
return _upb_value_val(str_tabent(i)->val.val, i->t->t.ctype);
}
void upb_strtable_iter_setdone(upb_strtable_iter *i) {
i->t = NULL;
i->index = SIZE_MAX;
}
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
const upb_strtable_iter *i2) {
if (upb_strtable_done(i1) && upb_strtable_done(i2))
return true;
return i1->t == i2->t && i1->index == i2->index;
}
/* upb_inttable ***************************************************************/
/* For inttables we use a hybrid structure where small keys are kept in an
* array and large keys are put in the hash table. */
static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); }
static bool inteql(upb_tabkey k1, lookupkey_t k2) {
return k1 == k2.num;
}
static upb_tabval *mutable_array(upb_inttable *t) {
return (upb_tabval*)t->array;
}
static upb_tabval *inttable_val(upb_inttable *t, uintptr_t key) {
if (key < t->array_size) {
return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL;
} else {
upb_tabent *e =
findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql);
return e ? &e->val : NULL;
}
}
static const upb_tabval *inttable_val_const(const upb_inttable *t,
uintptr_t key) {
return inttable_val((upb_inttable*)t, key);
}
size_t upb_inttable_count(const upb_inttable *t) {
return t->t.count + t->array_count;
}
static void check(upb_inttable *t) {
UPB_UNUSED(t);
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG)
{
/* This check is very expensive (makes inserts/deletes O(N)). */
size_t count = 0;
upb_inttable_iter i;
upb_inttable_begin(&i, t);
for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) {
UPB_ASSERT(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL));
}
UPB_ASSERT(count == upb_inttable_count(t));
}
#endif
}
bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype,
size_t asize, int hsize_lg2, upb_alloc *a) {
size_t array_bytes;
if (!init(&t->t, ctype, hsize_lg2, a)) return false;
/* Always make the array part at least 1 long, so that we know key 0
* won't be in the hash part, which simplifies things. */
t->array_size = UPB_MAX(1, asize);
t->array_count = 0;
array_bytes = t->array_size * sizeof(upb_value);
t->array = upb_malloc(a, array_bytes);
if (!t->array) {
uninit(&t->t, a);
return false;
}
memset(mutable_array(t), 0xff, array_bytes);
check(t);
return true;
}
bool upb_inttable_init2(upb_inttable *t, upb_ctype_t ctype, upb_alloc *a) {
return upb_inttable_sizedinit(t, ctype, 0, 4, a);
}
void upb_inttable_uninit2(upb_inttable *t, upb_alloc *a) {
uninit(&t->t, a);
upb_free(a, mutable_array(t));
}
bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val,
upb_alloc *a) {
upb_tabval tabval;
tabval.val = val.val;
UPB_ASSERT(upb_arrhas(tabval)); /* This will reject (uint64_t)-1. Fix this. */
upb_check_alloc(&t->t, a);
if (key < t->array_size) {
UPB_ASSERT(!upb_arrhas(t->array[key]));
t->array_count++;
mutable_array(t)[key].val = val.val;
} else {
if (isfull(&t->t)) {
/* Need to resize the hash part, but we re-use the array part. */
size_t i;
upb_table new_table;
if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1, a)) {
return false;
}
for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) {
const upb_tabent *e = &t->t.entries[i];
uint32_t hash;
upb_value v;
_upb_value_setval(&v, e->val.val, t->t.ctype);
hash = upb_inthash(e->key);
insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql);
}
UPB_ASSERT(t->t.count == new_table.count);
uninit(&t->t, a);
t->t = new_table;
}
insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql);
}
check(t);
return true;
}
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) {
const upb_tabval *table_v = inttable_val_const(t, key);
if (!table_v) return false;
if (v) _upb_value_setval(v, table_v->val, t->t.ctype);
return true;
}
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) {
upb_tabval *table_v = inttable_val(t, key);
if (!table_v) return false;
table_v->val = val.val;
return true;
}
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) {
bool success;
if (key < t->array_size) {
if (upb_arrhas(t->array[key])) {
upb_tabval empty = UPB_TABVALUE_EMPTY_INIT;
t->array_count--;
if (val) {
_upb_value_setval(val, t->array[key].val, t->t.ctype);
}
mutable_array(t)[key] = empty;
success = true;
} else {
success = false;
}
} else {
success = rm(&t->t, intkey(key), val, NULL, upb_inthash(key), &inteql);
}
check(t);
return success;
}
bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a) {
upb_check_alloc(&t->t, a);
return upb_inttable_insert2(t, upb_inttable_count(t), val, a);
}
upb_value upb_inttable_pop(upb_inttable *t) {
upb_value val;
bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val);
UPB_ASSERT(ok);
return val;
}
bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val,
upb_alloc *a) {
upb_check_alloc(&t->t, a);
return upb_inttable_insert2(t, (uintptr_t)key, val, a);
}
bool upb_inttable_lookupptr(const upb_inttable *t, const void *key,
upb_value *v) {
return upb_inttable_lookup(t, (uintptr_t)key, v);
}
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) {
return upb_inttable_remove(t, (uintptr_t)key, val);
}
void upb_inttable_compact2(upb_inttable *t, upb_alloc *a) {
/* A power-of-two histogram of the table keys. */
size_t counts[UPB_MAXARRSIZE + 1] = {0};
/* The max key in each bucket. */
uintptr_t max[UPB_MAXARRSIZE + 1] = {0};
upb_inttable_iter i;
size_t arr_count;
int size_lg2;
upb_inttable new_t;
upb_check_alloc(&t->t, a);
upb_inttable_begin(&i, t);
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
uintptr_t key = upb_inttable_iter_key(&i);
int bucket = log2ceil(key);
max[bucket] = UPB_MAX(max[bucket], key);
counts[bucket]++;
}
/* Find the largest power of two that satisfies the MIN_DENSITY
* definition (while actually having some keys). */
arr_count = upb_inttable_count(t);
for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 0; size_lg2--) {
if (counts[size_lg2] == 0) {
/* We can halve again without losing any entries. */
continue;
} else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) {
break;
}
arr_count -= counts[size_lg2];
}
UPB_ASSERT(arr_count <= upb_inttable_count(t));
{
/* Insert all elements into new, perfectly-sized table. */
size_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */
size_t hash_count = upb_inttable_count(t) - arr_count;
size_t hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0;
int hashsize_lg2 = log2ceil(hash_size);
upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2, a);
upb_inttable_begin(&i, t);
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) {
uintptr_t k = upb_inttable_iter_key(&i);
upb_inttable_insert2(&new_t, k, upb_inttable_iter_value(&i), a);
}
UPB_ASSERT(new_t.array_size == arr_size);
UPB_ASSERT(new_t.t.size_lg2 == hashsize_lg2);
}
upb_inttable_uninit2(t, a);
*t = new_t;
}
/* Iteration. */
static const upb_tabent *int_tabent(const upb_inttable_iter *i) {
UPB_ASSERT(!i->array_part);
return &i->t->t.entries[i->index];
}
static upb_tabval int_arrent(const upb_inttable_iter *i) {
UPB_ASSERT(i->array_part);
return i->t->array[i->index];
}
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) {
i->t = t;
i->index = -1;
i->array_part = true;
upb_inttable_next(i);
}
void upb_inttable_next(upb_inttable_iter *iter) {
const upb_inttable *t = iter->t;
if (iter->array_part) {
while (++iter->index < t->array_size) {
if (upb_arrhas(int_arrent(iter))) {
return;
}
}
iter->array_part = false;
iter->index = begin(&t->t);
} else {
iter->index = next(&t->t, iter->index);
}
}
bool upb_inttable_done(const upb_inttable_iter *i) {
if (!i->t) return true;
if (i->array_part) {
return i->index >= i->t->array_size ||
!upb_arrhas(int_arrent(i));
} else {
return i->index >= upb_table_size(&i->t->t) ||
upb_tabent_isempty(int_tabent(i));
}
}
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) {
UPB_ASSERT(!upb_inttable_done(i));
return i->array_part ? i->index : int_tabent(i)->key;
}
upb_value upb_inttable_iter_value(const upb_inttable_iter *i) {
UPB_ASSERT(!upb_inttable_done(i));
return _upb_value_val(
i->array_part ? i->t->array[i->index].val : int_tabent(i)->val.val,
i->t->t.ctype);
}
void upb_inttable_iter_setdone(upb_inttable_iter *i) {
i->t = NULL;
i->index = SIZE_MAX;
i->array_part = false;
}
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
const upb_inttable_iter *i2) {
if (upb_inttable_done(i1) && upb_inttable_done(i2))
return true;
return i1->t == i2->t && i1->index == i2->index &&
i1->array_part == i2->array_part;
}
#if defined(UPB_UNALIGNED_READS_OK) || defined(__s390x__)
/* -----------------------------------------------------------------------------
* MurmurHash2, by Austin Appleby (released as public domain).
* Reformatted and C99-ified by Joshua Haberman.
* Note - This code makes a few assumptions about how your machine behaves -
* 1. We can read a 4-byte value from any address without crashing
* 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
* And it has a few limitations -
* 1. It will not work incrementally.
* 2. It will not produce the same results on little-endian and big-endian
* machines. */
uint32_t upb_murmur_hash2(const void *key, size_t len, uint32_t seed) {
/* 'm' and 'r' are mixing constants generated offline.
* They're not really 'magic', they just happen to work well. */
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
/* Initialize the hash to a 'random' value */
uint32_t h = seed ^ len;
/* Mix 4 bytes at a time into the hash */
const uint8_t * data = (const uint8_t *)key;
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
/* Handle the last few bytes of the input array */
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
/* Do a few final mixes of the hash to ensure the last few
* bytes are well-incorporated. */
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
#else /* !UPB_UNALIGNED_READS_OK */
/* -----------------------------------------------------------------------------
* MurmurHashAligned2, by Austin Appleby
* Same algorithm as MurmurHash2, but only does aligned reads - should be safer
* on certain platforms.
* Performance will be lower than MurmurHash2 */
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
uint32_t upb_murmur_hash2(const void * key, size_t len, uint32_t seed) {
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
const uint8_t * data = (const uint8_t *)key;
uint32_t h = (uint32_t)(seed ^ len);
uint8_t align = (uintptr_t)data & 3;
if(align && (len >= 4)) {
/* Pre-load the temp registers */
uint32_t t = 0, d = 0;
int32_t sl;
int32_t sr;
switch(align) {
case 1: t |= data[2] << 16;
case 2: t |= data[1] << 8;
case 3: t |= data[0];
}
t <<= (8 * align);
data += 4-align;
len -= 4-align;
sl = 8 * (4-align);
sr = 8 * align;
/* Mix */
while(len >= 4) {
uint32_t k;
d = *(uint32_t *)data;
t = (t >> sr) | (d << sl);
k = t;
MIX(h,k,m);
t = d;
data += 4;
len -= 4;
}
/* Handle leftover data in temp registers */
d = 0;
if(len >= align) {
uint32_t k;
switch(align) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
}
k = (t >> sr) | (d << sl);
MIX(h,k,m);
data += align;
len -= align;
/* ----------
* Handle tail bytes */
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
} else {
switch(len) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
case 0: h ^= (t >> sr) | (d << sl); h *= m;
}
}
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
} else {
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
MIX(h,k,m);
data += 4;
len -= 4;
}
/* ----------
* Handle tail bytes */
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
}
#undef MIX
#endif /* UPB_UNALIGNED_READS_OK */
#include <errno.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* Guarantee null-termination and provide ellipsis truncation.
* It may be tempting to "optimize" this by initializing these final
* four bytes up-front and then being careful never to overwrite them,
* this is safer and simpler. */
static void nullz(upb_status *status) {
const char *ellipsis = "...";
size_t len = strlen(ellipsis);
UPB_ASSERT(sizeof(status->msg) > len);
memcpy(status->msg + sizeof(status->msg) - len, ellipsis, len);
}
/* upb_status *****************************************************************/
void upb_status_clear(upb_status *status) {
if (!status) return;
status->ok = true;
status->msg[0] = '\0';
}
bool upb_ok(const upb_status *status) { return status->ok; }
const char *upb_status_errmsg(const upb_status *status) { return status->msg; }
void upb_status_seterrmsg(upb_status *status, const char *msg) {
if (!status) return;
status->ok = false;
strncpy(status->msg, msg, sizeof(status->msg));
nullz(status);
}
void upb_status_seterrf(upb_status *status, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
upb_status_vseterrf(status, fmt, args);
va_end(args);
}
void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args) {
if (!status) return;
status->ok = false;
_upb_vsnprintf(status->msg, sizeof(status->msg), fmt, args);
nullz(status);
}
/* upb_alloc ******************************************************************/
static void *upb_global_allocfunc(upb_alloc *alloc, void *ptr, size_t oldsize,
size_t size) {
UPB_UNUSED(alloc);
UPB_UNUSED(oldsize);
if (size == 0) {
free(ptr);
return NULL;
} else {
return realloc(ptr, size);
}
}
upb_alloc upb_alloc_global = {&upb_global_allocfunc};
/* upb_arena ******************************************************************/
/* Be conservative and choose 16 in case anyone is using SSE. */
static const size_t maxalign = 16;
static size_t align_up_max(size_t size) {
return ((size + maxalign - 1) / maxalign) * maxalign;
}
struct upb_arena {
/* We implement the allocator interface.
* This must be the first member of upb_arena! */
upb_alloc alloc;
/* Allocator to allocate arena blocks. We are responsible for freeing these
* when we are destroyed. */
upb_alloc *block_alloc;
size_t bytes_allocated;
size_t next_block_size;
size_t max_block_size;
/* Linked list of blocks. Points to an arena_block, defined in env.c */
void *block_head;
/* Cleanup entries. Pointer to a cleanup_ent, defined in env.c */
void *cleanup_head;
};
typedef struct mem_block {
struct mem_block *next;
size_t size;
size_t used;
bool owned;
/* Data follows. */
} mem_block;
typedef struct cleanup_ent {
struct cleanup_ent *next;
upb_cleanup_func *cleanup;
void *ud;
} cleanup_ent;
static void upb_arena_addblock(upb_arena *a, void *ptr, size_t size,
bool owned) {
mem_block *block = ptr;
block->next = a->block_head;
block->size = size;
block->used = align_up_max(sizeof(mem_block));
block->owned = owned;
a->block_head = block;
/* TODO(haberman): ASAN poison. */
}
static mem_block *upb_arena_allocblock(upb_arena *a, size_t size) {
size_t block_size = UPB_MAX(size, a->next_block_size) + sizeof(mem_block);
mem_block *block = upb_malloc(a->block_alloc, block_size);
if (!block) {
return NULL;
}
upb_arena_addblock(a, block, block_size, true);
a->next_block_size = UPB_MIN(block_size * 2, a->max_block_size);
return block;
}
static void *upb_arena_doalloc(upb_alloc *alloc, void *ptr, size_t oldsize,
size_t size) {
upb_arena *a = (upb_arena*)alloc; /* upb_alloc is initial member. */
mem_block *block = a->block_head;
void *ret;
if (size == 0) {
return NULL; /* We are an arena, don't need individual frees. */
}
size = align_up_max(size);
/* TODO(haberman): special-case if this is a realloc of the last alloc? */
if (!block || block->size - block->used < size) {
/* Slow path: have to allocate a new block. */
block = upb_arena_allocblock(a, size);
if (!block) {
return NULL; /* Out of memory. */
}
}
ret = (char*)block + block->used;
block->used += size;
if (oldsize > 0) {
memcpy(ret, ptr, oldsize); /* Preserve existing data. */
}
/* TODO(haberman): ASAN unpoison. */
a->bytes_allocated += size;
return ret;
}
/* Public Arena API ***********************************************************/
#define upb_alignof(type) offsetof (struct { char c; type member; }, member)
upb_arena *upb_arena_init(void *mem, size_t n, upb_alloc *alloc) {
const size_t first_block_overhead = sizeof(upb_arena) + sizeof(mem_block);
upb_arena *a;
bool owned = false;
/* Round block size down to alignof(*a) since we will allocate the arena
* itself at the end. */
n &= ~(upb_alignof(upb_arena) - 1);
if (n < first_block_overhead) {
/* We need to malloc the initial block. */
n = first_block_overhead + 256;
owned = true;
if (!alloc || !(mem = upb_malloc(alloc, n))) {
return NULL;
}
}
a = (void*)((char*)mem + n - sizeof(*a));
n -= sizeof(*a);
a->alloc.func = &upb_arena_doalloc;
a->block_alloc = &upb_alloc_global;
a->bytes_allocated = 0;
a->next_block_size = 256;
a->max_block_size = 16384;
a->cleanup_head = NULL;
a->block_head = NULL;
a->block_alloc = alloc;
upb_arena_addblock(a, mem, n, owned);
return a;
}
#undef upb_alignof
void upb_arena_free(upb_arena *a) {
cleanup_ent *ent = a->cleanup_head;
mem_block *block = a->block_head;
while (ent) {
ent->cleanup(ent->ud);
ent = ent->next;
}
/* Must do this after running cleanup functions, because this will delete
* the memory we store our cleanup entries in! */
while (block) {
/* Load first since we are deleting block. */
mem_block *next = block->next;
if (block->owned) {
upb_free(a->block_alloc, block);
}
block = next;
}
}
bool upb_arena_addcleanup(upb_arena *a, void *ud, upb_cleanup_func *func) {
cleanup_ent *ent = upb_malloc(&a->alloc, sizeof(cleanup_ent));
if (!ent) {
return false; /* Out of memory. */
}
ent->cleanup = func;
ent->ud = ud;
ent->next = a->cleanup_head;
a->cleanup_head = ent;
return true;
}
size_t upb_arena_bytesallocated(const upb_arena *a) {
return a->bytes_allocated;
}
/* This file was generated by upbc (the upb compiler) from the input
* file:
*
* google/protobuf/descriptor.proto
*
* Do not edit -- your changes will be discarded when the file is
* regenerated. */
#include <stddef.h>
static const upb_msglayout *const google_protobuf_FileDescriptorSet_submsgs[1] = {
&google_protobuf_FileDescriptorProto_msginit,
};
static const upb_msglayout_field google_protobuf_FileDescriptorSet__fields[1] = {
{1, UPB_SIZE(0, 0), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_FileDescriptorSet_msginit = {
&google_protobuf_FileDescriptorSet_submsgs[0],
&google_protobuf_FileDescriptorSet__fields[0],
UPB_SIZE(4, 8), 1, false,
};
static const upb_msglayout *const google_protobuf_FileDescriptorProto_submsgs[6] = {
&google_protobuf_DescriptorProto_msginit,
&google_protobuf_EnumDescriptorProto_msginit,
&google_protobuf_FieldDescriptorProto_msginit,
&google_protobuf_FileOptions_msginit,
&google_protobuf_ServiceDescriptorProto_msginit,
&google_protobuf_SourceCodeInfo_msginit,
};
static const upb_msglayout_field google_protobuf_FileDescriptorProto__fields[12] = {
{1, UPB_SIZE(4, 8), 1, 0, 9, 1},
{2, UPB_SIZE(12, 24), 2, 0, 9, 1},
{3, UPB_SIZE(36, 72), 0, 0, 9, 3},
{4, UPB_SIZE(40, 80), 0, 0, 11, 3},
{5, UPB_SIZE(44, 88), 0, 1, 11, 3},
{6, UPB_SIZE(48, 96), 0, 4, 11, 3},
{7, UPB_SIZE(52, 104), 0, 2, 11, 3},
{8, UPB_SIZE(28, 56), 4, 3, 11, 1},
{9, UPB_SIZE(32, 64), 5, 5, 11, 1},
{10, UPB_SIZE(56, 112), 0, 0, 5, 3},
{11, UPB_SIZE(60, 120), 0, 0, 5, 3},
{12, UPB_SIZE(20, 40), 3, 0, 9, 1},
};
const upb_msglayout google_protobuf_FileDescriptorProto_msginit = {
&google_protobuf_FileDescriptorProto_submsgs[0],
&google_protobuf_FileDescriptorProto__fields[0],
UPB_SIZE(64, 128), 12, false,
};
static const upb_msglayout *const google_protobuf_DescriptorProto_submsgs[8] = {
&google_protobuf_DescriptorProto_msginit,
&google_protobuf_DescriptorProto_ExtensionRange_msginit,
&google_protobuf_DescriptorProto_ReservedRange_msginit,
&google_protobuf_EnumDescriptorProto_msginit,
&google_protobuf_FieldDescriptorProto_msginit,
&google_protobuf_MessageOptions_msginit,
&google_protobuf_OneofDescriptorProto_msginit,
};
static const upb_msglayout_field google_protobuf_DescriptorProto__fields[10] = {
{1, UPB_SIZE(4, 8), 1, 0, 9, 1},
{2, UPB_SIZE(16, 32), 0, 4, 11, 3},
{3, UPB_SIZE(20, 40), 0, 0, 11, 3},
{4, UPB_SIZE(24, 48), 0, 3, 11, 3},
{5, UPB_SIZE(28, 56), 0, 1, 11, 3},
{6, UPB_SIZE(32, 64), 0, 4, 11, 3},
{7, UPB_SIZE(12, 24), 2, 5, 11, 1},
{8, UPB_SIZE(36, 72), 0, 6, 11, 3},
{9, UPB_SIZE(40, 80), 0, 2, 11, 3},
{10, UPB_SIZE(44, 88), 0, 0, 9, 3},
};
const upb_msglayout google_protobuf_DescriptorProto_msginit = {
&google_protobuf_DescriptorProto_submsgs[0],
&google_protobuf_DescriptorProto__fields[0],
UPB_SIZE(48, 96), 10, false,
};
static const upb_msglayout *const google_protobuf_DescriptorProto_ExtensionRange_submsgs[1] = {
&google_protobuf_ExtensionRangeOptions_msginit,
};
static const upb_msglayout_field google_protobuf_DescriptorProto_ExtensionRange__fields[3] = {
{1, UPB_SIZE(4, 4), 1, 0, 5, 1},
{2, UPB_SIZE(8, 8), 2, 0, 5, 1},
{3, UPB_SIZE(12, 16), 3, 0, 11, 1},
};
const upb_msglayout google_protobuf_DescriptorProto_ExtensionRange_msginit = {
&google_protobuf_DescriptorProto_ExtensionRange_submsgs[0],
&google_protobuf_DescriptorProto_ExtensionRange__fields[0],
UPB_SIZE(16, 24), 3, false,
};
static const upb_msglayout_field google_protobuf_DescriptorProto_ReservedRange__fields[2] = {
{1, UPB_SIZE(4, 4), 1, 0, 5, 1},
{2, UPB_SIZE(8, 8), 2, 0, 5, 1},
};
const upb_msglayout google_protobuf_DescriptorProto_ReservedRange_msginit = {
NULL,
&google_protobuf_DescriptorProto_ReservedRange__fields[0],
UPB_SIZE(12, 12), 2, false,
};
static const upb_msglayout *const google_protobuf_ExtensionRangeOptions_submsgs[1] = {
&google_protobuf_UninterpretedOption_msginit,
};
static const upb_msglayout_field google_protobuf_ExtensionRangeOptions__fields[1] = {
{999, UPB_SIZE(0, 0), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_ExtensionRangeOptions_msginit = {
&google_protobuf_ExtensionRangeOptions_submsgs[0],
&google_protobuf_ExtensionRangeOptions__fields[0],
UPB_SIZE(4, 8), 1, false,
};
static const upb_msglayout *const google_protobuf_FieldDescriptorProto_submsgs[1] = {
&google_protobuf_FieldOptions_msginit,
};
static const upb_msglayout_field google_protobuf_FieldDescriptorProto__fields[10] = {
{1, UPB_SIZE(32, 32), 5, 0, 9, 1},
{2, UPB_SIZE(40, 48), 6, 0, 9, 1},
{3, UPB_SIZE(24, 24), 3, 0, 5, 1},
{4, UPB_SIZE(8, 8), 1, 0, 14, 1},
{5, UPB_SIZE(16, 16), 2, 0, 14, 1},
{6, UPB_SIZE(48, 64), 7, 0, 9, 1},
{7, UPB_SIZE(56, 80), 8, 0, 9, 1},
{8, UPB_SIZE(72, 112), 10, 0, 11, 1},
{9, UPB_SIZE(28, 28), 4, 0, 5, 1},
{10, UPB_SIZE(64, 96), 9, 0, 9, 1},
};
const upb_msglayout google_protobuf_FieldDescriptorProto_msginit = {
&google_protobuf_FieldDescriptorProto_submsgs[0],
&google_protobuf_FieldDescriptorProto__fields[0],
UPB_SIZE(80, 128), 10, false,
};
static const upb_msglayout *const google_protobuf_OneofDescriptorProto_submsgs[1] = {
&google_protobuf_OneofOptions_msginit,
};
static const upb_msglayout_field google_protobuf_OneofDescriptorProto__fields[2] = {
{1, UPB_SIZE(4, 8), 1, 0, 9, 1},
{2, UPB_SIZE(12, 24), 2, 0, 11, 1},
};
const upb_msglayout google_protobuf_OneofDescriptorProto_msginit = {
&google_protobuf_OneofDescriptorProto_submsgs[0],
&google_protobuf_OneofDescriptorProto__fields[0],
UPB_SIZE(16, 32), 2, false,
};
static const upb_msglayout *const google_protobuf_EnumDescriptorProto_submsgs[3] = {
&google_protobuf_EnumDescriptorProto_EnumReservedRange_msginit,
&google_protobuf_EnumOptions_msginit,
&google_protobuf_EnumValueDescriptorProto_msginit,
};
static const upb_msglayout_field google_protobuf_EnumDescriptorProto__fields[5] = {
{1, UPB_SIZE(4, 8), 1, 0, 9, 1},
{2, UPB_SIZE(16, 32), 0, 2, 11, 3},
{3, UPB_SIZE(12, 24), 2, 1, 11, 1},
{4, UPB_SIZE(20, 40), 0, 0, 11, 3},
{5, UPB_SIZE(24, 48), 0, 0, 9, 3},
};
const upb_msglayout google_protobuf_EnumDescriptorProto_msginit = {
&google_protobuf_EnumDescriptorProto_submsgs[0],
&google_protobuf_EnumDescriptorProto__fields[0],
UPB_SIZE(32, 64), 5, false,
};
static const upb_msglayout_field google_protobuf_EnumDescriptorProto_EnumReservedRange__fields[2] = {
{1, UPB_SIZE(4, 4), 1, 0, 5, 1},
{2, UPB_SIZE(8, 8), 2, 0, 5, 1},
};
const upb_msglayout google_protobuf_EnumDescriptorProto_EnumReservedRange_msginit = {
NULL,
&google_protobuf_EnumDescriptorProto_EnumReservedRange__fields[0],
UPB_SIZE(12, 12), 2, false,
};
static const upb_msglayout *const google_protobuf_EnumValueDescriptorProto_submsgs[1] = {
&google_protobuf_EnumValueOptions_msginit,
};
static const upb_msglayout_field google_protobuf_EnumValueDescriptorProto__fields[3] = {
{1, UPB_SIZE(8, 8), 2, 0, 9, 1},
{2, UPB_SIZE(4, 4), 1, 0, 5, 1},
{3, UPB_SIZE(16, 24), 3, 0, 11, 1},
};
const upb_msglayout google_protobuf_EnumValueDescriptorProto_msginit = {
&google_protobuf_EnumValueDescriptorProto_submsgs[0],
&google_protobuf_EnumValueDescriptorProto__fields[0],
UPB_SIZE(24, 32), 3, false,
};
static const upb_msglayout *const google_protobuf_ServiceDescriptorProto_submsgs[2] = {
&google_protobuf_MethodDescriptorProto_msginit,
&google_protobuf_ServiceOptions_msginit,
};
static const upb_msglayout_field google_protobuf_ServiceDescriptorProto__fields[3] = {
{1, UPB_SIZE(4, 8), 1, 0, 9, 1},
{2, UPB_SIZE(16, 32), 0, 0, 11, 3},
{3, UPB_SIZE(12, 24), 2, 1, 11, 1},
};
const upb_msglayout google_protobuf_ServiceDescriptorProto_msginit = {
&google_protobuf_ServiceDescriptorProto_submsgs[0],
&google_protobuf_ServiceDescriptorProto__fields[0],
UPB_SIZE(24, 48), 3, false,
};
static const upb_msglayout *const google_protobuf_MethodDescriptorProto_submsgs[1] = {
&google_protobuf_MethodOptions_msginit,
};
static const upb_msglayout_field google_protobuf_MethodDescriptorProto__fields[6] = {
{1, UPB_SIZE(4, 8), 3, 0, 9, 1},
{2, UPB_SIZE(12, 24), 4, 0, 9, 1},
{3, UPB_SIZE(20, 40), 5, 0, 9, 1},
{4, UPB_SIZE(28, 56), 6, 0, 11, 1},
{5, UPB_SIZE(1, 1), 1, 0, 8, 1},
{6, UPB_SIZE(2, 2), 2, 0, 8, 1},
};
const upb_msglayout google_protobuf_MethodDescriptorProto_msginit = {
&google_protobuf_MethodDescriptorProto_submsgs[0],
&google_protobuf_MethodDescriptorProto__fields[0],
UPB_SIZE(32, 64), 6, false,
};
static const upb_msglayout *const google_protobuf_FileOptions_submsgs[1] = {
&google_protobuf_UninterpretedOption_msginit,
};
static const upb_msglayout_field google_protobuf_FileOptions__fields[21] = {
{1, UPB_SIZE(28, 32), 11, 0, 9, 1},
{8, UPB_SIZE(36, 48), 12, 0, 9, 1},
{9, UPB_SIZE(8, 8), 1, 0, 14, 1},
{10, UPB_SIZE(16, 16), 2, 0, 8, 1},
{11, UPB_SIZE(44, 64), 13, 0, 9, 1},
{16, UPB_SIZE(17, 17), 3, 0, 8, 1},
{17, UPB_SIZE(18, 18), 4, 0, 8, 1},
{18, UPB_SIZE(19, 19), 5, 0, 8, 1},
{20, UPB_SIZE(20, 20), 6, 0, 8, 1},
{23, UPB_SIZE(21, 21), 7, 0, 8, 1},
{27, UPB_SIZE(22, 22), 8, 0, 8, 1},
{31, UPB_SIZE(23, 23), 9, 0, 8, 1},
{36, UPB_SIZE(52, 80), 14, 0, 9, 1},
{37, UPB_SIZE(60, 96), 15, 0, 9, 1},
{39, UPB_SIZE(68, 112), 16, 0, 9, 1},
{40, UPB_SIZE(76, 128), 17, 0, 9, 1},
{41, UPB_SIZE(84, 144), 18, 0, 9, 1},
{42, UPB_SIZE(24, 24), 10, 0, 8, 1},
{44, UPB_SIZE(92, 160), 19, 0, 9, 1},
{45, UPB_SIZE(100, 176), 20, 0, 9, 1},
{999, UPB_SIZE(108, 192), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_FileOptions_msginit = {
&google_protobuf_FileOptions_submsgs[0],
&google_protobuf_FileOptions__fields[0],
UPB_SIZE(112, 208), 21, false,
};
static const upb_msglayout *const google_protobuf_MessageOptions_submsgs[1] = {
&google_protobuf_UninterpretedOption_msginit,
};
static const upb_msglayout_field google_protobuf_MessageOptions__fields[5] = {
{1, UPB_SIZE(1, 1), 1, 0, 8, 1},
{2, UPB_SIZE(2, 2), 2, 0, 8, 1},
{3, UPB_SIZE(3, 3), 3, 0, 8, 1},
{7, UPB_SIZE(4, 4), 4, 0, 8, 1},
{999, UPB_SIZE(8, 8), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_MessageOptions_msginit = {
&google_protobuf_MessageOptions_submsgs[0],
&google_protobuf_MessageOptions__fields[0],
UPB_SIZE(12, 16), 5, false,
};
static const upb_msglayout *const google_protobuf_FieldOptions_submsgs[1] = {
&google_protobuf_UninterpretedOption_msginit,
};
static const upb_msglayout_field google_protobuf_FieldOptions__fields[7] = {
{1, UPB_SIZE(8, 8), 1, 0, 14, 1},
{2, UPB_SIZE(24, 24), 3, 0, 8, 1},
{3, UPB_SIZE(25, 25), 4, 0, 8, 1},
{5, UPB_SIZE(26, 26), 5, 0, 8, 1},
{6, UPB_SIZE(16, 16), 2, 0, 14, 1},
{10, UPB_SIZE(27, 27), 6, 0, 8, 1},
{999, UPB_SIZE(28, 32), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_FieldOptions_msginit = {
&google_protobuf_FieldOptions_submsgs[0],
&google_protobuf_FieldOptions__fields[0],
UPB_SIZE(32, 40), 7, false,
};
static const upb_msglayout *const google_protobuf_OneofOptions_submsgs[1] = {
&google_protobuf_UninterpretedOption_msginit,
};
static const upb_msglayout_field google_protobuf_OneofOptions__fields[1] = {
{999, UPB_SIZE(0, 0), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_OneofOptions_msginit = {
&google_protobuf_OneofOptions_submsgs[0],
&google_protobuf_OneofOptions__fields[0],
UPB_SIZE(4, 8), 1, false,
};
static const upb_msglayout *const google_protobuf_EnumOptions_submsgs[1] = {
&google_protobuf_UninterpretedOption_msginit,
};
static const upb_msglayout_field google_protobuf_EnumOptions__fields[3] = {
{2, UPB_SIZE(1, 1), 1, 0, 8, 1},
{3, UPB_SIZE(2, 2), 2, 0, 8, 1},
{999, UPB_SIZE(4, 8), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_EnumOptions_msginit = {
&google_protobuf_EnumOptions_submsgs[0],
&google_protobuf_EnumOptions__fields[0],
UPB_SIZE(8, 16), 3, false,
};
static const upb_msglayout *const google_protobuf_EnumValueOptions_submsgs[1] = {
&google_protobuf_UninterpretedOption_msginit,
};
static const upb_msglayout_field google_protobuf_EnumValueOptions__fields[2] = {
{1, UPB_SIZE(1, 1), 1, 0, 8, 1},
{999, UPB_SIZE(4, 8), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_EnumValueOptions_msginit = {
&google_protobuf_EnumValueOptions_submsgs[0],
&google_protobuf_EnumValueOptions__fields[0],
UPB_SIZE(8, 16), 2, false,
};
static const upb_msglayout *const google_protobuf_ServiceOptions_submsgs[1] = {
&google_protobuf_UninterpretedOption_msginit,
};
static const upb_msglayout_field google_protobuf_ServiceOptions__fields[2] = {
{33, UPB_SIZE(1, 1), 1, 0, 8, 1},
{999, UPB_SIZE(4, 8), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_ServiceOptions_msginit = {
&google_protobuf_ServiceOptions_submsgs[0],
&google_protobuf_ServiceOptions__fields[0],
UPB_SIZE(8, 16), 2, false,
};
static const upb_msglayout *const google_protobuf_MethodOptions_submsgs[1] = {
&google_protobuf_UninterpretedOption_msginit,
};
static const upb_msglayout_field google_protobuf_MethodOptions__fields[3] = {
{33, UPB_SIZE(16, 16), 2, 0, 8, 1},
{34, UPB_SIZE(8, 8), 1, 0, 14, 1},
{999, UPB_SIZE(20, 24), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_MethodOptions_msginit = {
&google_protobuf_MethodOptions_submsgs[0],
&google_protobuf_MethodOptions__fields[0],
UPB_SIZE(24, 32), 3, false,
};
static const upb_msglayout *const google_protobuf_UninterpretedOption_submsgs[1] = {
&google_protobuf_UninterpretedOption_NamePart_msginit,
};
static const upb_msglayout_field google_protobuf_UninterpretedOption__fields[7] = {
{2, UPB_SIZE(56, 80), 0, 0, 11, 3},
{3, UPB_SIZE(32, 32), 4, 0, 9, 1},
{4, UPB_SIZE(8, 8), 1, 0, 4, 1},
{5, UPB_SIZE(16, 16), 2, 0, 3, 1},
{6, UPB_SIZE(24, 24), 3, 0, 1, 1},
{7, UPB_SIZE(40, 48), 5, 0, 12, 1},
{8, UPB_SIZE(48, 64), 6, 0, 9, 1},
};
const upb_msglayout google_protobuf_UninterpretedOption_msginit = {
&google_protobuf_UninterpretedOption_submsgs[0],
&google_protobuf_UninterpretedOption__fields[0],
UPB_SIZE(64, 96), 7, false,
};
static const upb_msglayout_field google_protobuf_UninterpretedOption_NamePart__fields[2] = {
{1, UPB_SIZE(4, 8), 2, 0, 9, 2},
{2, UPB_SIZE(1, 1), 1, 0, 8, 2},
};
const upb_msglayout google_protobuf_UninterpretedOption_NamePart_msginit = {
NULL,
&google_protobuf_UninterpretedOption_NamePart__fields[0],
UPB_SIZE(16, 32), 2, false,
};
static const upb_msglayout *const google_protobuf_SourceCodeInfo_submsgs[1] = {
&google_protobuf_SourceCodeInfo_Location_msginit,
};
static const upb_msglayout_field google_protobuf_SourceCodeInfo__fields[1] = {
{1, UPB_SIZE(0, 0), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_SourceCodeInfo_msginit = {
&google_protobuf_SourceCodeInfo_submsgs[0],
&google_protobuf_SourceCodeInfo__fields[0],
UPB_SIZE(4, 8), 1, false,
};
static const upb_msglayout_field google_protobuf_SourceCodeInfo_Location__fields[5] = {
{1, UPB_SIZE(20, 40), 0, 0, 5, 3},
{2, UPB_SIZE(24, 48), 0, 0, 5, 3},
{3, UPB_SIZE(4, 8), 1, 0, 9, 1},
{4, UPB_SIZE(12, 24), 2, 0, 9, 1},
{6, UPB_SIZE(28, 56), 0, 0, 9, 3},
};
const upb_msglayout google_protobuf_SourceCodeInfo_Location_msginit = {
NULL,
&google_protobuf_SourceCodeInfo_Location__fields[0],
UPB_SIZE(32, 64), 5, false,
};
static const upb_msglayout *const google_protobuf_GeneratedCodeInfo_submsgs[1] = {
&google_protobuf_GeneratedCodeInfo_Annotation_msginit,
};
static const upb_msglayout_field google_protobuf_GeneratedCodeInfo__fields[1] = {
{1, UPB_SIZE(0, 0), 0, 0, 11, 3},
};
const upb_msglayout google_protobuf_GeneratedCodeInfo_msginit = {
&google_protobuf_GeneratedCodeInfo_submsgs[0],
&google_protobuf_GeneratedCodeInfo__fields[0],
UPB_SIZE(4, 8), 1, false,
};
static const upb_msglayout_field google_protobuf_GeneratedCodeInfo_Annotation__fields[4] = {
{1, UPB_SIZE(20, 32), 0, 0, 5, 3},
{2, UPB_SIZE(12, 16), 3, 0, 9, 1},
{3, UPB_SIZE(4, 4), 1, 0, 5, 1},
{4, UPB_SIZE(8, 8), 2, 0, 5, 1},
};
const upb_msglayout google_protobuf_GeneratedCodeInfo_Annotation_msginit = {
NULL,
&google_protobuf_GeneratedCodeInfo_Annotation__fields[0],
UPB_SIZE(24, 48), 4, false,
};
#include <ctype.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
typedef struct {
size_t len;
char str[1]; /* Null-terminated string data follows. */
} str_t;
static str_t *newstr(upb_alloc *alloc, const char *data, size_t len) {
str_t *ret = upb_malloc(alloc, sizeof(*ret) + len);
if (!ret) return NULL;
ret->len = len;
memcpy(ret->str, data, len);
ret->str[len] = '\0';
return ret;
}
struct upb_fielddef {
const upb_filedef *file;
const upb_msgdef *msgdef;
const char *full_name;
union {
int64_t sint;
uint64_t uint;
double dbl;
float flt;
bool boolean;
str_t *str;
} defaultval;
const upb_oneofdef *oneof;
union {
const upb_msgdef *msgdef;
const upb_enumdef *enumdef;
const google_protobuf_FieldDescriptorProto *unresolved;
} sub;
uint32_t number_;
uint32_t index_;
uint32_t selector_base; /* Used to index into a upb::Handlers table. */
bool is_extension_;
bool lazy_;
bool packed_;
upb_descriptortype_t type_;
upb_label_t label_;
};
struct upb_msgdef {
const upb_filedef *file;
const char *full_name;
uint32_t selector_count;
uint32_t submsg_field_count;
/* Tables for looking up fields by number and name. */
upb_inttable itof;
upb_strtable ntof;
const upb_fielddef *fields;
const upb_oneofdef *oneofs;
int field_count;
int oneof_count;
/* Is this a map-entry message? */
bool map_entry;
upb_wellknowntype_t well_known_type;
/* TODO(haberman): proper extension ranges (there can be multiple). */
};
struct upb_enumdef {
const upb_filedef *file;
const char *full_name;
upb_strtable ntoi;
upb_inttable iton;
int32_t defaultval;
};
struct upb_oneofdef {
const upb_msgdef *parent;
const char *full_name;
uint32_t index;
upb_strtable ntof;
upb_inttable itof;
};
struct upb_filedef {
const char *name;
const char *package;
const char *phpprefix;
const char *phpnamespace;
upb_syntax_t syntax;
const upb_filedef **deps;
const upb_msgdef *msgs;
const upb_enumdef *enums;
const upb_fielddef *exts;
int dep_count;
int msg_count;
int enum_count;
int ext_count;
};
struct upb_symtab {
upb_arena *arena;
upb_strtable syms; /* full_name -> packed def ptr */
upb_strtable files; /* file_name -> upb_filedef* */
};
/* Inside a symtab we store tagged pointers to specific def types. */
typedef enum {
UPB_DEFTYPE_MSG = 0,
UPB_DEFTYPE_ENUM = 1,
UPB_DEFTYPE_FIELD = 2,
UPB_DEFTYPE_ONEOF = 3
} upb_deftype_t;
static const void *unpack_def(upb_value v, upb_deftype_t type) {
uintptr_t num = (uintptr_t)upb_value_getconstptr(v);
return (num & 3) == type ? (const void*)(num & ~3) : NULL;
}
static upb_value pack_def(const void *ptr, upb_deftype_t type) {
uintptr_t num = (uintptr_t)ptr | type;
return upb_value_constptr((const void*)num);
}
/* isalpha() etc. from <ctype.h> are locale-dependent, which we don't want. */
static bool upb_isbetween(char c, char low, char high) {
return c >= low && c <= high;
}
static bool upb_isletter(char c) {
return upb_isbetween(c, 'A', 'Z') || upb_isbetween(c, 'a', 'z') || c == '_';
}
static bool upb_isalphanum(char c) {
return upb_isletter(c) || upb_isbetween(c, '0', '9');
}
static bool upb_isident(upb_strview name, bool full, upb_status *s) {
const char *str = name.data;
size_t len = name.size;
bool start = true;
size_t i;
for (i = 0; i < len; i++) {
char c = str[i];
if (c == '.') {
if (start || !full) {
upb_status_seterrf(s, "invalid name: unexpected '.' (%s)", str);
return false;
}
start = true;
} else if (start) {
if (!upb_isletter(c)) {
upb_status_seterrf(
s, "invalid name: path components must start with a letter (%s)",
str);
return false;
}
start = false;
} else {
if (!upb_isalphanum(c)) {
upb_status_seterrf(s, "invalid name: non-alphanumeric character (%s)",
str);
return false;
}
}
}
return !start;
}
static const char *shortdefname(const char *fullname) {
const char *p;
if (fullname == NULL) {
return NULL;
} else if ((p = strrchr(fullname, '.')) == NULL) {
/* No '.' in the name, return the full string. */
return fullname;
} else {
/* Return one past the last '.'. */
return p + 1;
}
}
/* All submessage fields are lower than all other fields.
* Secondly, fields are increasing in order. */
uint32_t field_rank(const upb_fielddef *f) {
uint32_t ret = upb_fielddef_number(f);
const uint32_t high_bit = 1 << 30;
UPB_ASSERT(ret < high_bit);
if (!upb_fielddef_issubmsg(f))
ret |= high_bit;
return ret;
}
int cmp_fields(const void *p1, const void *p2) {
const upb_fielddef *f1 = *(upb_fielddef*const*)p1;
const upb_fielddef *f2 = *(upb_fielddef*const*)p2;
return field_rank(f1) - field_rank(f2);
}
/* A few implementation details of handlers. We put these here to avoid
* a def -> handlers dependency. */
#define UPB_STATIC_SELECTOR_COUNT 3 /* Warning: also in upb/handlers.h. */
static uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f) {
return upb_fielddef_isseq(f) ? 2 : 0;
}
static uint32_t upb_handlers_selectorcount(const upb_fielddef *f) {
uint32_t ret = 1;
if (upb_fielddef_isseq(f)) ret += 2; /* STARTSEQ/ENDSEQ */
if (upb_fielddef_isstring(f)) ret += 2; /* [STRING]/STARTSTR/ENDSTR */
if (upb_fielddef_issubmsg(f)) {
/* ENDSUBMSG (STARTSUBMSG is at table beginning) */
ret += 0;
if (upb_fielddef_lazy(f)) {
/* STARTSTR/ENDSTR/STRING (for lazy) */
ret += 3;
}
}
return ret;
}
static bool assign_msg_indices(upb_msgdef *m, upb_status *s) {
/* Sort fields. upb internally relies on UPB_TYPE_MESSAGE fields having the
* lowest indexes, but we do not publicly guarantee this. */
upb_msg_field_iter j;
upb_msg_oneof_iter k;
int i;
uint32_t selector;
int n = upb_msgdef_numfields(m);
upb_fielddef **fields;
if (n == 0) {
m->selector_count = UPB_STATIC_SELECTOR_COUNT;
m->submsg_field_count = 0;
return true;
}
fields = upb_gmalloc(n * sizeof(*fields));
if (!fields) {
upb_status_setoom(s);
return false;
}
m->submsg_field_count = 0;
for(i = 0, upb_msg_field_begin(&j, m);
!upb_msg_field_done(&j);
upb_msg_field_next(&j), i++) {
upb_fielddef *f = upb_msg_iter_field(&j);
UPB_ASSERT(f->msgdef == m);
if (upb_fielddef_issubmsg(f)) {
m->submsg_field_count++;
}
fields[i] = f;
}
qsort(fields, n, sizeof(*fields), cmp_fields);
selector = UPB_STATIC_SELECTOR_COUNT + m->submsg_field_count;
for (i = 0; i < n; i++) {
upb_fielddef *f = fields[i];
f->index_ = i;
f->selector_base = selector + upb_handlers_selectorbaseoffset(f);
selector += upb_handlers_selectorcount(f);
}
m->selector_count = selector;
for(upb_msg_oneof_begin(&k, m), i = 0;
!upb_msg_oneof_done(&k);
upb_msg_oneof_next(&k), i++) {
upb_oneofdef *o = (upb_oneofdef*)upb_msg_iter_oneof(&k);
o->index = i;
}
upb_gfree(fields);
return true;
}
static void assign_msg_wellknowntype(upb_msgdef *m) {
const char *name = upb_msgdef_fullname(m);
if (name == NULL) {
m->well_known_type = UPB_WELLKNOWN_UNSPECIFIED;
return;
}
if (!strcmp(name, "google.protobuf.Any")) {
m->well_known_type = UPB_WELLKNOWN_ANY;
} else if (!strcmp(name, "google.protobuf.FieldMask")) {
m->well_known_type = UPB_WELLKNOWN_FIELDMASK;
} else if (!strcmp(name, "google.protobuf.Duration")) {
m->well_known_type = UPB_WELLKNOWN_DURATION;
} else if (!strcmp(name, "google.protobuf.Timestamp")) {
m->well_known_type = UPB_WELLKNOWN_TIMESTAMP;
} else if (!strcmp(name, "google.protobuf.DoubleValue")) {
m->well_known_type = UPB_WELLKNOWN_DOUBLEVALUE;
} else if (!strcmp(name, "google.protobuf.FloatValue")) {
m->well_known_type = UPB_WELLKNOWN_FLOATVALUE;
} else if (!strcmp(name, "google.protobuf.Int64Value")) {
m->well_known_type = UPB_WELLKNOWN_INT64VALUE;
} else if (!strcmp(name, "google.protobuf.UInt64Value")) {
m->well_known_type = UPB_WELLKNOWN_UINT64VALUE;
} else if (!strcmp(name, "google.protobuf.Int32Value")) {
m->well_known_type = UPB_WELLKNOWN_INT32VALUE;
} else if (!strcmp(name, "google.protobuf.UInt32Value")) {
m->well_known_type = UPB_WELLKNOWN_UINT32VALUE;
} else if (!strcmp(name, "google.protobuf.BoolValue")) {
m->well_known_type = UPB_WELLKNOWN_BOOLVALUE;
} else if (!strcmp(name, "google.protobuf.StringValue")) {
m->well_known_type = UPB_WELLKNOWN_STRINGVALUE;
} else if (!strcmp(name, "google.protobuf.BytesValue")) {
m->well_known_type = UPB_WELLKNOWN_BYTESVALUE;
} else if (!strcmp(name, "google.protobuf.Value")) {
m->well_known_type = UPB_WELLKNOWN_VALUE;
} else if (!strcmp(name, "google.protobuf.ListValue")) {
m->well_known_type = UPB_WELLKNOWN_LISTVALUE;
} else if (!strcmp(name, "google.protobuf.Struct")) {
m->well_known_type = UPB_WELLKNOWN_STRUCT;
} else {
m->well_known_type = UPB_WELLKNOWN_UNSPECIFIED;
}
}
/* upb_enumdef ****************************************************************/
const char *upb_enumdef_fullname(const upb_enumdef *e) {
return e->full_name;
}
const char *upb_enumdef_name(const upb_enumdef *e) {
return shortdefname(e->full_name);
}
const upb_filedef *upb_enumdef_file(const upb_enumdef *e) {
return e->file;
}
int32_t upb_enumdef_default(const upb_enumdef *e) {
UPB_ASSERT(upb_enumdef_iton(e, e->defaultval));
return e->defaultval;
}
int upb_enumdef_numvals(const upb_enumdef *e) {
return upb_strtable_count(&e->ntoi);
}
void upb_enum_begin(upb_enum_iter *i, const upb_enumdef *e) {
/* We iterate over the ntoi table, to account for duplicate numbers. */
upb_strtable_begin(i, &e->ntoi);
}
void upb_enum_next(upb_enum_iter *iter) { upb_strtable_next(iter); }
bool upb_enum_done(upb_enum_iter *iter) { return upb_strtable_done(iter); }
bool upb_enumdef_ntoi(const upb_enumdef *def, const char *name,
size_t len, int32_t *num) {
upb_value v;
if (!upb_strtable_lookup2(&def->ntoi, name, len, &v)) {
return false;
}
if (num) *num = upb_value_getint32(v);
return true;
}
const char *upb_enumdef_iton(const upb_enumdef *def, int32_t num) {
upb_value v;
return upb_inttable_lookup32(&def->iton, num, &v) ?
upb_value_getcstr(v) : NULL;
}
const char *upb_enum_iter_name(upb_enum_iter *iter) {
return upb_strtable_iter_key(iter);
}
int32_t upb_enum_iter_number(upb_enum_iter *iter) {
return upb_value_getint32(upb_strtable_iter_value(iter));
}
/* upb_fielddef ***************************************************************/
const char *upb_fielddef_fullname(const upb_fielddef *f) {
return f->full_name;
}
upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f) {
switch (f->type_) {
case UPB_DESCRIPTOR_TYPE_DOUBLE:
return UPB_TYPE_DOUBLE;
case UPB_DESCRIPTOR_TYPE_FLOAT:
return UPB_TYPE_FLOAT;
case UPB_DESCRIPTOR_TYPE_INT64:
case UPB_DESCRIPTOR_TYPE_SINT64:
case UPB_DESCRIPTOR_TYPE_SFIXED64:
return UPB_TYPE_INT64;
case UPB_DESCRIPTOR_TYPE_INT32:
case UPB_DESCRIPTOR_TYPE_SFIXED32:
case UPB_DESCRIPTOR_TYPE_SINT32:
return UPB_TYPE_INT32;
case UPB_DESCRIPTOR_TYPE_UINT64:
case UPB_DESCRIPTOR_TYPE_FIXED64:
return UPB_TYPE_UINT64;
case UPB_DESCRIPTOR_TYPE_UINT32:
case UPB_DESCRIPTOR_TYPE_FIXED32:
return UPB_TYPE_UINT32;
case UPB_DESCRIPTOR_TYPE_ENUM:
return UPB_TYPE_ENUM;
case UPB_DESCRIPTOR_TYPE_BOOL:
return UPB_TYPE_BOOL;
case UPB_DESCRIPTOR_TYPE_STRING:
return UPB_TYPE_STRING;
case UPB_DESCRIPTOR_TYPE_BYTES:
return UPB_TYPE_BYTES;
case UPB_DESCRIPTOR_TYPE_GROUP:
case UPB_DESCRIPTOR_TYPE_MESSAGE:
return UPB_TYPE_MESSAGE;
}
UPB_UNREACHABLE();
}
upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f) {
return f->type_;
}
uint32_t upb_fielddef_index(const upb_fielddef *f) {
return f->index_;
}
upb_label_t upb_fielddef_label(const upb_fielddef *f) {
return f->label_;
}
uint32_t upb_fielddef_number(const upb_fielddef *f) {
return f->number_;
}
bool upb_fielddef_isextension(const upb_fielddef *f) {
return f->is_extension_;
}
bool upb_fielddef_lazy(const upb_fielddef *f) {
return f->lazy_;
}
bool upb_fielddef_packed(const upb_fielddef *f) {
return f->packed_;
}
const char *upb_fielddef_name(const upb_fielddef *f) {
return shortdefname(f->full_name);
}
uint32_t upb_fielddef_selectorbase(const upb_fielddef *f) {
return f->selector_base;
}
size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len) {
const char *name = upb_fielddef_name(f);
size_t src, dst = 0;
bool ucase_next = false;
#define WRITE(byte) \
++dst; \
if (dst < len) buf[dst - 1] = byte; \
else if (dst == len) buf[dst - 1] = '\0'
if (!name) {
WRITE('\0');
return 0;
}
/* Implement the transformation as described in the spec:
* 1. upper case all letters after an underscore.
* 2. remove all underscores.
*/
for (src = 0; name[src]; src++) {
if (name[src] == '_') {
ucase_next = true;
continue;
}
if (ucase_next) {
WRITE(toupper(name[src]));
ucase_next = false;
} else {
WRITE(name[src]);
}
}
WRITE('\0');
return dst;
#undef WRITE
}
const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f) {
return f->msgdef;
}
const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f) {
return f->oneof;
}
static void chkdefaulttype(const upb_fielddef *f, int ctype) {
UPB_UNUSED(f);
UPB_UNUSED(ctype);
}
int64_t upb_fielddef_defaultint64(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_INT64);
return f->defaultval.sint;
}
int32_t upb_fielddef_defaultint32(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_INT32);
return f->defaultval.sint;
}
uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_UINT64);
return f->defaultval.uint;
}
uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_UINT32);
return f->defaultval.uint;
}
bool upb_fielddef_defaultbool(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_BOOL);
return f->defaultval.boolean;
}
float upb_fielddef_defaultfloat(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_FLOAT);
return f->defaultval.flt;
}
double upb_fielddef_defaultdouble(const upb_fielddef *f) {
chkdefaulttype(f, UPB_TYPE_DOUBLE);
return f->defaultval.dbl;
}
const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len) {
str_t *str = f->defaultval.str;
UPB_ASSERT(upb_fielddef_type(f) == UPB_TYPE_STRING ||
upb_fielddef_type(f) == UPB_TYPE_BYTES ||
upb_fielddef_type(f) == UPB_TYPE_ENUM);
if (str) {
if (len) *len = str->len;
return str->str;
} else {
if (len) *len = 0;
return NULL;
}
}
const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f) {
UPB_ASSERT(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
return f->sub.msgdef;
}
const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f) {
UPB_ASSERT(upb_fielddef_type(f) == UPB_TYPE_ENUM);
return f->sub.enumdef;
}
bool upb_fielddef_issubmsg(const upb_fielddef *f) {
return upb_fielddef_type(f) == UPB_TYPE_MESSAGE;
}
bool upb_fielddef_isstring(const upb_fielddef *f) {
return upb_fielddef_type(f) == UPB_TYPE_STRING ||
upb_fielddef_type(f) == UPB_TYPE_BYTES;
}
bool upb_fielddef_isseq(const upb_fielddef *f) {
return upb_fielddef_label(f) == UPB_LABEL_REPEATED;
}
bool upb_fielddef_isprimitive(const upb_fielddef *f) {
return !upb_fielddef_isstring(f) && !upb_fielddef_issubmsg(f);
}
bool upb_fielddef_ismap(const upb_fielddef *f) {
return upb_fielddef_isseq(f) && upb_fielddef_issubmsg(f) &&
upb_msgdef_mapentry(upb_fielddef_msgsubdef(f));
}
bool upb_fielddef_hassubdef(const upb_fielddef *f) {
return upb_fielddef_issubmsg(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM;
}
bool upb_fielddef_haspresence(const upb_fielddef *f) {
if (upb_fielddef_isseq(f)) return false;
if (upb_fielddef_issubmsg(f)) return true;
return f->file->syntax == UPB_SYNTAX_PROTO2;
}
static bool between(int32_t x, int32_t low, int32_t high) {
return x >= low && x <= high;
}
bool upb_fielddef_checklabel(int32_t label) { return between(label, 1, 3); }
bool upb_fielddef_checktype(int32_t type) { return between(type, 1, 11); }
bool upb_fielddef_checkintfmt(int32_t fmt) { return between(fmt, 1, 3); }
bool upb_fielddef_checkdescriptortype(int32_t type) {
return between(type, 1, 18);
}
/* upb_msgdef *****************************************************************/
const char *upb_msgdef_fullname(const upb_msgdef *m) {
return m->full_name;
}
const upb_filedef *upb_msgdef_file(const upb_msgdef *m) {
return m->file;
}
const char *upb_msgdef_name(const upb_msgdef *m) {
return shortdefname(m->full_name);
}
upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m) {
return m->file->syntax;
}
size_t upb_msgdef_selectorcount(const upb_msgdef *m) {
return m->selector_count;
}
uint32_t upb_msgdef_submsgfieldcount(const upb_msgdef *m) {
return m->submsg_field_count;
}
const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i) {
upb_value val;
return upb_inttable_lookup32(&m->itof, i, &val) ?
upb_value_getconstptr(val) : NULL;
}
const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
size_t len) {
upb_value val;
if (!upb_strtable_lookup2(&m->ntof, name, len, &val)) {
return NULL;
}
return unpack_def(val, UPB_DEFTYPE_FIELD);
}
const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name,
size_t len) {
upb_value val;
if (!upb_strtable_lookup2(&m->ntof, name, len, &val)) {
return NULL;
}
return unpack_def(val, UPB_DEFTYPE_ONEOF);
}
bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len,
const upb_fielddef **f, const upb_oneofdef **o) {
upb_value val;
if (!upb_strtable_lookup2(&m->ntof, name, len, &val)) {
return false;
}
*o = unpack_def(val, UPB_DEFTYPE_ONEOF);
*f = unpack_def(val, UPB_DEFTYPE_FIELD);
UPB_ASSERT((*o != NULL) ^ (*f != NULL)); /* Exactly one of the two should be set. */
return true;
}
int upb_msgdef_numfields(const upb_msgdef *m) {
/* The number table contains only fields. */
return upb_inttable_count(&m->itof);
}
int upb_msgdef_numoneofs(const upb_msgdef *m) {
/* The name table includes oneofs, and the number table does not. */
return upb_strtable_count(&m->ntof) - upb_inttable_count(&m->itof);
}
bool upb_msgdef_mapentry(const upb_msgdef *m) {
return m->map_entry;
}
upb_wellknowntype_t upb_msgdef_wellknowntype(const upb_msgdef *m) {
return m->well_known_type;
}
bool upb_msgdef_isnumberwrapper(const upb_msgdef *m) {
upb_wellknowntype_t type = upb_msgdef_wellknowntype(m);
return type >= UPB_WELLKNOWN_DOUBLEVALUE &&
type <= UPB_WELLKNOWN_UINT32VALUE;
}
void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m) {
upb_inttable_begin(iter, &m->itof);
}
void upb_msg_field_next(upb_msg_field_iter *iter) { upb_inttable_next(iter); }
bool upb_msg_field_done(const upb_msg_field_iter *iter) {
return upb_inttable_done(iter);
}
upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter) {
return (upb_fielddef *)upb_value_getconstptr(upb_inttable_iter_value(iter));
}
void upb_msg_field_iter_setdone(upb_msg_field_iter *iter) {
upb_inttable_iter_setdone(iter);
}
bool upb_msg_field_iter_isequal(const upb_msg_field_iter * iter1,
const upb_msg_field_iter * iter2) {
return upb_inttable_iter_isequal(iter1, iter2);
}
void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m) {
upb_strtable_begin(iter, &m->ntof);
/* We need to skip past any initial fields. */
while (!upb_strtable_done(iter) &&
!unpack_def(upb_strtable_iter_value(iter), UPB_DEFTYPE_ONEOF)) {
upb_strtable_next(iter);
}
}
void upb_msg_oneof_next(upb_msg_oneof_iter *iter) {
/* We need to skip past fields to return only oneofs. */
do {
upb_strtable_next(iter);
} while (!upb_strtable_done(iter) &&
!unpack_def(upb_strtable_iter_value(iter), UPB_DEFTYPE_ONEOF));
}
bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter) {
return upb_strtable_done(iter);
}
const upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter) {
return unpack_def(upb_strtable_iter_value(iter), UPB_DEFTYPE_ONEOF);
}
void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter) {
upb_strtable_iter_setdone(iter);
}
bool upb_msg_oneof_iter_isequal(const upb_msg_oneof_iter *iter1,
const upb_msg_oneof_iter *iter2) {
return upb_strtable_iter_isequal(iter1, iter2);
}
/* upb_oneofdef ***************************************************************/
const char *upb_oneofdef_name(const upb_oneofdef *o) {
return shortdefname(o->full_name);
}
const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o) {
return o->parent;
}
int upb_oneofdef_numfields(const upb_oneofdef *o) {
return upb_strtable_count(&o->ntof);
}
uint32_t upb_oneofdef_index(const upb_oneofdef *o) {
return o->index;
}
const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o,
const char *name, size_t length) {
upb_value val;
return upb_strtable_lookup2(&o->ntof, name, length, &val) ?
upb_value_getptr(val) : NULL;
}
const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num) {
upb_value val;
return upb_inttable_lookup32(&o->itof, num, &val) ?
upb_value_getptr(val) : NULL;
}
void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o) {
upb_inttable_begin(iter, &o->itof);
}
void upb_oneof_next(upb_oneof_iter *iter) {
upb_inttable_next(iter);
}
bool upb_oneof_done(upb_oneof_iter *iter) {
return upb_inttable_done(iter);
}
upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter) {
return (upb_fielddef *)upb_value_getconstptr(upb_inttable_iter_value(iter));
}
void upb_oneof_iter_setdone(upb_oneof_iter *iter) {
upb_inttable_iter_setdone(iter);
}
/* Code to build defs from descriptor protos. *********************************/
/* There is a question of how much validation to do here. It will be difficult
* to perfectly match the amount of validation performed by proto2. But since
* this code is used to directly build defs from Ruby (for example) we do need
* to validate important constraints like uniqueness of names and numbers. */
#define CHK(x) if (!(x)) { return false; }
#define CHK_OOM(x) if (!(x)) { upb_status_setoom(ctx->status); return false; }
typedef struct {
const upb_symtab *symtab;
upb_filedef *file; /* File we are building. */
upb_alloc *alloc; /* Allocate defs here. */
upb_alloc *tmp; /* Alloc for addtab and any other tmp data. */
upb_strtable *addtab; /* full_name -> packed def ptr for new defs. */
upb_status *status; /* Record errors here. */
} symtab_addctx;
static char* strviewdup(const symtab_addctx *ctx, upb_strview view) {
return upb_strdup2(view.data, view.size, ctx->alloc);
}
static bool streql2(const char *a, size_t n, const char *b) {
return n == strlen(b) && memcmp(a, b, n) == 0;
}
static bool streql_view(upb_strview view, const char *b) {
return streql2(view.data, view.size, b);
}
static const char *makefullname(const symtab_addctx *ctx, const char *prefix,
upb_strview name) {
if (prefix) {
/* ret = prefix + '.' + name; */
size_t n = strlen(prefix);
char *ret = upb_malloc(ctx->alloc, n + name.size + 2);
CHK_OOM(ret);
strcpy(ret, prefix);
ret[n] = '.';
memcpy(&ret[n + 1], name.data, name.size);
ret[n + 1 + name.size] = '\0';
return ret;
} else {
return strviewdup(ctx, name);
}
}
static bool symtab_add(const symtab_addctx *ctx, const char *name,
upb_value v) {
upb_value tmp;
if (upb_strtable_lookup(ctx->addtab, name, &tmp) ||
upb_strtable_lookup(&ctx->symtab->syms, name, &tmp)) {
upb_status_seterrf(ctx->status, "duplicate symbol '%s'", name);
return false;
}
CHK_OOM(upb_strtable_insert3(ctx->addtab, name, strlen(name), v, ctx->tmp));
return true;
}
/* Given a symbol and the base symbol inside which it is defined, find the
* symbol's definition in t. */
static bool resolvename(const upb_strtable *t, const upb_fielddef *f,
const char *base, upb_strview sym,
upb_deftype_t type, upb_status *status,
const void **def) {
if(sym.size == 0) return NULL;
if(sym.data[0] == '.') {
/* Symbols starting with '.' are absolute, so we do a single lookup.
* Slice to omit the leading '.' */
upb_value v;
if (!upb_strtable_lookup2(t, sym.data + 1, sym.size - 1, &v)) {
return false;
}
*def = unpack_def(v, type);
if (!*def) {
upb_status_seterrf(status,
"type mismatch when resolving field %s, name %s",
f->full_name, sym.data);
return false;
}
return true;
} else {
/* Remove components from base until we find an entry or run out.
* TODO: This branch is totally broken, but currently not used. */
(void)base;
UPB_ASSERT(false);
return false;
}
}
const void *symtab_resolve(const symtab_addctx *ctx, const upb_fielddef *f,
const char *base, upb_strview sym,
upb_deftype_t type) {
const void *ret;
if (!resolvename(ctx->addtab, f, base, sym, type, ctx->status, &ret) &&
!resolvename(&ctx->symtab->syms, f, base, sym, type, ctx->status, &ret)) {
if (upb_ok(ctx->status)) {
upb_status_seterrf(ctx->status, "couldn't resolve name '%s'", sym.data);
}
return false;
}
return ret;
}
static bool create_oneofdef(
const symtab_addctx *ctx, upb_msgdef *m,
const google_protobuf_OneofDescriptorProto *oneof_proto) {
upb_oneofdef *o;
upb_strview name = google_protobuf_OneofDescriptorProto_name(oneof_proto);
upb_value v;
o = (upb_oneofdef*)&m->oneofs[m->oneof_count++];
o->parent = m;
o->full_name = makefullname(ctx, m->full_name, name);
v = pack_def(o, UPB_DEFTYPE_ONEOF);
CHK_OOM(symtab_add(ctx, o->full_name, v));
CHK_OOM(upb_strtable_insert3(&m->ntof, name.data, name.size, v, ctx->alloc));
CHK_OOM(upb_inttable_init2(&o->itof, UPB_CTYPE_CONSTPTR, ctx->alloc));
CHK_OOM(upb_strtable_init2(&o->ntof, UPB_CTYPE_CONSTPTR, ctx->alloc));
return true;
}
static bool parse_default(const symtab_addctx *ctx, const char *str, size_t len,
upb_fielddef *f) {
char *end;
char nullz[64];
errno = 0;
switch (upb_fielddef_type(f)) {
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_UINT64:
case UPB_TYPE_DOUBLE:
case UPB_TYPE_FLOAT:
/* Standard C number parsing functions expect null-terminated strings. */
if (len >= sizeof(nullz) - 1) {
return false;
}
memcpy(nullz, str, len);
nullz[len] = '\0';
str = nullz;
break;
default:
break;
}
switch (upb_fielddef_type(f)) {
case UPB_TYPE_INT32: {
long val = strtol(str, &end, 0);
CHK(val <= INT32_MAX && val >= INT32_MIN && errno != ERANGE && !*end);
f->defaultval.sint = val;
break;
}
case UPB_TYPE_ENUM: {
const upb_enumdef *e = f->sub.enumdef;
int32_t val;
CHK(upb_enumdef_ntoi(e, str, len, &val));
f->defaultval.sint = val;
break;
}
case UPB_TYPE_INT64: {
/* XXX: Need to write our own strtoll, since it's not available in c89. */
long long val = strtol(str, &end, 0);
CHK(val <= INT64_MAX && val >= INT64_MIN && errno != ERANGE && !*end);
f->defaultval.sint = val;
break;
}
case UPB_TYPE_UINT32: {
unsigned long val = strtoul(str, &end, 0);
CHK(val <= UINT32_MAX && errno != ERANGE && !*end);
f->defaultval.uint = val;
break;
}
case UPB_TYPE_UINT64: {
/* XXX: Need to write our own strtoull, since it's not available in c89. */
unsigned long long val = strtoul(str, &end, 0);
CHK(val <= UINT64_MAX && errno != ERANGE && !*end);
f->defaultval.uint = val;
break;
}
case UPB_TYPE_DOUBLE: {
double val = strtod(str, &end);
CHK(errno != ERANGE && !*end);
f->defaultval.dbl = val;
break;
}
case UPB_TYPE_FLOAT: {
/* XXX: Need to write our own strtof, since it's not available in c89. */
float val = strtod(str, &end);
CHK(errno != ERANGE && !*end);
f->defaultval.flt = val;
break;
}
case UPB_TYPE_BOOL: {
if (streql2(str, len, "false")) {
f->defaultval.boolean = false;
} else if (streql2(str, len, "true")) {
f->defaultval.boolean = true;
} else {
return false;
}
break;
}
case UPB_TYPE_STRING:
f->defaultval.str = newstr(ctx->alloc, str, len);
break;
case UPB_TYPE_BYTES:
/* XXX: need to interpret the C-escaped value. */
f->defaultval.str = newstr(ctx->alloc, str, len);
break;
case UPB_TYPE_MESSAGE:
/* Should not have a default value. */
return false;
}
return true;
}
static void set_default_default(const symtab_addctx *ctx, upb_fielddef *f) {
switch (upb_fielddef_type(f)) {
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_ENUM:
f->defaultval.sint = 0;
break;
case UPB_TYPE_UINT64:
case UPB_TYPE_UINT32:
f->defaultval.uint = 0;
break;
case UPB_TYPE_DOUBLE:
case UPB_TYPE_FLOAT:
f->defaultval.dbl = 0;
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
f->defaultval.str = newstr(ctx->alloc, NULL, 0);
break;
case UPB_TYPE_BOOL:
f->defaultval.boolean = false;
break;
case UPB_TYPE_MESSAGE:
break;
}
}
static bool create_fielddef(
const symtab_addctx *ctx, const char *prefix, upb_msgdef *m,
const google_protobuf_FieldDescriptorProto *field_proto) {
upb_alloc *alloc = ctx->alloc;
upb_fielddef *f;
const google_protobuf_FieldOptions *options;
upb_strview name;
const char *full_name;
const char *shortname;
uint32_t field_number;
if (!google_protobuf_FieldDescriptorProto_has_name(field_proto)) {
upb_status_seterrmsg(ctx->status, "field has no name");
return false;
}
name = google_protobuf_FieldDescriptorProto_name(field_proto);
CHK(upb_isident(name, false, ctx->status));
full_name = makefullname(ctx, prefix, name);
shortname = shortdefname(full_name);
field_number = google_protobuf_FieldDescriptorProto_number(field_proto);
if (field_number == 0 || field_number > UPB_MAX_FIELDNUMBER) {
upb_status_seterrf(ctx->status, "invalid field number (%u)", field_number);
return false;
}
if (m) {
/* direct message field. */
upb_value v, packed_v;
f = (upb_fielddef*)&m->fields[m->field_count++];
f->msgdef = m;
f->is_extension_ = false;
packed_v = pack_def(f, UPB_DEFTYPE_FIELD);
v = upb_value_constptr(f);
if (!upb_strtable_insert3(&m->ntof, name.data, name.size, packed_v, alloc)) {
upb_status_seterrf(ctx->status, "duplicate field name (%s)", shortname);
return false;
}
if (!upb_inttable_insert2(&m->itof, field_number, v, alloc)) {
upb_status_seterrf(ctx->status, "duplicate field number (%u)",
field_number);
return false;
}
} else {
/* extension field. */
f = (upb_fielddef*)&ctx->file->exts[ctx->file->ext_count];
f->is_extension_ = true;
CHK_OOM(symtab_add(ctx, full_name, pack_def(f, UPB_DEFTYPE_FIELD)));
}
f->full_name = full_name;
f->file = ctx->file;
f->type_ = (int)google_protobuf_FieldDescriptorProto_type(field_proto);
f->label_ = (int)google_protobuf_FieldDescriptorProto_label(field_proto);
f->number_ = field_number;
f->oneof = NULL;
/* We can't resolve the subdef or (in the case of extensions) the containing
* message yet, because it may not have been defined yet. We stash a pointer
* to the field_proto until later when we can properly resolve it. */
f->sub.unresolved = field_proto;
if (f->label_ == UPB_LABEL_REQUIRED && f->file->syntax == UPB_SYNTAX_PROTO3) {
upb_status_seterrf(ctx->status, "proto3 fields cannot be required (%s)",
f->full_name);
return false;
}
if (google_protobuf_FieldDescriptorProto_has_oneof_index(field_proto)) {
int oneof_index =
google_protobuf_FieldDescriptorProto_oneof_index(field_proto);
upb_oneofdef *oneof;
upb_value v = upb_value_constptr(f);
if (upb_fielddef_label(f) != UPB_LABEL_OPTIONAL) {
upb_status_seterrf(ctx->status,
"fields in oneof must have OPTIONAL label (%s)",
f->full_name);
return false;
}
if (!m) {
upb_status_seterrf(ctx->status,
"oneof_index provided for extension field (%s)",
f->full_name);
return false;
}
if (oneof_index >= m->oneof_count) {
upb_status_seterrf(ctx->status, "oneof_index out of range (%s)",
f->full_name);
return false;
}
oneof = (upb_oneofdef*)&m->oneofs[oneof_index];
f->oneof = oneof;
CHK(upb_inttable_insert2(&oneof->itof, f->number_, v, alloc));
CHK(upb_strtable_insert3(&oneof->ntof, name.data, name.size, v, alloc));
} else {
f->oneof = NULL;
}
if (google_protobuf_FieldDescriptorProto_has_options(field_proto)) {
options = google_protobuf_FieldDescriptorProto_options(field_proto);
f->lazy_ = google_protobuf_FieldOptions_lazy(options);
f->packed_ = google_protobuf_FieldOptions_packed(options);
} else {
f->lazy_ = false;
f->packed_ = false;
}
return true;
}
static bool create_enumdef(
const symtab_addctx *ctx, const char *prefix,
const google_protobuf_EnumDescriptorProto *enum_proto) {
upb_enumdef *e;
const google_protobuf_EnumValueDescriptorProto *const *values;
upb_strview name;
size_t i, n;
name = google_protobuf_EnumDescriptorProto_name(enum_proto);
CHK(upb_isident(name, false, ctx->status));
e = (upb_enumdef*)&ctx->file->enums[ctx->file->enum_count++];
e->full_name = makefullname(ctx, prefix, name);
CHK_OOM(symtab_add(ctx, e->full_name, pack_def(e, UPB_DEFTYPE_ENUM)));
CHK_OOM(upb_strtable_init2(&e->ntoi, UPB_CTYPE_INT32, ctx->alloc));
CHK_OOM(upb_inttable_init2(&e->iton, UPB_CTYPE_CSTR, ctx->alloc));
e->file = ctx->file;
e->defaultval = 0;
values = google_protobuf_EnumDescriptorProto_value(enum_proto, &n);
if (n == 0) {
upb_status_seterrf(ctx->status,
"enums must contain at least one value (%s)",
e->full_name);
return false;
}
for (i = 0; i < n; i++) {
const google_protobuf_EnumValueDescriptorProto *value = values[i];
upb_strview name = google_protobuf_EnumValueDescriptorProto_name(value);
char *name2 = strviewdup(ctx, name);
int32_t num = google_protobuf_EnumValueDescriptorProto_number(value);
upb_value v = upb_value_int32(num);
if (i == 0 && e->file->syntax == UPB_SYNTAX_PROTO3 && num != 0) {
upb_status_seterrf(ctx->status,
"for proto3, the first enum value must be zero (%s)",
e->full_name);
return false;
}
if (upb_strtable_lookup(&e->ntoi, name2, NULL)) {
upb_status_seterrf(ctx->status, "duplicate enum label '%s'", name2);
return false;
}
CHK_OOM(name2)
CHK_OOM(
upb_strtable_insert3(&e->ntoi, name2, strlen(name2), v, ctx->alloc));
if (!upb_inttable_lookup(&e->iton, num, NULL)) {
upb_value v = upb_value_cstr(name2);
CHK_OOM(upb_inttable_insert2(&e->iton, num, v, ctx->alloc));
}
}
upb_inttable_compact2(&e->iton, ctx->alloc);
return true;
}
static bool create_msgdef(const symtab_addctx *ctx, const char *prefix,
const google_protobuf_DescriptorProto *msg_proto) {
upb_msgdef *m;
const google_protobuf_MessageOptions *options;
const google_protobuf_OneofDescriptorProto *const *oneofs;
const google_protobuf_FieldDescriptorProto *const *fields;
const google_protobuf_EnumDescriptorProto *const *enums;
const google_protobuf_DescriptorProto *const *msgs;
size_t i, n;
upb_strview name;
name = google_protobuf_DescriptorProto_name(msg_proto);
CHK(upb_isident(name, false, ctx->status));
m = (upb_msgdef*)&ctx->file->msgs[ctx->file->msg_count++];
m->full_name = makefullname(ctx, prefix, name);
CHK_OOM(symtab_add(ctx, m->full_name, pack_def(m, UPB_DEFTYPE_MSG)));
CHK_OOM(upb_inttable_init2(&m->itof, UPB_CTYPE_CONSTPTR, ctx->alloc));
CHK_OOM(upb_strtable_init2(&m->ntof, UPB_CTYPE_CONSTPTR, ctx->alloc));
m->file = ctx->file;
m->map_entry = false;
options = google_protobuf_DescriptorProto_options(msg_proto);
if (options) {
m->map_entry = google_protobuf_MessageOptions_map_entry(options);
}
oneofs = google_protobuf_DescriptorProto_oneof_decl(msg_proto, &n);
m->oneof_count = 0;
m->oneofs = upb_malloc(ctx->alloc, sizeof(*m->oneofs) * n);
for (i = 0; i < n; i++) {
CHK(create_oneofdef(ctx, m, oneofs[i]));
}
fields = google_protobuf_DescriptorProto_field(msg_proto, &n);
m->field_count = 0;
m->fields = upb_malloc(ctx->alloc, sizeof(*m->fields) * n);
for (i = 0; i < n; i++) {
CHK(create_fielddef(ctx, m->full_name, m, fields[i]));
}
CHK(assign_msg_indices(m, ctx->status));
assign_msg_wellknowntype(m);
upb_inttable_compact2(&m->itof, ctx->alloc);
/* This message is built. Now build nested messages and enums. */
enums = google_protobuf_DescriptorProto_enum_type(msg_proto, &n);
for (i = 0; i < n; i++) {
CHK(create_enumdef(ctx, m->full_name, enums[i]));
}
msgs = google_protobuf_DescriptorProto_nested_type(msg_proto, &n);
for (i = 0; i < n; i++) {
CHK(create_msgdef(ctx, m->full_name, msgs[i]));
}
return true;
}
typedef struct {
int msg_count;
int enum_count;
int ext_count;
} decl_counts;
static void count_types_in_msg(const google_protobuf_DescriptorProto *msg_proto,
decl_counts *counts) {
const google_protobuf_DescriptorProto *const *msgs;
size_t i, n;
counts->msg_count++;
msgs = google_protobuf_DescriptorProto_nested_type(msg_proto, &n);
for (i = 0; i < n; i++) {
count_types_in_msg(msgs[i], counts);
}
google_protobuf_DescriptorProto_enum_type(msg_proto, &n);
counts->enum_count += n;
google_protobuf_DescriptorProto_extension(msg_proto, &n);
counts->ext_count += n;
}
static void count_types_in_file(
const google_protobuf_FileDescriptorProto *file_proto,
decl_counts *counts) {
const google_protobuf_DescriptorProto *const *msgs;
size_t i, n;
msgs = google_protobuf_FileDescriptorProto_message_type(file_proto, &n);
for (i = 0; i < n; i++) {
count_types_in_msg(msgs[i], counts);
}
google_protobuf_FileDescriptorProto_enum_type(file_proto, &n);
counts->enum_count += n;
google_protobuf_FileDescriptorProto_extension(file_proto, &n);
counts->ext_count += n;
}
static bool resolve_fielddef(const symtab_addctx *ctx, const char *prefix,
upb_fielddef *f) {
upb_strview name;
const google_protobuf_FieldDescriptorProto *field_proto = f->sub.unresolved;
if (f->is_extension_) {
if (!google_protobuf_FieldDescriptorProto_has_extendee(field_proto)) {
upb_status_seterrf(ctx->status,
"extension for field '%s' had no extendee",
f->full_name);
return false;
}
name = google_protobuf_FieldDescriptorProto_extendee(field_proto);
f->msgdef = symtab_resolve(ctx, f, prefix, name, UPB_DEFTYPE_MSG);
CHK(f->msgdef);
}
if ((upb_fielddef_issubmsg(f) || f->type_ == UPB_DESCRIPTOR_TYPE_ENUM) &&
!google_protobuf_FieldDescriptorProto_has_type_name(field_proto)) {
upb_status_seterrf(ctx->status, "field '%s' is missing type name",
f->full_name);
return false;
}
name = google_protobuf_FieldDescriptorProto_type_name(field_proto);
if (upb_fielddef_issubmsg(f)) {
f->sub.msgdef = symtab_resolve(ctx, f, prefix, name, UPB_DEFTYPE_MSG);
CHK(f->sub.msgdef);
} else if (f->type_ == UPB_DESCRIPTOR_TYPE_ENUM) {
f->sub.enumdef = symtab_resolve(ctx, f, prefix, name, UPB_DEFTYPE_ENUM);
CHK(f->sub.enumdef);
}
/* Have to delay resolving of the default value until now because of the enum
* case, since enum defaults are specified with a label. */
if (google_protobuf_FieldDescriptorProto_has_default_value(field_proto)) {
upb_strview defaultval =
google_protobuf_FieldDescriptorProto_default_value(field_proto);
if (f->file->syntax == UPB_SYNTAX_PROTO3) {
upb_status_seterrf(ctx->status,
"proto3 fields cannot have explicit defaults (%s)",
f->full_name);
return false;
}
if (upb_fielddef_issubmsg(f)) {
upb_status_seterrf(ctx->status,
"message fields cannot have explicit defaults (%s)",
f->full_name);
return false;
}
if (!parse_default(ctx, defaultval.data, defaultval.size, f)) {
upb_status_seterrf(ctx->status,
"couldn't parse default '" UPB_STRVIEW_FORMAT
"' for field (%s)",
UPB_STRVIEW_ARGS(defaultval), f->full_name);
return false;
}
} else {
set_default_default(ctx, f);
}
return true;
}
static bool build_filedef(
const symtab_addctx *ctx, upb_filedef *file,
const google_protobuf_FileDescriptorProto *file_proto) {
upb_alloc *alloc = ctx->alloc;
const google_protobuf_FileOptions *file_options_proto;
const google_protobuf_DescriptorProto *const *msgs;
const google_protobuf_EnumDescriptorProto *const *enums;
const google_protobuf_FieldDescriptorProto *const *exts;
const upb_strview* strs;
size_t i, n;
decl_counts counts = {0};
count_types_in_file(file_proto, &counts);
file->msgs = upb_malloc(alloc, sizeof(*file->msgs) * counts.msg_count);
file->enums = upb_malloc(alloc, sizeof(*file->enums) * counts.enum_count);
file->exts = upb_malloc(alloc, sizeof(*file->exts) * counts.ext_count);
CHK_OOM(counts.msg_count == 0 || file->msgs);
CHK_OOM(counts.enum_count == 0 || file->enums);
CHK_OOM(counts.ext_count == 0 || file->exts);
/* We increment these as defs are added. */
file->msg_count = 0;
file->enum_count = 0;
file->ext_count = 0;
if (!google_protobuf_FileDescriptorProto_has_name(file_proto)) {
upb_status_seterrmsg(ctx->status, "File has no name");
return false;
}
file->name =
strviewdup(ctx, google_protobuf_FileDescriptorProto_name(file_proto));
file->phpprefix = NULL;
file->phpnamespace = NULL;
if (google_protobuf_FileDescriptorProto_has_package(file_proto)) {
upb_strview package =
google_protobuf_FileDescriptorProto_package(file_proto);
CHK(upb_isident(package, true, ctx->status));
file->package = strviewdup(ctx, package);
} else {
file->package = NULL;
}
if (google_protobuf_FileDescriptorProto_has_syntax(file_proto)) {
upb_strview syntax =
google_protobuf_FileDescriptorProto_syntax(file_proto);
if (streql_view(syntax, "proto2")) {
file->syntax = UPB_SYNTAX_PROTO2;
} else if (streql_view(syntax, "proto3")) {
file->syntax = UPB_SYNTAX_PROTO3;
} else {
upb_status_seterrf(ctx->status, "Invalid syntax '%s'", syntax);
return false;
}
} else {
file->syntax = UPB_SYNTAX_PROTO2;
}
/* Read options. */
file_options_proto = google_protobuf_FileDescriptorProto_options(file_proto);
if (file_options_proto) {
if (google_protobuf_FileOptions_has_php_class_prefix(file_options_proto)) {
file->phpprefix = strviewdup(
ctx,
google_protobuf_FileOptions_php_class_prefix(file_options_proto));
}
if (google_protobuf_FileOptions_has_php_namespace(file_options_proto)) {
file->phpnamespace = strviewdup(
ctx, google_protobuf_FileOptions_php_namespace(file_options_proto));
}
}
/* Verify dependencies. */
strs = google_protobuf_FileDescriptorProto_dependency(file_proto, &n);
file->deps = upb_malloc(alloc, sizeof(*file->deps) * n) ;
CHK_OOM(n == 0 || file->deps);
for (i = 0; i < n; i++) {
upb_strview dep_name = strs[i];
upb_value v;
if (!upb_strtable_lookup2(&ctx->symtab->files, dep_name.data,
dep_name.size, &v)) {
upb_status_seterrf(ctx->status,
"Depends on file '" UPB_STRVIEW_FORMAT
"', but it has not been loaded",
UPB_STRVIEW_ARGS(dep_name));
return false;
}
file->deps[i] = upb_value_getconstptr(v);
}
/* Create messages. */
msgs = google_protobuf_FileDescriptorProto_message_type(file_proto, &n);
for (i = 0; i < n; i++) {
CHK(create_msgdef(ctx, file->package, msgs[i]));
}
/* Create enums. */
enums = google_protobuf_FileDescriptorProto_enum_type(file_proto, &n);
for (i = 0; i < n; i++) {
CHK(create_enumdef(ctx, file->package, enums[i]));
}
/* Create extensions. */
exts = google_protobuf_FileDescriptorProto_extension(file_proto, &n);
file->exts = upb_malloc(alloc, sizeof(*file->exts) * n);
CHK_OOM(n == 0 || file->exts);
for (i = 0; i < n; i++) {
CHK(create_fielddef(ctx, file->package, NULL, exts[i]));
}
/* Now that all names are in the table, resolve references. */
for (i = 0; i < file->ext_count; i++) {
CHK(resolve_fielddef(ctx, file->package, (upb_fielddef*)&file->exts[i]));
}
for (i = 0; i < file->msg_count; i++) {
const upb_msgdef *m = &file->msgs[i];
int j;
for (j = 0; j < m->field_count; j++) {
CHK(resolve_fielddef(ctx, m->full_name, (upb_fielddef*)&m->fields[j]));
}
}
return true;
}
static bool upb_symtab_addtotabs(upb_symtab *s, symtab_addctx *ctx,
upb_status *status) {
const upb_filedef *file = ctx->file;
upb_alloc *alloc = upb_arena_alloc(s->arena);
upb_strtable_iter iter;
CHK_OOM(upb_strtable_insert3(&s->files, file->name, strlen(file->name),
upb_value_constptr(file), alloc));
upb_strtable_begin(&iter, ctx->addtab);
for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) {
const char *key = upb_strtable_iter_key(&iter);
size_t keylen = upb_strtable_iter_keylength(&iter);
upb_value value = upb_strtable_iter_value(&iter);
CHK_OOM(upb_strtable_insert3(&s->syms, key, keylen, value, alloc));
}
return true;
}
/* upb_filedef ****************************************************************/
const char *upb_filedef_name(const upb_filedef *f) {
return f->name;
}
const char *upb_filedef_package(const upb_filedef *f) {
return f->package;
}
const char *upb_filedef_phpprefix(const upb_filedef *f) {
return f->phpprefix;
}
const char *upb_filedef_phpnamespace(const upb_filedef *f) {
return f->phpnamespace;
}
upb_syntax_t upb_filedef_syntax(const upb_filedef *f) {
return f->syntax;
}
int upb_filedef_msgcount(const upb_filedef *f) {
return f->msg_count;
}
int upb_filedef_depcount(const upb_filedef *f) {
return f->dep_count;
}
int upb_filedef_enumcount(const upb_filedef *f) {
return f->enum_count;
}
const upb_filedef *upb_filedef_dep(const upb_filedef *f, int i) {
return i < 0 || i >= f->dep_count ? NULL : f->deps[i];
}
const upb_msgdef *upb_filedef_msg(const upb_filedef *f, int i) {
return i < 0 || i >= f->msg_count ? NULL : &f->msgs[i];
}
const upb_enumdef *upb_filedef_enum(const upb_filedef *f, int i) {
return i < 0 || i >= f->enum_count ? NULL : &f->enums[i];
}
void upb_symtab_free(upb_symtab *s) {
upb_arena_free(s->arena);
upb_gfree(s);
}
upb_symtab *upb_symtab_new(void) {
upb_symtab *s = upb_gmalloc(sizeof(*s));
upb_alloc *alloc;
if (!s) {
return NULL;
}
s->arena = upb_arena_new();
alloc = upb_arena_alloc(s->arena);
if (!upb_strtable_init2(&s->syms, UPB_CTYPE_CONSTPTR, alloc) ||
!upb_strtable_init2(&s->files, UPB_CTYPE_CONSTPTR, alloc)) {
upb_arena_free(s->arena);
upb_gfree(s);
s = NULL;
}
return s;
}
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) {
upb_value v;
return upb_strtable_lookup(&s->syms, sym, &v) ?
unpack_def(v, UPB_DEFTYPE_MSG) : NULL;
}
const upb_msgdef *upb_symtab_lookupmsg2(const upb_symtab *s, const char *sym,
size_t len) {
upb_value v;
return upb_strtable_lookup2(&s->syms, sym, len, &v) ?
unpack_def(v, UPB_DEFTYPE_MSG) : NULL;
}
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) {
upb_value v;
return upb_strtable_lookup(&s->syms, sym, &v) ?
unpack_def(v, UPB_DEFTYPE_ENUM) : NULL;
}
const upb_filedef *upb_symtab_lookupfile(const upb_symtab *s, const char *name) {
upb_value v;
return upb_strtable_lookup(&s->files, name, &v) ? upb_value_getconstptr(v)
: NULL;
}
const upb_filedef *upb_symtab_addfile(
upb_symtab *s, const google_protobuf_FileDescriptorProto *file_proto,
upb_status *status) {
upb_arena *tmparena = upb_arena_new();
upb_strtable addtab;
upb_alloc *alloc = upb_arena_alloc(s->arena);
upb_filedef *file = upb_malloc(alloc, sizeof(*file));
bool ok;
symtab_addctx ctx;
ctx.file = file;
ctx.symtab = s;
ctx.alloc = alloc;
ctx.tmp = upb_arena_alloc(tmparena);
ctx.addtab = &addtab;
ctx.status = status;
ok = file &&
upb_strtable_init2(&addtab, UPB_CTYPE_CONSTPTR, ctx.tmp) &&
build_filedef(&ctx, file, file_proto) &&
upb_symtab_addtotabs(s, &ctx, status);
upb_arena_free(tmparena);
return ok ? file : NULL;
}
/* Include here since we want most of this file to be stdio-free. */
#include <stdio.h>
bool _upb_symtab_loaddefinit(upb_symtab *s, const upb_def_init *init) {
/* Since this function should never fail (it would indicate a bug in upb) we
* print errors to stderr instead of returning error status to the user. */
upb_def_init **deps = init->deps;
google_protobuf_FileDescriptorProto *file;
upb_arena *arena;
upb_status status;
upb_status_clear(&status);
if (upb_strtable_lookup(&s->files, init->filename, NULL)) {
return true;
}
arena = upb_arena_new();
for (; *deps; deps++) {
if (!_upb_symtab_loaddefinit(s, *deps)) goto err;
}
file = google_protobuf_FileDescriptorProto_parse(
init->descriptor.data, init->descriptor.size, arena);
if (!file) {
upb_status_seterrf(
&status,
"Failed to parse compiled-in descriptor for file '%s'. This should "
"never happen.",
init->filename);
goto err;
}
if (!upb_symtab_addfile(s, file, &status)) goto err;
upb_arena_free(arena);
return true;
err:
fprintf(stderr, "Error loading compiled-in descriptor: %s\n",
upb_status_errmsg(&status));
upb_arena_free(arena);
return false;
}
#undef CHK
#undef CHK_OOM
static bool is_power_of_two(size_t val) {
return (val & (val - 1)) == 0;
}
/* Align up to the given power of 2. */
static size_t align_up(size_t val, size_t align) {
UPB_ASSERT(is_power_of_two(align));
return (val + align - 1) & ~(align - 1);
}
static size_t div_round_up(size_t n, size_t d) {
return (n + d - 1) / d;
}
static size_t upb_msgval_sizeof2(upb_fieldtype_t type) {
switch (type) {
case UPB_TYPE_DOUBLE:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT64:
return 8;
case UPB_TYPE_ENUM:
case UPB_TYPE_INT32:
case UPB_TYPE_UINT32:
case UPB_TYPE_FLOAT:
return 4;
case UPB_TYPE_BOOL:
return 1;
case UPB_TYPE_MESSAGE:
return sizeof(void*);
case UPB_TYPE_BYTES:
case UPB_TYPE_STRING:
return sizeof(upb_strview);
}
UPB_UNREACHABLE();
}
static uint8_t upb_msg_fielddefsize(const upb_fielddef *f) {
if (upb_fielddef_isseq(f)) {
return sizeof(void*);
} else {
return upb_msgval_sizeof2(upb_fielddef_type(f));
}
}
/** upb_msglayout *************************************************************/
static void upb_msglayout_free(upb_msglayout *l) {
upb_gfree(l);
}
static size_t upb_msglayout_place(upb_msglayout *l, size_t size) {
size_t ret;
l->size = align_up(l->size, size);
ret = l->size;
l->size += size;
return ret;
}
static bool upb_msglayout_init(const upb_msgdef *m,
upb_msglayout *l,
upb_msgfactory *factory) {
upb_msg_field_iter it;
upb_msg_oneof_iter oit;
size_t hasbit;
size_t submsg_count = 0;
const upb_msglayout **submsgs;
upb_msglayout_field *fields;
for (upb_msg_field_begin(&it, m);
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* f = upb_msg_iter_field(&it);
if (upb_fielddef_issubmsg(f)) {
submsg_count++;
}
}
memset(l, 0, sizeof(*l));
fields = upb_gmalloc(upb_msgdef_numfields(m) * sizeof(*fields));
submsgs = upb_gmalloc(submsg_count * sizeof(*submsgs));
if ((!fields && upb_msgdef_numfields(m)) ||
(!submsgs && submsg_count)) {
/* OOM. */
upb_gfree(fields);
upb_gfree(submsgs);
return false;
}
l->field_count = upb_msgdef_numfields(m);
l->fields = fields;
l->submsgs = submsgs;
/* Allocate data offsets in three stages:
*
* 1. hasbits.
* 2. regular fields.
* 3. oneof fields.
*
* OPT: There is a lot of room for optimization here to minimize the size.
*/
/* Allocate hasbits and set basic field attributes. */
submsg_count = 0;
for (upb_msg_field_begin(&it, m), hasbit = 0;
!upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* f = upb_msg_iter_field(&it);
upb_msglayout_field *field = &fields[upb_fielddef_index(f)];
field->number = upb_fielddef_number(f);
field->descriptortype = upb_fielddef_descriptortype(f);
field->label = upb_fielddef_label(f);
if (upb_fielddef_issubmsg(f)) {
const upb_msglayout *sub_layout =
upb_msgfactory_getlayout(factory, upb_fielddef_msgsubdef(f));
field->submsg_index = submsg_count++;
submsgs[field->submsg_index] = sub_layout;
}
if (upb_fielddef_haspresence(f) && !upb_fielddef_containingoneof(f)) {
field->presence = (hasbit++);
} else {
field->presence = 0;
}
}
/* Account for space used by hasbits. */
l->size = div_round_up(hasbit, 8);
/* Allocate non-oneof fields. */
for (upb_msg_field_begin(&it, m); !upb_msg_field_done(&it);
upb_msg_field_next(&it)) {
const upb_fielddef* f = upb_msg_iter_field(&it);
size_t field_size = upb_msg_fielddefsize(f);
size_t index = upb_fielddef_index(f);
if (upb_fielddef_containingoneof(f)) {
/* Oneofs are handled separately below. */
continue;
}
fields[index].offset = upb_msglayout_place(l, field_size);
}
/* Allocate oneof fields. Each oneof field consists of a uint32 for the case
* and space for the actual data. */
for (upb_msg_oneof_begin(&oit, m); !upb_msg_oneof_done(&oit);
upb_msg_oneof_next(&oit)) {
const upb_oneofdef* o = upb_msg_iter_oneof(&oit);
upb_oneof_iter fit;
size_t case_size = sizeof(uint32_t); /* Could potentially optimize this. */
size_t field_size = 0;
uint32_t case_offset;
uint32_t data_offset;
/* Calculate field size: the max of all field sizes. */
for (upb_oneof_begin(&fit, o);
!upb_oneof_done(&fit);
upb_oneof_next(&fit)) {
const upb_fielddef* f = upb_oneof_iter_field(&fit);
field_size = UPB_MAX(field_size, upb_msg_fielddefsize(f));
}
/* Align and allocate case offset. */
case_offset = upb_msglayout_place(l, case_size);
data_offset = upb_msglayout_place(l, field_size);
for (upb_oneof_begin(&fit, o);
!upb_oneof_done(&fit);
upb_oneof_next(&fit)) {
const upb_fielddef* f = upb_oneof_iter_field(&fit);
fields[upb_fielddef_index(f)].offset = data_offset;
fields[upb_fielddef_index(f)].presence = ~case_offset;
}
}
/* Size of the entire structure should be a multiple of its greatest
* alignment. TODO: track overall alignment for real? */
l->size = align_up(l->size, 8);
return true;
}
/** upb_msgfactory ************************************************************/
struct upb_msgfactory {
const upb_symtab *symtab; /* We own a ref. */
upb_inttable layouts;
};
upb_msgfactory *upb_msgfactory_new(const upb_symtab *symtab) {
upb_msgfactory *ret = upb_gmalloc(sizeof(*ret));
ret->symtab = symtab;
upb_inttable_init(&ret->layouts, UPB_CTYPE_PTR);
return ret;
}
void upb_msgfactory_free(upb_msgfactory *f) {
upb_inttable_iter i;
upb_inttable_begin(&i, &f->layouts);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_msglayout *l = upb_value_getptr(upb_inttable_iter_value(&i));
upb_msglayout_free(l);
}
upb_inttable_uninit(&f->layouts);
upb_gfree(f);
}
const upb_symtab *upb_msgfactory_symtab(const upb_msgfactory *f) {
return f->symtab;
}
const upb_msglayout *upb_msgfactory_getlayout(upb_msgfactory *f,
const upb_msgdef *m) {
upb_value v;
UPB_ASSERT(upb_symtab_lookupmsg(f->symtab, upb_msgdef_fullname(m)) == m);
UPB_ASSERT(!upb_msgdef_mapentry(m));
if (upb_inttable_lookupptr(&f->layouts, m, &v)) {
UPB_ASSERT(upb_value_getptr(v));
return upb_value_getptr(v);
} else {
/* In case of circular dependency, layout has to be inserted first. */
upb_msglayout *l = upb_gmalloc(sizeof(*l));
upb_msgfactory *mutable_f = (void*)f;
upb_inttable_insertptr(&mutable_f->layouts, m, upb_value_ptr(l));
UPB_ASSERT(l);
if (!upb_msglayout_init(m, l, f)) {
upb_msglayout_free(l);
}
return l;
}
}
/*
** TODO(haberman): it's unclear whether a lot of the consistency checks should
** UPB_ASSERT() or return false.
*/
#include <string.h>
struct upb_handlers {
upb_handlercache *cache;
const upb_msgdef *msg;
const upb_handlers **sub;
const void *top_closure_type;
upb_handlers_tabent table[1]; /* Dynamically-sized field handler array. */
};
static void *upb_calloc(upb_arena *arena, size_t size) {
void *mem = upb_malloc(upb_arena_alloc(arena), size);
if (mem) {
memset(mem, 0, size);
}
return mem;
}
/* Defined for the sole purpose of having a unique pointer value for
* UPB_NO_CLOSURE. */
char _upb_noclosure;
/* Given a selector for a STARTSUBMSG handler, resolves to a pointer to the
* subhandlers for this submessage field. */
#define SUBH(h, selector) (h->sub[selector])
/* The selector for a submessage field is the field index. */
#define SUBH_F(h, f) SUBH(h, upb_fielddef_index(f))
static int32_t trygetsel(upb_handlers *h, const upb_fielddef *f,
upb_handlertype_t type) {
upb_selector_t sel;
bool ok;
ok = upb_handlers_getselector(f, type, &sel);
UPB_ASSERT(upb_handlers_msgdef(h) == upb_fielddef_containingtype(f));
UPB_ASSERT(ok);
return sel;
}
static upb_selector_t handlers_getsel(upb_handlers *h, const upb_fielddef *f,
upb_handlertype_t type) {
int32_t sel = trygetsel(h, f, type);
UPB_ASSERT(sel >= 0);
return sel;
}
static const void **returntype(upb_handlers *h, const upb_fielddef *f,
upb_handlertype_t type) {
return &h->table[handlers_getsel(h, f, type)].attr.return_closure_type;
}
static bool doset(upb_handlers *h, int32_t sel, const upb_fielddef *f,
upb_handlertype_t type, upb_func *func,
const upb_handlerattr *attr) {
upb_handlerattr set_attr = UPB_HANDLERATTR_INIT;
const void *closure_type;
const void **context_closure_type;
UPB_ASSERT(!h->table[sel].func);
if (attr) {
set_attr = *attr;
}
/* Check that the given closure type matches the closure type that has been
* established for this context (if any). */
closure_type = set_attr.closure_type;
if (type == UPB_HANDLER_STRING) {
context_closure_type = returntype(h, f, UPB_HANDLER_STARTSTR);
} else if (f && upb_fielddef_isseq(f) &&
type != UPB_HANDLER_STARTSEQ &&
type != UPB_HANDLER_ENDSEQ) {
context_closure_type = returntype(h, f, UPB_HANDLER_STARTSEQ);
} else {
context_closure_type = &h->top_closure_type;
}
if (closure_type && *context_closure_type &&
closure_type != *context_closure_type) {
return false;
}
if (closure_type)
*context_closure_type = closure_type;
/* If this is a STARTSEQ or STARTSTR handler, check that the returned pointer
* matches any pre-existing expectations about what type is expected. */
if (type == UPB_HANDLER_STARTSEQ || type == UPB_HANDLER_STARTSTR) {
const void *return_type = set_attr.return_closure_type;
const void *table_return_type = h->table[sel].attr.return_closure_type;
if (return_type && table_return_type && return_type != table_return_type) {
return false;
}
if (table_return_type && !return_type) {
set_attr.return_closure_type = table_return_type;
}
}
h->table[sel].func = (upb_func*)func;
h->table[sel].attr = set_attr;
return true;
}
/* Returns the effective closure type for this handler (which will propagate
* from outer frames if this frame has no START* handler). Not implemented for
* UPB_HANDLER_STRING at the moment since this is not needed. Returns NULL is
* the effective closure type is unspecified (either no handler was registered
* to specify it or the handler that was registered did not specify the closure
* type). */
const void *effective_closure_type(upb_handlers *h, const upb_fielddef *f,
upb_handlertype_t type) {
const void *ret;
upb_selector_t sel;
UPB_ASSERT(type != UPB_HANDLER_STRING);
ret = h->top_closure_type;
if (upb_fielddef_isseq(f) &&
type != UPB_HANDLER_STARTSEQ &&
type != UPB_HANDLER_ENDSEQ &&
h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)].func) {
ret = h->table[sel].attr.return_closure_type;
}
if (type == UPB_HANDLER_STRING &&
h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSTR)].func) {
ret = h->table[sel].attr.return_closure_type;
}
/* The effective type of the submessage; not used yet.
* if (type == SUBMESSAGE &&
* h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)].func) {
* ret = h->table[sel].attr.return_closure_type;
* } */
return ret;
}
/* Checks whether the START* handler specified by f & type is missing even
* though it is required to convert the established type of an outer frame
* ("closure_type") into the established type of an inner frame (represented in
* the return closure type of this handler's attr. */
bool checkstart(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type,
upb_status *status) {
const void *closure_type;
const upb_handlerattr *attr;
const void *return_closure_type;
upb_selector_t sel = handlers_getsel(h, f, type);
if (h->table[sel].func) return true;
closure_type = effective_closure_type(h, f, type);
attr = &h->table[sel].attr;
return_closure_type = attr->return_closure_type;
if (closure_type && return_closure_type &&
closure_type != return_closure_type) {
return false;
}
return true;
}
static upb_handlers *upb_handlers_new(const upb_msgdef *md,
upb_handlercache *cache,
upb_arena *arena) {
int extra;
upb_handlers *h;
extra = sizeof(upb_handlers_tabent) * (upb_msgdef_selectorcount(md) - 1);
h = upb_calloc(arena, sizeof(*h) + extra);
if (!h) return NULL;
h->cache = cache;
h->msg = md;
if (upb_msgdef_submsgfieldcount(md) > 0) {
size_t bytes = upb_msgdef_submsgfieldcount(md) * sizeof(*h->sub);
h->sub = upb_calloc(arena, bytes);
if (!h->sub) return NULL;
} else {
h->sub = 0;
}
/* calloc() above initialized all handlers to NULL. */
return h;
}
/* Public interface ***********************************************************/
#define SETTER(name, handlerctype, handlertype) \
bool upb_handlers_set##name(upb_handlers *h, const upb_fielddef *f, \
handlerctype func, \
const upb_handlerattr *attr) { \
int32_t sel = trygetsel(h, f, handlertype); \
return doset(h, sel, f, handlertype, (upb_func *)func, attr); \
}
SETTER(int32, upb_int32_handlerfunc*, UPB_HANDLER_INT32)
SETTER(int64, upb_int64_handlerfunc*, UPB_HANDLER_INT64)
SETTER(uint32, upb_uint32_handlerfunc*, UPB_HANDLER_UINT32)
SETTER(uint64, upb_uint64_handlerfunc*, UPB_HANDLER_UINT64)
SETTER(float, upb_float_handlerfunc*, UPB_HANDLER_FLOAT)
SETTER(double, upb_double_handlerfunc*, UPB_HANDLER_DOUBLE)
SETTER(bool, upb_bool_handlerfunc*, UPB_HANDLER_BOOL)
SETTER(startstr, upb_startstr_handlerfunc*, UPB_HANDLER_STARTSTR)
SETTER(string, upb_string_handlerfunc*, UPB_HANDLER_STRING)
SETTER(endstr, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSTR)
SETTER(startseq, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSEQ)
SETTER(startsubmsg, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSUBMSG)
SETTER(endsubmsg, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSUBMSG)
SETTER(endseq, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSEQ)
#undef SETTER
bool upb_handlers_setunknown(upb_handlers *h, upb_unknown_handlerfunc *func,
const upb_handlerattr *attr) {
return doset(h, UPB_UNKNOWN_SELECTOR, NULL, UPB_HANDLER_INT32,
(upb_func *)func, attr);
}
bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
const upb_handlerattr *attr) {
return doset(h, UPB_STARTMSG_SELECTOR, NULL, UPB_HANDLER_INT32,
(upb_func *)func, attr);
}
bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
const upb_handlerattr *attr) {
return doset(h, UPB_ENDMSG_SELECTOR, NULL, UPB_HANDLER_INT32,
(upb_func *)func, attr);
}
bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
const upb_handlers *sub) {
UPB_ASSERT(sub);
UPB_ASSERT(upb_fielddef_issubmsg(f));
if (SUBH_F(h, f)) return false; /* Can't reset. */
if (upb_handlers_msgdef(sub) != upb_fielddef_msgsubdef(f)) {
return false;
}
SUBH_F(h, f) = sub;
return true;
}
const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
const upb_fielddef *f) {
UPB_ASSERT(upb_fielddef_issubmsg(f));
return SUBH_F(h, f);
}
upb_func *upb_handlers_gethandler(const upb_handlers *h, upb_selector_t s,
const void **handler_data) {
upb_func *ret = (upb_func *)h->table[s].func;
if (ret && handler_data) {
*handler_data = h->table[s].attr.handler_data;
}
return ret;
}
bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t sel,
upb_handlerattr *attr) {
if (!upb_handlers_gethandler(h, sel, NULL))
return false;
*attr = h->table[sel].attr;
return true;
}
const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
upb_selector_t sel) {
/* STARTSUBMSG selector in sel is the field's selector base. */
return SUBH(h, sel - UPB_STATIC_SELECTOR_COUNT);
}
const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h) { return h->msg; }
bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *func) {
return upb_handlercache_addcleanup(h->cache, p, func);
}
upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f) {
switch (upb_fielddef_type(f)) {
case UPB_TYPE_INT32:
case UPB_TYPE_ENUM: return UPB_HANDLER_INT32;
case UPB_TYPE_INT64: return UPB_HANDLER_INT64;
case UPB_TYPE_UINT32: return UPB_HANDLER_UINT32;
case UPB_TYPE_UINT64: return UPB_HANDLER_UINT64;
case UPB_TYPE_FLOAT: return UPB_HANDLER_FLOAT;
case UPB_TYPE_DOUBLE: return UPB_HANDLER_DOUBLE;
case UPB_TYPE_BOOL: return UPB_HANDLER_BOOL;
default: UPB_ASSERT(false); return -1; /* Invalid input. */
}
}
bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
upb_selector_t *s) {
uint32_t selector_base = upb_fielddef_selectorbase(f);
switch (type) {
case UPB_HANDLER_INT32:
case UPB_HANDLER_INT64:
case UPB_HANDLER_UINT32:
case UPB_HANDLER_UINT64:
case UPB_HANDLER_FLOAT:
case UPB_HANDLER_DOUBLE:
case UPB_HANDLER_BOOL:
if (!upb_fielddef_isprimitive(f) ||
upb_handlers_getprimitivehandlertype(f) != type)
return false;
*s = selector_base;
break;
case UPB_HANDLER_STRING:
if (upb_fielddef_isstring(f)) {
*s = selector_base;
} else if (upb_fielddef_lazy(f)) {
*s = selector_base + 3;
} else {
return false;
}
break;
case UPB_HANDLER_STARTSTR:
if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) {
*s = selector_base + 1;
} else {
return false;
}
break;
case UPB_HANDLER_ENDSTR:
if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) {
*s = selector_base + 2;
} else {
return false;
}
break;
case UPB_HANDLER_STARTSEQ:
if (!upb_fielddef_isseq(f)) return false;
*s = selector_base - 2;
break;
case UPB_HANDLER_ENDSEQ:
if (!upb_fielddef_isseq(f)) return false;
*s = selector_base - 1;
break;
case UPB_HANDLER_STARTSUBMSG:
if (!upb_fielddef_issubmsg(f)) return false;
/* Selectors for STARTSUBMSG are at the beginning of the table so that the
* selector can also be used as an index into the "sub" array of
* subhandlers. The indexes for the two into these two tables are the
* same, except that in the handler table the static selectors come first. */
*s = upb_fielddef_index(f) + UPB_STATIC_SELECTOR_COUNT;
break;
case UPB_HANDLER_ENDSUBMSG:
if (!upb_fielddef_issubmsg(f)) return false;
*s = selector_base;
break;
}
UPB_ASSERT((size_t)*s < upb_msgdef_selectorcount(upb_fielddef_containingtype(f)));
return true;
}
/* upb_handlercache ***********************************************************/
struct upb_handlercache {
upb_arena *arena;
upb_inttable tab; /* maps upb_msgdef* -> upb_handlers*. */
upb_handlers_callback *callback;
const void *closure;
};
const upb_handlers *upb_handlercache_get(upb_handlercache *c,
const upb_msgdef *md) {
upb_msg_field_iter i;
upb_value v;
upb_handlers *h;
if (upb_inttable_lookupptr(&c->tab, md, &v)) {
return upb_value_getptr(v);
}
h = upb_handlers_new(md, c, c->arena);
v = upb_value_ptr(h);
if (!h) return NULL;
if (!upb_inttable_insertptr(&c->tab, md, v)) return NULL;
c->callback(c->closure, h);
/* For each submessage field, get or create a handlers object and set it as
* the subhandlers. */
for(upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
if (upb_fielddef_issubmsg(f)) {
const upb_msgdef *subdef = upb_fielddef_msgsubdef(f);
const upb_handlers *sub_mh = upb_handlercache_get(c, subdef);
if (!sub_mh) return NULL;
upb_handlers_setsubhandlers(h, f, sub_mh);
}
}
return h;
}
upb_handlercache *upb_handlercache_new(upb_handlers_callback *callback,
const void *closure) {
upb_handlercache *cache = upb_gmalloc(sizeof(*cache));
if (!cache) return NULL;
cache->arena = upb_arena_new();
cache->callback = callback;
cache->closure = closure;
if (!upb_inttable_init(&cache->tab, UPB_CTYPE_PTR)) goto oom;
return cache;
oom:
upb_gfree(cache);
return NULL;
}
void upb_handlercache_free(upb_handlercache *cache) {
upb_inttable_uninit(&cache->tab);
upb_arena_free(cache->arena);
upb_gfree(cache);
}
bool upb_handlercache_addcleanup(upb_handlercache *c, void *p,
upb_handlerfree *func) {
return upb_arena_addcleanup(c->arena, p, func);
}
/* upb_byteshandler ***********************************************************/
bool upb_byteshandler_setstartstr(upb_byteshandler *h,
upb_startstr_handlerfunc *func, void *d) {
h->table[UPB_STARTSTR_SELECTOR].func = (upb_func*)func;
h->table[UPB_STARTSTR_SELECTOR].attr.handler_data = d;
return true;
}
bool upb_byteshandler_setstring(upb_byteshandler *h,
upb_string_handlerfunc *func, void *d) {
h->table[UPB_STRING_SELECTOR].func = (upb_func*)func;
h->table[UPB_STRING_SELECTOR].attr.handler_data = d;
return true;
}
bool upb_byteshandler_setendstr(upb_byteshandler *h,
upb_endfield_handlerfunc *func, void *d) {
h->table[UPB_ENDSTR_SELECTOR].func = (upb_func*)func;
h->table[UPB_ENDSTR_SELECTOR].attr.handler_data = d;
return true;
}
/** Handlers for upb_msg ******************************************************/
typedef struct {
size_t offset;
int32_t hasbit;
} upb_msg_handlerdata;
/* Fallback implementation if the handler is not specialized by the producer. */
#define MSG_WRITER(type, ctype) \
bool upb_msg_set ## type (void *c, const void *hd, ctype val) { \
uint8_t *m = c; \
const upb_msg_handlerdata *d = hd; \
if (d->hasbit > 0) \
*(uint8_t*)&m[d->hasbit / 8] |= 1 << (d->hasbit % 8); \
*(ctype*)&m[d->offset] = val; \
return true; \
} \
MSG_WRITER(double, double)
MSG_WRITER(float, float)
MSG_WRITER(int32, int32_t)
MSG_WRITER(int64, int64_t)
MSG_WRITER(uint32, uint32_t)
MSG_WRITER(uint64, uint64_t)
MSG_WRITER(bool, bool)
bool upb_msg_setscalarhandler(upb_handlers *h, const upb_fielddef *f,
size_t offset, int32_t hasbit) {
upb_handlerattr attr = UPB_HANDLERATTR_INIT;
bool ok;
upb_msg_handlerdata *d = upb_gmalloc(sizeof(*d));
if (!d) return false;
d->offset = offset;
d->hasbit = hasbit;
attr.handler_data = d;
attr.alwaysok = true;
upb_handlers_addcleanup(h, d, upb_gfree);
#define TYPE(u, l) \
case UPB_TYPE_##u: \
ok = upb_handlers_set##l(h, f, upb_msg_set##l, &attr); break;
ok = false;
switch (upb_fielddef_type(f)) {
TYPE(INT64, int64);
TYPE(INT32, int32);
TYPE(ENUM, int32);
TYPE(UINT64, uint64);
TYPE(UINT32, uint32);
TYPE(DOUBLE, double);
TYPE(FLOAT, float);
TYPE(BOOL, bool);
default: UPB_ASSERT(false); break;
}
#undef TYPE
return ok;
}
bool upb_msg_getscalarhandlerdata(const upb_handlers *h,
upb_selector_t s,
upb_fieldtype_t *type,
size_t *offset,
int32_t *hasbit) {
const upb_msg_handlerdata *d;
const void *p;
upb_func *f = upb_handlers_gethandler(h, s, &p);
if ((upb_int64_handlerfunc*)f == upb_msg_setint64) {
*type = UPB_TYPE_INT64;
} else if ((upb_int32_handlerfunc*)f == upb_msg_setint32) {
*type = UPB_TYPE_INT32;
} else if ((upb_uint64_handlerfunc*)f == upb_msg_setuint64) {
*type = UPB_TYPE_UINT64;
} else if ((upb_uint32_handlerfunc*)f == upb_msg_setuint32) {
*type = UPB_TYPE_UINT32;
} else if ((upb_double_handlerfunc*)f == upb_msg_setdouble) {
*type = UPB_TYPE_DOUBLE;
} else if ((upb_float_handlerfunc*)f == upb_msg_setfloat) {
*type = UPB_TYPE_FLOAT;
} else if ((upb_bool_handlerfunc*)f == upb_msg_setbool) {
*type = UPB_TYPE_BOOL;
} else {
return false;
}
d = p;
*offset = d->offset;
*hasbit = d->hasbit;
return true;
}
bool upb_bufsrc_putbuf(const char *buf, size_t len, upb_bytessink sink) {
void *subc;
bool ret;
upb_bufhandle handle = UPB_BUFHANDLE_INIT;
handle.buf = buf;
ret = upb_bytessink_start(sink, len, &subc);
if (ret && len != 0) {
ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len);
}
if (ret) {
ret = upb_bytessink_end(sink);
}
return ret;
}
/*
** protobuf decoder bytecode compiler
**
** Code to compile a upb::Handlers into bytecode for decoding a protobuf
** according to that specific schema and destination handlers.
**
** Bytecode definition is in decoder.int.h.
*/
#include <stdarg.h>
#ifdef UPB_DUMP_BYTECODE
#include <stdio.h>
#endif
#define MAXLABEL 5
#define EMPTYLABEL -1
/* upb_pbdecodermethod ********************************************************/
static void freemethod(upb_pbdecodermethod *method) {
upb_inttable_uninit(&method->dispatch);
upb_gfree(method);
}
static upb_pbdecodermethod *newmethod(const upb_handlers *dest_handlers,
mgroup *group) {
upb_pbdecodermethod *ret = upb_gmalloc(sizeof(*ret));
upb_byteshandler_init(&ret->input_handler_);
ret->group = group;
ret->dest_handlers_ = dest_handlers;
upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64);
return ret;
}
const upb_handlers *upb_pbdecodermethod_desthandlers(
const upb_pbdecodermethod *m) {
return m->dest_handlers_;
}
const upb_byteshandler *upb_pbdecodermethod_inputhandler(
const upb_pbdecodermethod *m) {
return &m->input_handler_;
}
bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m) {
return m->is_native_;
}
/* mgroup *********************************************************************/
static void freegroup(mgroup *g) {
upb_inttable_iter i;
upb_inttable_begin(&i, &g->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
freemethod(upb_value_getptr(upb_inttable_iter_value(&i)));
}
upb_inttable_uninit(&g->methods);
upb_gfree(g->bytecode);
upb_gfree(g);
}
mgroup *newgroup(void) {
mgroup *g = upb_gmalloc(sizeof(*g));
upb_inttable_init(&g->methods, UPB_CTYPE_PTR);
g->bytecode = NULL;
g->bytecode_end = NULL;
return g;
}
/* bytecode compiler **********************************************************/
/* Data used only at compilation time. */
typedef struct {
mgroup *group;
uint32_t *pc;
int fwd_labels[MAXLABEL];
int back_labels[MAXLABEL];
/* For fields marked "lazy", parse them lazily or eagerly? */
bool lazy;
} compiler;
static compiler *newcompiler(mgroup *group, bool lazy) {
compiler *ret = upb_gmalloc(sizeof(*ret));
int i;
ret->group = group;
ret->lazy = lazy;
for (i = 0; i < MAXLABEL; i++) {
ret->fwd_labels[i] = EMPTYLABEL;
ret->back_labels[i] = EMPTYLABEL;
}
return ret;
}
static void freecompiler(compiler *c) {
upb_gfree(c);
}
const size_t ptr_words = sizeof(void*) / sizeof(uint32_t);
/* How many words an instruction is. */
static int instruction_len(uint32_t instr) {
switch (getop(instr)) {
case OP_SETDISPATCH: return 1 + ptr_words;
case OP_TAGN: return 3;
case OP_SETBIGGROUPNUM: return 2;
default: return 1;
}
}
bool op_has_longofs(int32_t instruction) {
switch (getop(instruction)) {
case OP_CALL:
case OP_BRANCH:
case OP_CHECKDELIM:
return true;
/* The "tag" instructions only have 8 bytes available for the jump target,
* but that is ok because these opcodes only require short jumps. */
case OP_TAG1:
case OP_TAG2:
case OP_TAGN:
return false;
default:
UPB_ASSERT(false);
return false;
}
}
static int32_t getofs(uint32_t instruction) {
if (op_has_longofs(instruction)) {
return (int32_t)instruction >> 8;
} else {
return (int8_t)(instruction >> 8);
}
}
static void setofs(uint32_t *instruction, int32_t ofs) {
if (op_has_longofs(*instruction)) {
*instruction = getop(*instruction) | (uint32_t)ofs << 8;
} else {
*instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8);
}
UPB_ASSERT(getofs(*instruction) == ofs); /* Would fail in cases of overflow. */
}
static uint32_t pcofs(compiler *c) { return c->pc - c->group->bytecode; }
/* Defines a local label at the current PC location. All previous forward
* references are updated to point to this location. The location is noted
* for any future backward references. */
static void label(compiler *c, unsigned int label) {
int val;
uint32_t *codep;
UPB_ASSERT(label < MAXLABEL);
val = c->fwd_labels[label];
codep = (val == EMPTYLABEL) ? NULL : c->group->bytecode + val;
while (codep) {
int ofs = getofs(*codep);
setofs(codep, c->pc - codep - instruction_len(*codep));
codep = ofs ? codep + ofs : NULL;
}
c->fwd_labels[label] = EMPTYLABEL;
c->back_labels[label] = pcofs(c);
}
/* Creates a reference to a numbered label; either a forward reference
* (positive arg) or backward reference (negative arg). For forward references
* the value returned now is actually a "next" pointer into a linked list of all
* instructions that use this label and will be patched later when the label is
* defined with label().
*
* The returned value is the offset that should be written into the instruction.
*/
static int32_t labelref(compiler *c, int label) {
UPB_ASSERT(label < MAXLABEL);
if (label == LABEL_DISPATCH) {
/* No resolving required. */
return 0;
} else if (label < 0) {
/* Backward local label. Relative to the next instruction. */
uint32_t from = (c->pc + 1) - c->group->bytecode;
return c->back_labels[-label] - from;
} else {
/* Forward local label: prepend to (possibly-empty) linked list. */
int *lptr = &c->fwd_labels[label];
int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c);
*lptr = pcofs(c);
return ret;
}
}
static void put32(compiler *c, uint32_t v) {
mgroup *g = c->group;
if (c->pc == g->bytecode_end) {
int ofs = pcofs(c);
size_t oldsize = g->bytecode_end - g->bytecode;
size_t newsize = UPB_MAX(oldsize * 2, 64);
/* TODO(haberman): handle OOM. */
g->bytecode = upb_grealloc(g->bytecode, oldsize * sizeof(uint32_t),
newsize * sizeof(uint32_t));
g->bytecode_end = g->bytecode + newsize;
c->pc = g->bytecode + ofs;
}
*c->pc++ = v;
}
static void putop(compiler *c, int op, ...) {
va_list ap;
va_start(ap, op);
switch (op) {
case OP_SETDISPATCH: {
uintptr_t ptr = (uintptr_t)va_arg(ap, void*);
put32(c, OP_SETDISPATCH);
put32(c, ptr);
if (sizeof(uintptr_t) > sizeof(uint32_t))
put32(c, (uint64_t)ptr >> 32);
break;
}
case OP_STARTMSG:
case OP_ENDMSG:
case OP_PUSHLENDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_HALT:
case OP_RET:
case OP_DISPATCH:
put32(c, op);
break;
case OP_PARSE_DOUBLE:
case OP_PARSE_FLOAT:
case OP_PARSE_INT64:
case OP_PARSE_UINT64:
case OP_PARSE_INT32:
case OP_PARSE_FIXED64:
case OP_PARSE_FIXED32:
case OP_PARSE_BOOL:
case OP_PARSE_UINT32:
case OP_PARSE_SFIXED32:
case OP_PARSE_SFIXED64:
case OP_PARSE_SINT32:
case OP_PARSE_SINT64:
case OP_STARTSEQ:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_STRING:
case OP_ENDSTR:
case OP_PUSHTAGDELIM:
put32(c, op | va_arg(ap, upb_selector_t) << 8);
break;
case OP_SETBIGGROUPNUM:
put32(c, op);
put32(c, va_arg(ap, int));
break;
case OP_CALL: {
const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *);
put32(c, op | (method->code_base.ofs - (pcofs(c) + 1)) << 8);
break;
}
case OP_CHECKDELIM:
case OP_BRANCH: {
uint32_t instruction = op;
int label = va_arg(ap, int);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
break;
}
case OP_TAG1:
case OP_TAG2: {
int label = va_arg(ap, int);
uint64_t tag = va_arg(ap, uint64_t);
uint32_t instruction = op | (tag << 16);
UPB_ASSERT(tag <= 0xffff);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
break;
}
case OP_TAGN: {
int label = va_arg(ap, int);
uint64_t tag = va_arg(ap, uint64_t);
uint32_t instruction = op | (upb_value_size(tag) << 16);
setofs(&instruction, labelref(c, label));
put32(c, instruction);
put32(c, tag);
put32(c, tag >> 32);
break;
}
}
va_end(ap);
}
#if defined(UPB_DUMP_BYTECODE)
const char *upb_pbdecoder_getopname(unsigned int op) {
#define QUOTE(x) #x
#define EXPAND_AND_QUOTE(x) QUOTE(x)
#define OPNAME(x) OP_##x
#define OP(x) case OPNAME(x): return EXPAND_AND_QUOTE(OPNAME(x));
#define T(x) OP(PARSE_##x)
/* Keep in sync with list in decoder.int.h. */
switch ((opcode)op) {
T(DOUBLE) T(FLOAT) T(INT64) T(UINT64) T(INT32) T(FIXED64) T(FIXED32)
T(BOOL) T(UINT32) T(SFIXED32) T(SFIXED64) T(SINT32) T(SINT64)
OP(STARTMSG) OP(ENDMSG) OP(STARTSEQ) OP(ENDSEQ) OP(STARTSUBMSG)
OP(ENDSUBMSG) OP(STARTSTR) OP(STRING) OP(ENDSTR) OP(CALL) OP(RET)
OP(PUSHLENDELIM) OP(PUSHTAGDELIM) OP(SETDELIM) OP(CHECKDELIM)
OP(BRANCH) OP(TAG1) OP(TAG2) OP(TAGN) OP(SETDISPATCH) OP(POP)
OP(SETBIGGROUPNUM) OP(DISPATCH) OP(HALT)
}
return "<unknown op>";
#undef OP
#undef T
}
#endif
#ifdef UPB_DUMP_BYTECODE
static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) {
uint32_t *begin = p;
while (p < end) {
fprintf(f, "%p %8tx", p, p - begin);
uint32_t instr = *p++;
uint8_t op = getop(instr);
fprintf(f, " %s", upb_pbdecoder_getopname(op));
switch ((opcode)op) {
case OP_SETDISPATCH: {
const upb_inttable *dispatch;
memcpy(&dispatch, p, sizeof(void*));
p += ptr_words;
const upb_pbdecodermethod *method =
(void *)((char *)dispatch -
offsetof(upb_pbdecodermethod, dispatch));
fprintf(f, " %s", upb_msgdef_fullname(
upb_handlers_msgdef(method->dest_handlers_)));
break;
}
case OP_DISPATCH:
case OP_STARTMSG:
case OP_ENDMSG:
case OP_PUSHLENDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_HALT:
case OP_RET:
break;
case OP_PARSE_DOUBLE:
case OP_PARSE_FLOAT:
case OP_PARSE_INT64:
case OP_PARSE_UINT64:
case OP_PARSE_INT32:
case OP_PARSE_FIXED64:
case OP_PARSE_FIXED32:
case OP_PARSE_BOOL:
case OP_PARSE_UINT32:
case OP_PARSE_SFIXED32:
case OP_PARSE_SFIXED64:
case OP_PARSE_SINT32:
case OP_PARSE_SINT64:
case OP_STARTSEQ:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_STRING:
case OP_ENDSTR:
case OP_PUSHTAGDELIM:
fprintf(f, " %d", instr >> 8);
break;
case OP_SETBIGGROUPNUM:
fprintf(f, " %d", *p++);
break;
case OP_CHECKDELIM:
case OP_CALL:
case OP_BRANCH:
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
break;
case OP_TAG1:
case OP_TAG2: {
fprintf(f, " tag:0x%x", instr >> 16);
if (getofs(instr)) {
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
}
break;
}
case OP_TAGN: {
uint64_t tag = *p++;
tag |= (uint64_t)*p++ << 32;
fprintf(f, " tag:0x%llx", (long long)tag);
fprintf(f, " n:%d", instr >> 16);
if (getofs(instr)) {
fprintf(f, " =>0x%tx", p + getofs(instr) - begin);
}
break;
}
}
fputs("\n", f);
}
}
#endif
static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) {
uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type;
uint64_t encoded_tag = upb_vencode32(tag);
/* No tag should be greater than 5 bytes. */
UPB_ASSERT(encoded_tag <= 0xffffffffff);
return encoded_tag;
}
static void putchecktag(compiler *c, const upb_fielddef *f,
int wire_type, int dest) {
uint64_t tag = get_encoded_tag(f, wire_type);
switch (upb_value_size(tag)) {
case 1:
putop(c, OP_TAG1, dest, tag);
break;
case 2:
putop(c, OP_TAG2, dest, tag);
break;
default:
putop(c, OP_TAGN, dest, tag);
break;
}
}
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
upb_selector_t selector;
bool ok = upb_handlers_getselector(f, type, &selector);
UPB_ASSERT(ok);
return selector;
}
/* Takes an existing, primary dispatch table entry and repacks it with a
* different alternate wire type. Called when we are inserting a secondary
* dispatch table entry for an alternate wire type. */
static uint64_t repack(uint64_t dispatch, int new_wt2) {
uint64_t ofs;
uint8_t wt1;
uint8_t old_wt2;
upb_pbdecoder_unpackdispatch(dispatch, &ofs, &wt1, &old_wt2);
UPB_ASSERT(old_wt2 == NO_WIRE_TYPE); /* wt2 should not be set yet. */
return upb_pbdecoder_packdispatch(ofs, wt1, new_wt2);
}
/* Marks the current bytecode position as the dispatch target for this message,
* field, and wire type. */
static void dispatchtarget(compiler *c, upb_pbdecodermethod *method,
const upb_fielddef *f, int wire_type) {
/* Offset is relative to msg base. */
uint64_t ofs = pcofs(c) - method->code_base.ofs;
uint32_t fn = upb_fielddef_number(f);
upb_inttable *d = &method->dispatch;
upb_value v;
if (upb_inttable_remove(d, fn, &v)) {
/* TODO: prioritize based on packed setting in .proto file. */
uint64_t repacked = repack(upb_value_getuint64(v), wire_type);
upb_inttable_insert(d, fn, upb_value_uint64(repacked));
upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs));
} else {
uint64_t val = upb_pbdecoder_packdispatch(ofs, wire_type, NO_WIRE_TYPE);
upb_inttable_insert(d, fn, upb_value_uint64(val));
}
}
static void putpush(compiler *c, const upb_fielddef *f) {
if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) {
putop(c, OP_PUSHLENDELIM);
} else {
uint32_t fn = upb_fielddef_number(f);
if (fn >= 1 << 24) {
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_SETBIGGROUPNUM, fn);
} else {
putop(c, OP_PUSHTAGDELIM, fn);
}
}
}
static upb_pbdecodermethod *find_submethod(const compiler *c,
const upb_pbdecodermethod *method,
const upb_fielddef *f) {
const upb_handlers *sub =
upb_handlers_getsubhandlers(method->dest_handlers_, f);
upb_value v;
return upb_inttable_lookupptr(&c->group->methods, sub, &v)
? upb_value_getptr(v)
: NULL;
}
static void putsel(compiler *c, opcode op, upb_selector_t sel,
const upb_handlers *h) {
if (upb_handlers_gethandler(h, sel, NULL)) {
putop(c, op, sel);
}
}
/* Puts an opcode to call a callback, but only if a callback actually exists for
* this field and handler type. */
static void maybeput(compiler *c, opcode op, const upb_handlers *h,
const upb_fielddef *f, upb_handlertype_t type) {
putsel(c, op, getsel(f, type), h);
}
static bool haslazyhandlers(const upb_handlers *h, const upb_fielddef *f) {
if (!upb_fielddef_lazy(f))
return false;
return upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STARTSTR), NULL) ||
upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STRING), NULL) ||
upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_ENDSTR), NULL);
}
/* bytecode compiler code generation ******************************************/
/* Symbolic names for our local labels. */
#define LABEL_LOOPSTART 1 /* Top of a repeated field loop. */
#define LABEL_LOOPBREAK 2 /* To jump out of a repeated loop */
#define LABEL_FIELD 3 /* Jump backward to find the most recent field. */
#define LABEL_ENDMSG 4 /* To reach the OP_ENDMSG instr for this msg. */
/* Generates bytecode to parse a single non-lazy message field. */
static void generate_msgfield(compiler *c, const upb_fielddef *f,
upb_pbdecodermethod *method) {
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
const upb_pbdecodermethod *sub_m = find_submethod(c, method, f);
int wire_type;
if (!sub_m) {
/* Don't emit any code for this field at all; it will be parsed as an
* unknown field.
*
* TODO(haberman): we should change this to parse it as a string field
* instead. It will probably be faster, but more importantly, once we
* start vending unknown fields, a field shouldn't be treated as unknown
* just because it doesn't have subhandlers registered. */
return;
}
label(c, LABEL_FIELD);
wire_type =
(upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE)
? UPB_WIRE_TYPE_DELIMITED
: UPB_WIRE_TYPE_START_GROUP;
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
label(c, LABEL_LOOPSTART);
putpush(c, f);
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
putop(c, OP_CALL, sub_m);
putop(c, OP_POP);
maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG);
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
putop(c, OP_SETDELIM);
}
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP);
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putpush(c, f);
putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG));
putop(c, OP_CALL, sub_m);
putop(c, OP_POP);
maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG);
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
putop(c, OP_SETDELIM);
}
}
}
/* Generates bytecode to parse a single string or lazy submessage field. */
static void generate_delimfield(compiler *c, const upb_fielddef *f,
upb_pbdecodermethod *method) {
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
label(c, LABEL_FIELD);
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ));
label(c, LABEL_LOOPSTART);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
/* Need to emit even if no handler to skip past the string. */
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR);
putop(c, OP_POP);
putop(c, OP_SETDELIM);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP);
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR));
putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING));
maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR);
putop(c, OP_POP);
putop(c, OP_SETDELIM);
}
}
/* Generates bytecode to parse a single primitive field. */
static void generate_primitivefield(compiler *c, const upb_fielddef *f,
upb_pbdecodermethod *method) {
const upb_handlers *h = upb_pbdecodermethod_desthandlers(method);
upb_descriptortype_t descriptor_type = upb_fielddef_descriptortype(f);
opcode parse_type;
upb_selector_t sel;
int wire_type;
label(c, LABEL_FIELD);
/* From a decoding perspective, ENUM is the same as INT32. */
if (descriptor_type == UPB_DESCRIPTOR_TYPE_ENUM)
descriptor_type = UPB_DESCRIPTOR_TYPE_INT32;
parse_type = (opcode)descriptor_type;
/* TODO(haberman): generate packed or non-packed first depending on "packed"
* setting in the fielddef. This will favor (in speed) whichever was
* specified. */
UPB_ASSERT((int)parse_type >= 0 && parse_type <= OP_MAX);
sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
wire_type = upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];
if (upb_fielddef_isseq(f)) {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH);
dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED);
putop(c, OP_PUSHLENDELIM);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Packed */
label(c, LABEL_LOOPSTART);
putop(c, parse_type, sel);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
dispatchtarget(c, method, f, wire_type);
putop(c, OP_PUSHTAGDELIM, 0);
putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Non-packed */
label(c, LABEL_LOOPSTART);
putop(c, parse_type, sel);
putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK);
putchecktag(c, f, wire_type, LABEL_LOOPBREAK);
putop(c, OP_BRANCH, -LABEL_LOOPSTART);
label(c, LABEL_LOOPBREAK);
putop(c, OP_POP); /* Packed and non-packed join. */
maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ);
putop(c, OP_SETDELIM); /* Could remove for non-packed by dup ENDSEQ. */
} else {
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
putchecktag(c, f, wire_type, LABEL_DISPATCH);
dispatchtarget(c, method, f, wire_type);
putop(c, parse_type, sel);
}
}
/* Adds bytecode for parsing the given message to the given decoderplan,
* while adding all dispatch targets to this message's dispatch table. */
static void compile_method(compiler *c, upb_pbdecodermethod *method) {
const upb_handlers *h;
const upb_msgdef *md;
uint32_t* start_pc;
upb_msg_field_iter i;
upb_value val;
UPB_ASSERT(method);
/* Clear all entries in the dispatch table. */
upb_inttable_uninit(&method->dispatch);
upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64);
h = upb_pbdecodermethod_desthandlers(method);
md = upb_handlers_msgdef(h);
method->code_base.ofs = pcofs(c);
putop(c, OP_SETDISPATCH, &method->dispatch);
putsel(c, OP_STARTMSG, UPB_STARTMSG_SELECTOR, h);
label(c, LABEL_FIELD);
start_pc = c->pc;
for(upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
upb_fieldtype_t type = upb_fielddef_type(f);
if (type == UPB_TYPE_MESSAGE && !(haslazyhandlers(h, f) && c->lazy)) {
generate_msgfield(c, f, method);
} else if (type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES ||
type == UPB_TYPE_MESSAGE) {
generate_delimfield(c, f, method);
} else {
generate_primitivefield(c, f, method);
}
}
/* If there were no fields, or if no handlers were defined, we need to
* generate a non-empty loop body so that we can at least dispatch for unknown
* fields and check for the end of the message. */
if (c->pc == start_pc) {
/* Check for end-of-message. */
putop(c, OP_CHECKDELIM, LABEL_ENDMSG);
/* Unconditionally dispatch. */
putop(c, OP_DISPATCH, 0);
}
/* For now we just loop back to the last field of the message (or if none,
* the DISPATCH opcode for the message). */
putop(c, OP_BRANCH, -LABEL_FIELD);
/* Insert both a label and a dispatch table entry for this end-of-msg. */
label(c, LABEL_ENDMSG);
val = upb_value_uint64(pcofs(c) - method->code_base.ofs);
upb_inttable_insert(&method->dispatch, DISPATCH_ENDMSG, val);
putsel(c, OP_ENDMSG, UPB_ENDMSG_SELECTOR, h);
putop(c, OP_RET);
upb_inttable_compact(&method->dispatch);
}
/* Populate "methods" with new upb_pbdecodermethod objects reachable from "h".
* Returns the method for these handlers.
*
* Generates a new method for every destination handlers reachable from "h". */
static void find_methods(compiler *c, const upb_handlers *h) {
upb_value v;
upb_msg_field_iter i;
const upb_msgdef *md;
upb_pbdecodermethod *method;
if (upb_inttable_lookupptr(&c->group->methods, h, &v))
return;
method = newmethod(h, c->group);
upb_inttable_insertptr(&c->group->methods, h, upb_value_ptr(method));
/* Find submethods. */
md = upb_handlers_msgdef(h);
for(upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
const upb_handlers *sub_h;
if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE &&
(sub_h = upb_handlers_getsubhandlers(h, f)) != NULL) {
/* We only generate a decoder method for submessages with handlers.
* Others will be parsed as unknown fields. */
find_methods(c, sub_h);
}
}
}
/* (Re-)compile bytecode for all messages in "msgs."
* Overwrites any existing bytecode in "c". */
static void compile_methods(compiler *c) {
upb_inttable_iter i;
/* Start over at the beginning of the bytecode. */
c->pc = c->group->bytecode;
upb_inttable_begin(&i, &c->group->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i));
compile_method(c, method);
}
}
static void set_bytecode_handlers(mgroup *g) {
upb_inttable_iter i;
upb_inttable_begin(&i, &g->methods);
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
upb_pbdecodermethod *m = upb_value_getptr(upb_inttable_iter_value(&i));
upb_byteshandler *h = &m->input_handler_;
m->code_base.ptr = g->bytecode + m->code_base.ofs;
upb_byteshandler_setstartstr(h, upb_pbdecoder_startbc, m->code_base.ptr);
upb_byteshandler_setstring(h, upb_pbdecoder_decode, g);
upb_byteshandler_setendstr(h, upb_pbdecoder_end, m);
}
}
/* TODO(haberman): allow this to be constructed for an arbitrary set of dest
* handlers and other mgroups (but verify we have a transitive closure). */
const mgroup *mgroup_new(const upb_handlers *dest, bool allowjit, bool lazy) {
mgroup *g;
compiler *c;
UPB_UNUSED(allowjit);
g = newgroup();
c = newcompiler(g, lazy);
find_methods(c, dest);
/* We compile in two passes:
* 1. all messages are assigned relative offsets from the beginning of the
* bytecode (saved in method->code_base).
* 2. forwards OP_CALL instructions can be correctly linked since message
* offsets have been previously assigned.
*
* Could avoid the second pass by linking OP_CALL instructions somehow. */
compile_methods(c);
compile_methods(c);
g->bytecode_end = c->pc;
freecompiler(c);
#ifdef UPB_DUMP_BYTECODE
{
FILE *f = fopen("/tmp/upb-bytecode", "w");
UPB_ASSERT(f);
dumpbc(g->bytecode, g->bytecode_end, stderr);
dumpbc(g->bytecode, g->bytecode_end, f);
fclose(f);
f = fopen("/tmp/upb-bytecode.bin", "wb");
UPB_ASSERT(f);
fwrite(g->bytecode, 1, g->bytecode_end - g->bytecode, f);
fclose(f);
}
#endif
set_bytecode_handlers(g);
return g;
}
/* upb_pbcodecache ************************************************************/
upb_pbcodecache *upb_pbcodecache_new(upb_handlercache *dest) {
upb_pbcodecache *c = upb_gmalloc(sizeof(*c));
if (!c) return NULL;
c->dest = dest;
c->allow_jit = true;
c->lazy = false;
c->arena = upb_arena_new();
if (!upb_inttable_init(&c->groups, UPB_CTYPE_CONSTPTR)) return NULL;
return c;
}
void upb_pbcodecache_free(upb_pbcodecache *c) {
size_t i;
for (i = 0; i < upb_inttable_count(&c->groups); i++) {
upb_value v;
bool ok = upb_inttable_lookup(&c->groups, i, &v);
UPB_ASSERT(ok);
freegroup((void*)upb_value_getconstptr(v));
}
upb_inttable_uninit(&c->groups);
upb_arena_free(c->arena);
upb_gfree(c);
}
bool upb_pbcodecache_allowjit(const upb_pbcodecache *c) {
return c->allow_jit;
}
void upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow) {
UPB_ASSERT(upb_inttable_count(&c->groups) == 0);
c->allow_jit = allow;
}
void upb_pbdecodermethodopts_setlazy(upb_pbcodecache *c, bool lazy) {
UPB_ASSERT(upb_inttable_count(&c->groups) == 0);
c->lazy = lazy;
}
const upb_pbdecodermethod *upb_pbcodecache_get(upb_pbcodecache *c,
const upb_msgdef *md) {
upb_value v;
bool ok;
const upb_handlers *h;
const mgroup *g;
/* Right now we build a new DecoderMethod every time.
* TODO(haberman): properly cache methods by their true key. */
h = upb_handlercache_get(c->dest, md);
g = mgroup_new(h, c->allow_jit, c->lazy);
upb_inttable_push(&c->groups, upb_value_constptr(g));
ok = upb_inttable_lookupptr(&g->methods, h, &v);
UPB_ASSERT(ok);
return upb_value_getptr(v);
}
/*
** upb::Decoder (Bytecode Decoder VM)
**
** Bytecode must previously have been generated using the bytecode compiler in
** compile_decoder.c. This decoder then walks through the bytecode op-by-op to
** parse the input.
**
** Decoding is fully resumable; we just keep a pointer to the current bytecode
** instruction and resume from there. A fair amount of the logic here is to
** handle the fact that values can span buffer seams and we have to be able to
** be capable of suspending/resuming from any byte in the stream. This
** sometimes requires keeping a few trailing bytes from the last buffer around
** in the "residual" buffer.
*/
#include <inttypes.h>
#include <stddef.h>
#ifdef UPB_DUMP_BYTECODE
#include <stdio.h>
#endif
#define CHECK_SUSPEND(x) if (!(x)) return upb_pbdecoder_suspend(d);
/* Error messages that are shared between the bytecode and JIT decoders. */
const char *kPbDecoderStackOverflow = "Nesting too deep.";
const char *kPbDecoderSubmessageTooLong =
"Submessage end extends past enclosing submessage.";
/* Error messages shared within this file. */
static const char *kUnterminatedVarint = "Unterminated varint.";
/* upb_pbdecoder **************************************************************/
static opcode halt = OP_HALT;
/* A dummy character we can point to when the user passes us a NULL buffer.
* We need this because in C (NULL + 0) and (NULL - NULL) are undefined
* behavior, which would invalidate functions like curbufleft(). */
static const char dummy_char;
/* Whether an op consumes any of the input buffer. */
static bool consumes_input(opcode op) {
switch (op) {
case OP_SETDISPATCH:
case OP_STARTMSG:
case OP_ENDMSG:
case OP_STARTSEQ:
case OP_ENDSEQ:
case OP_STARTSUBMSG:
case OP_ENDSUBMSG:
case OP_STARTSTR:
case OP_ENDSTR:
case OP_PUSHTAGDELIM:
case OP_POP:
case OP_SETDELIM:
case OP_SETBIGGROUPNUM:
case OP_CHECKDELIM:
case OP_CALL:
case OP_RET:
case OP_BRANCH:
return false;
default:
return true;
}
}
static size_t stacksize(upb_pbdecoder *d, size_t entries) {
UPB_UNUSED(d);
return entries * sizeof(upb_pbdecoder_frame);
}
static size_t callstacksize(upb_pbdecoder *d, size_t entries) {
UPB_UNUSED(d);
#ifdef UPB_USE_JIT_X64
if (d->method_->is_native_) {
/* Each native stack frame needs two pointers, plus we need a few frames for
* the enter/exit trampolines. */
size_t ret = entries * sizeof(void*) * 2;
ret += sizeof(void*) * 10;
return ret;
}
#endif
return entries * sizeof(uint32_t*);
}
static bool in_residual_buf(const upb_pbdecoder *d, const char *p);
/* It's unfortunate that we have to micro-manage the compiler with
* UPB_FORCEINLINE and UPB_NOINLINE, especially since this tuning is necessarily
* specific to one hardware configuration. But empirically on a Core i7,
* performance increases 30-50% with these annotations. Every instance where
* these appear, gcc 4.2.1 made the wrong decision and degraded performance in
* benchmarks. */
static void seterr(upb_pbdecoder *d, const char *msg) {
upb_status_seterrmsg(d->status, msg);
}
void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg) {
seterr(d, msg);
}
/* Buffering ******************************************************************/
/* We operate on one buffer at a time, which is either the user's buffer passed
* to our "decode" callback or some residual bytes from the previous buffer. */
/* How many bytes can be safely read from d->ptr without reading past end-of-buf
* or past the current delimited end. */
static size_t curbufleft(const upb_pbdecoder *d) {
UPB_ASSERT(d->data_end >= d->ptr);
return d->data_end - d->ptr;
}
/* How many bytes are available before end-of-buffer. */
static size_t bufleft(const upb_pbdecoder *d) {
return d->end - d->ptr;
}
/* Overall stream offset of d->ptr. */
uint64_t offset(const upb_pbdecoder *d) {
return d->bufstart_ofs + (d->ptr - d->buf);
}
/* How many bytes are available before the end of this delimited region. */
size_t delim_remaining(const upb_pbdecoder *d) {
return d->top->end_ofs - offset(d);
}
/* Advances d->ptr. */
static void advance(upb_pbdecoder *d, size_t len) {
UPB_ASSERT(curbufleft(d) >= len);
d->ptr += len;
}
static bool in_buf(const char *p, const char *buf, const char *end) {
return p >= buf && p <= end;
}
static bool in_residual_buf(const upb_pbdecoder *d, const char *p) {
return in_buf(p, d->residual, d->residual_end);
}
/* Calculates the delim_end value, which is affected by both the current buffer
* and the parsing stack, so must be called whenever either is updated. */
static void set_delim_end(upb_pbdecoder *d) {
size_t delim_ofs = d->top->end_ofs - d->bufstart_ofs;
if (delim_ofs <= (size_t)(d->end - d->buf)) {
d->delim_end = d->buf + delim_ofs;
d->data_end = d->delim_end;
} else {
d->data_end = d->end;
d->delim_end = NULL;
}
}
static void switchtobuf(upb_pbdecoder *d, const char *buf, const char *end) {
d->ptr = buf;
d->buf = buf;
d->end = end;
set_delim_end(d);
}
static void advancetobuf(upb_pbdecoder *d, const char *buf, size_t len) {
UPB_ASSERT(curbufleft(d) == 0);
d->bufstart_ofs += (d->end - d->buf);
switchtobuf(d, buf, buf + len);
}
static void checkpoint(upb_pbdecoder *d) {
/* The assertion here is in the interests of efficiency, not correctness.
* We are trying to ensure that we don't checkpoint() more often than
* necessary. */
UPB_ASSERT(d->checkpoint != d->ptr);
d->checkpoint = d->ptr;
}
/* Skips "bytes" bytes in the stream, which may be more than available. If we
* skip more bytes than are available, we return a long read count to the caller
* indicating how many bytes can be skipped over before passing actual data
* again. Skipped bytes can pass a NULL buffer and the decoder guarantees they
* won't actually be read.
*/
static int32_t skip(upb_pbdecoder *d, size_t bytes) {
UPB_ASSERT(!in_residual_buf(d, d->ptr) || d->size_param == 0);
UPB_ASSERT(d->skip == 0);
if (bytes > delim_remaining(d)) {
seterr(d, "Skipped value extended beyond enclosing submessage.");
return upb_pbdecoder_suspend(d);
} else if (bufleft(d) >= bytes) {
/* Skipped data is all in current buffer, and more is still available. */
advance(d, bytes);
d->skip = 0;
return DECODE_OK;
} else {
/* Skipped data extends beyond currently available buffers. */
d->pc = d->last;
d->skip = bytes - curbufleft(d);
d->bufstart_ofs += (d->end - d->buf);
d->residual_end = d->residual;
switchtobuf(d, d->residual, d->residual_end);
return d->size_param + d->skip;
}
}
/* Resumes the decoder from an initial state or from a previous suspend. */
int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
size_t size, const upb_bufhandle *handle) {
UPB_UNUSED(p); /* Useless; just for the benefit of the JIT. */
/* d->skip and d->residual_end could probably elegantly be represented
* as a single variable, to more easily represent this invariant. */
UPB_ASSERT(!(d->skip && d->residual_end > d->residual));
/* We need to remember the original size_param, so that the value we return
* is relative to it, even if we do some skipping first. */
d->size_param = size;
d->handle = handle;
/* Have to handle this case specially (ie. not with skip()) because the user
* is allowed to pass a NULL buffer here, which won't allow us to safely
* calculate a d->end or use our normal functions like curbufleft(). */
if (d->skip && d->skip >= size) {
d->skip -= size;
d->bufstart_ofs += size;
buf = &dummy_char;
size = 0;
/* We can't just return now, because we might need to execute some ops
* like CHECKDELIM, which could call some callbacks and pop the stack. */
}
/* We need to pretend that this was the actual buffer param, since some of the
* calculations assume that d->ptr/d->buf is relative to this. */
d->buf_param = buf;
if (!buf) {
/* NULL buf is ok if its entire span is covered by the "skip" above, but
* by this point we know that "skip" doesn't cover the buffer. */
seterr(d, "Passed NULL buffer over non-skippable region.");
return upb_pbdecoder_suspend(d);
}
if (d->residual_end > d->residual) {
/* We have residual bytes from the last buffer. */
UPB_ASSERT(d->ptr == d->residual);
} else {
switchtobuf(d, buf, buf + size);
}
d->checkpoint = d->ptr;
/* Handle skips that don't cover the whole buffer (as above). */
if (d->skip) {
size_t skip_bytes = d->skip;
d->skip = 0;
CHECK_RETURN(skip(d, skip_bytes));
checkpoint(d);
}
/* If we're inside an unknown group, continue to parse unknown values. */
if (d->top->groupnum < 0) {
CHECK_RETURN(upb_pbdecoder_skipunknown(d, -1, 0));
checkpoint(d);
}
return DECODE_OK;
}
/* Suspends the decoder at the last checkpoint, without saving any residual
* bytes. If there are any unconsumed bytes, returns a short byte count. */
size_t upb_pbdecoder_suspend(upb_pbdecoder *d) {
d->pc = d->last;
if (d->checkpoint == d->residual) {
/* Checkpoint was in residual buf; no user bytes were consumed. */
d->ptr = d->residual;
return 0;
} else {
size_t ret = d->size_param - (d->end - d->checkpoint);
UPB_ASSERT(!in_residual_buf(d, d->checkpoint));
UPB_ASSERT(d->buf == d->buf_param || d->buf == &dummy_char);
d->bufstart_ofs += (d->checkpoint - d->buf);
d->residual_end = d->residual;
switchtobuf(d, d->residual, d->residual_end);
return ret;
}
}
/* Suspends the decoder at the last checkpoint, and saves any unconsumed
* bytes in our residual buffer. This is necessary if we need more user
* bytes to form a complete value, which might not be contiguous in the
* user's buffers. Always consumes all user bytes. */
static size_t suspend_save(upb_pbdecoder *d) {
/* We hit end-of-buffer before we could parse a full value.
* Save any unconsumed bytes (if any) to the residual buffer. */
d->pc = d->last;
if (d->checkpoint == d->residual) {
/* Checkpoint was in residual buf; append user byte(s) to residual buf. */
UPB_ASSERT((d->residual_end - d->residual) + d->size_param <=
sizeof(d->residual));
if (!in_residual_buf(d, d->ptr)) {
d->bufstart_ofs -= (d->residual_end - d->residual);
}
memcpy(d->residual_end, d->buf_param, d->size_param);
d->residual_end += d->size_param;
} else {
/* Checkpoint was in user buf; old residual bytes not needed. */
size_t save;
UPB_ASSERT(!in_residual_buf(d, d->checkpoint));
d->ptr = d->checkpoint;
save = curbufleft(d);
UPB_ASSERT(save <= sizeof(d->residual));
memcpy(d->residual, d->ptr, save);
d->residual_end = d->residual + save;
d->bufstart_ofs = offset(d);
}
switchtobuf(d, d->residual, d->residual_end);
return d->size_param;
}
/* Copies the next "bytes" bytes into "buf" and advances the stream.
* Requires that this many bytes are available in the current buffer. */
UPB_FORCEINLINE static void consumebytes(upb_pbdecoder *d, void *buf,
size_t bytes) {
UPB_ASSERT(bytes <= curbufleft(d));
memcpy(buf, d->ptr, bytes);
advance(d, bytes);
}
/* Slow path for getting the next "bytes" bytes, regardless of whether they are
* available in the current buffer or not. Returns a status code as described
* in decoder.int.h. */
UPB_NOINLINE static int32_t getbytes_slow(upb_pbdecoder *d, void *buf,
size_t bytes) {
const size_t avail = curbufleft(d);
consumebytes(d, buf, avail);
bytes -= avail;
UPB_ASSERT(bytes > 0);
if (in_residual_buf(d, d->ptr)) {
advancetobuf(d, d->buf_param, d->size_param);
}
if (curbufleft(d) >= bytes) {
consumebytes(d, (char *)buf + avail, bytes);
return DECODE_OK;
} else if (d->data_end == d->delim_end) {
seterr(d, "Submessage ended in the middle of a value or group");
return upb_pbdecoder_suspend(d);
} else {
return suspend_save(d);
}
}
/* Gets the next "bytes" bytes, regardless of whether they are available in the
* current buffer or not. Returns a status code as described in decoder.int.h.
*/
UPB_FORCEINLINE static int32_t getbytes(upb_pbdecoder *d, void *buf,
size_t bytes) {
if (curbufleft(d) >= bytes) {
/* Buffer has enough data to satisfy. */
consumebytes(d, buf, bytes);
return DECODE_OK;
} else {
return getbytes_slow(d, buf, bytes);
}
}
UPB_NOINLINE static size_t peekbytes_slow(upb_pbdecoder *d, void *buf,
size_t bytes) {
size_t ret = curbufleft(d);
memcpy(buf, d->ptr, ret);
if (in_residual_buf(d, d->ptr)) {
size_t copy = UPB_MIN(bytes - ret, d->size_param);
memcpy((char *)buf + ret, d->buf_param, copy);
ret += copy;
}
return ret;
}
UPB_FORCEINLINE static size_t peekbytes(upb_pbdecoder *d, void *buf,
size_t bytes) {
if (curbufleft(d) >= bytes) {
memcpy(buf, d->ptr, bytes);
return bytes;
} else {
return peekbytes_slow(d, buf, bytes);
}
}
/* Decoding of wire types *****************************************************/
/* Slow path for decoding a varint from the current buffer position.
* Returns a status code as described in decoder.int.h. */
UPB_NOINLINE int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d,
uint64_t *u64) {
uint8_t byte = 0x80;
int bitpos;
*u64 = 0;
for(bitpos = 0; bitpos < 70 && (byte & 0x80); bitpos += 7) {
CHECK_RETURN(getbytes(d, &byte, 1));
*u64 |= (uint64_t)(byte & 0x7F) << bitpos;
}
if(bitpos == 70 && (byte & 0x80)) {
seterr(d, kUnterminatedVarint);
return upb_pbdecoder_suspend(d);
}
return DECODE_OK;
}
/* Decodes a varint from the current buffer position.
* Returns a status code as described in decoder.int.h. */
UPB_FORCEINLINE static int32_t decode_varint(upb_pbdecoder *d, uint64_t *u64) {
if (curbufleft(d) > 0 && !(*d->ptr & 0x80)) {
*u64 = *d->ptr;
advance(d, 1);
return DECODE_OK;
} else if (curbufleft(d) >= 10) {
/* Fast case. */
upb_decoderet r = upb_vdecode_fast(d->ptr);
if (r.p == NULL) {
seterr(d, kUnterminatedVarint);
return upb_pbdecoder_suspend(d);
}
advance(d, r.p - d->ptr);
*u64 = r.val;
return DECODE_OK;
} else {
/* Slow case -- varint spans buffer seam. */
return upb_pbdecoder_decode_varint_slow(d, u64);
}
}
/* Decodes a 32-bit varint from the current buffer position.
* Returns a status code as described in decoder.int.h. */
UPB_FORCEINLINE static int32_t decode_v32(upb_pbdecoder *d, uint32_t *u32) {
uint64_t u64;
int32_t ret = decode_varint(d, &u64);
if (ret >= 0) return ret;
if (u64 > UINT32_MAX) {
seterr(d, "Unterminated 32-bit varint");
/* TODO(haberman) guarantee that this function return is >= 0 somehow,
* so we know this path will always be treated as error by our caller.
* Right now the size_t -> int32_t can overflow and produce negative values.
*/
*u32 = 0;
return upb_pbdecoder_suspend(d);
}
*u32 = u64;
return DECODE_OK;
}
/* Decodes a fixed32 from the current buffer position.
* Returns a status code as described in decoder.int.h.
* TODO: proper byte swapping for big-endian machines. */
UPB_FORCEINLINE static int32_t decode_fixed32(upb_pbdecoder *d, uint32_t *u32) {
return getbytes(d, u32, 4);
}
/* Decodes a fixed64 from the current buffer position.
* Returns a status code as described in decoder.int.h.
* TODO: proper byte swapping for big-endian machines. */
UPB_FORCEINLINE static int32_t decode_fixed64(upb_pbdecoder *d, uint64_t *u64) {
return getbytes(d, u64, 8);
}
/* Non-static versions of the above functions.
* These are called by the JIT for fallback paths. */
int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32) {
return decode_fixed32(d, u32);
}
int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64) {
return decode_fixed64(d, u64);
}
static double as_double(uint64_t n) { double d; memcpy(&d, &n, 8); return d; }
static float as_float(uint32_t n) { float f; memcpy(&f, &n, 4); return f; }
/* Pushes a frame onto the decoder stack. */
static bool decoder_push(upb_pbdecoder *d, uint64_t end) {
upb_pbdecoder_frame *fr = d->top;
if (end > fr->end_ofs) {
seterr(d, kPbDecoderSubmessageTooLong);
return false;
} else if (fr == d->limit) {
seterr(d, kPbDecoderStackOverflow);
return false;
}
fr++;
fr->end_ofs = end;
fr->dispatch = NULL;
fr->groupnum = 0;
d->top = fr;
return true;
}
static bool pushtagdelim(upb_pbdecoder *d, uint32_t arg) {
/* While we expect to see an "end" tag (either ENDGROUP or a non-sequence
* field number) prior to hitting any enclosing submessage end, pushing our
* existing delim end prevents us from continuing to parse values from a
* corrupt proto that doesn't give us an END tag in time. */
if (!decoder_push(d, d->top->end_ofs))
return false;
d->top->groupnum = arg;
return true;
}
/* Pops a frame from the decoder stack. */
static void decoder_pop(upb_pbdecoder *d) { d->top--; }
UPB_NOINLINE int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d,
uint64_t expected) {
uint64_t data = 0;
size_t bytes = upb_value_size(expected);
size_t read = peekbytes(d, &data, bytes);
if (read == bytes && data == expected) {
/* Advance past matched bytes. */
int32_t ok = getbytes(d, &data, read);
UPB_ASSERT(ok < 0);
return DECODE_OK;
} else if (read < bytes && memcmp(&data, &expected, read) == 0) {
return suspend_save(d);
} else {
return DECODE_MISMATCH;
}
}
int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
uint8_t wire_type) {
if (fieldnum >= 0)
goto have_tag;
while (true) {
uint32_t tag;
CHECK_RETURN(decode_v32(d, &tag));
wire_type = tag & 0x7;
fieldnum = tag >> 3;
have_tag:
if (fieldnum == 0) {
seterr(d, "Saw invalid field number (0)");
return upb_pbdecoder_suspend(d);
}
switch (wire_type) {
case UPB_WIRE_TYPE_32BIT:
CHECK_RETURN(skip(d, 4));
break;
case UPB_WIRE_TYPE_64BIT:
CHECK_RETURN(skip(d, 8));
break;
case UPB_WIRE_TYPE_VARINT: {
uint64_t u64;
CHECK_RETURN(decode_varint(d, &u64));
break;
}
case UPB_WIRE_TYPE_DELIMITED: {
uint32_t len;
CHECK_RETURN(decode_v32(d, &len));
CHECK_RETURN(skip(d, len));
break;
}
case UPB_WIRE_TYPE_START_GROUP:
CHECK_SUSPEND(pushtagdelim(d, -fieldnum));
break;
case UPB_WIRE_TYPE_END_GROUP:
if (fieldnum == -d->top->groupnum) {
decoder_pop(d);
} else if (fieldnum == d->top->groupnum) {
return DECODE_ENDGROUP;
} else {
seterr(d, "Unmatched ENDGROUP tag.");
return upb_pbdecoder_suspend(d);
}
break;
default:
seterr(d, "Invalid wire type");
return upb_pbdecoder_suspend(d);
}
if (d->top->groupnum >= 0) {
/* TODO: More code needed for handling unknown groups. */
upb_sink_putunknown(d->top->sink, d->checkpoint, d->ptr - d->checkpoint);
return DECODE_OK;
}
/* Unknown group -- continue looping over unknown fields. */
checkpoint(d);
}
}
static void goto_endmsg(upb_pbdecoder *d) {
upb_value v;
bool found = upb_inttable_lookup32(d->top->dispatch, DISPATCH_ENDMSG, &v);
UPB_ASSERT(found);
d->pc = d->top->base + upb_value_getuint64(v);
}
/* Parses a tag and jumps to the corresponding bytecode instruction for this
* field.
*
* If the tag is unknown (or the wire type doesn't match), parses the field as
* unknown. If the tag is a valid ENDGROUP tag, jumps to the bytecode
* instruction for the end of message. */
static int32_t dispatch(upb_pbdecoder *d) {
upb_inttable *dispatch = d->top->dispatch;
uint32_t tag;
uint8_t wire_type;
uint32_t fieldnum;
upb_value val;
int32_t retval;
/* Decode tag. */
CHECK_RETURN(decode_v32(d, &tag));
wire_type = tag & 0x7;
fieldnum = tag >> 3;
/* Lookup tag. Because of packed/non-packed compatibility, we have to
* check the wire type against two possibilities. */
if (fieldnum != DISPATCH_ENDMSG &&
upb_inttable_lookup32(dispatch, fieldnum, &val)) {
uint64_t v = upb_value_getuint64(val);
if (wire_type == (v & 0xff)) {
d->pc = d->top->base + (v >> 16);
return DECODE_OK;
} else if (wire_type == ((v >> 8) & 0xff)) {
bool found =
upb_inttable_lookup(dispatch, fieldnum + UPB_MAX_FIELDNUMBER, &val);
UPB_ASSERT(found);
d->pc = d->top->base + upb_value_getuint64(val);
return DECODE_OK;
}
}
/* We have some unknown fields (or ENDGROUP) to parse. The DISPATCH or TAG
* bytecode that triggered this is preceded by a CHECKDELIM bytecode which
* we need to back up to, so that when we're done skipping unknown data we
* can re-check the delimited end. */
d->last--; /* Necessary if we get suspended */
d->pc = d->last;
UPB_ASSERT(getop(*d->last) == OP_CHECKDELIM);
/* Unknown field or ENDGROUP. */
retval = upb_pbdecoder_skipunknown(d, fieldnum, wire_type);
CHECK_RETURN(retval);
if (retval == DECODE_ENDGROUP) {
goto_endmsg(d);
return DECODE_OK;
}
return DECODE_OK;
}
/* Callers know that the stack is more than one deep because the opcodes that
* call this only occur after PUSH operations. */
upb_pbdecoder_frame *outer_frame(upb_pbdecoder *d) {
UPB_ASSERT(d->top != d->stack);
return d->top - 1;
}
/* The main decoding loop *****************************************************/
/* The main decoder VM function. Uses traditional bytecode dispatch loop with a
* switch() statement. */
size_t run_decoder_vm(upb_pbdecoder *d, const mgroup *group,
const upb_bufhandle* handle) {
#define VMCASE(op, code) \
case op: { code; if (consumes_input(op)) checkpoint(d); break; }
#define PRIMITIVE_OP(type, wt, name, convfunc, ctype) \
VMCASE(OP_PARSE_ ## type, { \
ctype val; \
CHECK_RETURN(decode_ ## wt(d, &val)); \
upb_sink_put ## name(d->top->sink, arg, (convfunc)(val)); \
})
while(1) {
int32_t instruction;
opcode op;
uint32_t arg;
int32_t longofs;
d->last = d->pc;
instruction = *d->pc++;
op = getop(instruction);
arg = instruction >> 8;
longofs = arg;
UPB_ASSERT(d->ptr != d->residual_end);
UPB_UNUSED(group);
#ifdef UPB_DUMP_BYTECODE
fprintf(stderr, "s_ofs=%d buf_ofs=%d data_rem=%d buf_rem=%d delim_rem=%d "
"%x %s (%d)\n",
(int)offset(d),
(int)(d->ptr - d->buf),
(int)(d->data_end - d->ptr),
(int)(d->end - d->ptr),
(int)((d->top->end_ofs - d->bufstart_ofs) - (d->ptr - d->buf)),
(int)(d->pc - 1 - group->bytecode),
upb_pbdecoder_getopname(op),
arg);
#endif
switch (op) {
/* Technically, we are losing data if we see a 32-bit varint that is not
* properly sign-extended. We could detect this and error about the data
* loss, but proto2 does not do this, so we pass. */
PRIMITIVE_OP(INT32, varint, int32, int32_t, uint64_t)
PRIMITIVE_OP(INT64, varint, int64, int64_t, uint64_t)
PRIMITIVE_OP(UINT32, varint, uint32, uint32_t, uint64_t)
PRIMITIVE_OP(UINT64, varint, uint64, uint64_t, uint64_t)
PRIMITIVE_OP(FIXED32, fixed32, uint32, uint32_t, uint32_t)
PRIMITIVE_OP(FIXED64, fixed64, uint64, uint64_t, uint64_t)
PRIMITIVE_OP(SFIXED32, fixed32, int32, int32_t, uint32_t)
PRIMITIVE_OP(SFIXED64, fixed64, int64, int64_t, uint64_t)
PRIMITIVE_OP(BOOL, varint, bool, bool, uint64_t)
PRIMITIVE_OP(DOUBLE, fixed64, double, as_double, uint64_t)
PRIMITIVE_OP(FLOAT, fixed32, float, as_float, uint32_t)
PRIMITIVE_OP(SINT32, varint, int32, upb_zzdec_32, uint64_t)
PRIMITIVE_OP(SINT64, varint, int64, upb_zzdec_64, uint64_t)
VMCASE(OP_SETDISPATCH,
d->top->base = d->pc - 1;
memcpy(&d->top->dispatch, d->pc, sizeof(void*));
d->pc += sizeof(void*) / sizeof(uint32_t);
)
VMCASE(OP_STARTMSG,
CHECK_SUSPEND(upb_sink_startmsg(d->top->sink));
)
VMCASE(OP_ENDMSG,
CHECK_SUSPEND(upb_sink_endmsg(d->top->sink, d->status));
)
VMCASE(OP_STARTSEQ,
upb_pbdecoder_frame *outer = outer_frame(d);
CHECK_SUSPEND(upb_sink_startseq(outer->sink, arg, &d->top->sink));
)
VMCASE(OP_ENDSEQ,
CHECK_SUSPEND(upb_sink_endseq(d->top->sink, arg));
)
VMCASE(OP_STARTSUBMSG,
upb_pbdecoder_frame *outer = outer_frame(d);
CHECK_SUSPEND(upb_sink_startsubmsg(outer->sink, arg, &d->top->sink));
)
VMCASE(OP_ENDSUBMSG,
CHECK_SUSPEND(upb_sink_endsubmsg(d->top->sink, arg));
)
VMCASE(OP_STARTSTR,
uint32_t len = delim_remaining(d);
upb_pbdecoder_frame *outer = outer_frame(d);
CHECK_SUSPEND(upb_sink_startstr(outer->sink, arg, len, &d->top->sink));
if (len == 0) {
d->pc++; /* Skip OP_STRING. */
}
)
VMCASE(OP_STRING,
uint32_t len = curbufleft(d);
size_t n = upb_sink_putstring(d->top->sink, arg, d->ptr, len, handle);
if (n > len) {
if (n > delim_remaining(d)) {
seterr(d, "Tried to skip past end of string.");
return upb_pbdecoder_suspend(d);
} else {
int32_t ret = skip(d, n);
/* This shouldn't return DECODE_OK, because n > len. */
UPB_ASSERT(ret >= 0);
return ret;
}
}
advance(d, n);
if (n < len || d->delim_end == NULL) {
/* We aren't finished with this string yet. */
d->pc--; /* Repeat OP_STRING. */
if (n > 0) checkpoint(d);
return upb_pbdecoder_suspend(d);
}
)
VMCASE(OP_ENDSTR,
CHECK_SUSPEND(upb_sink_endstr(d->top->sink, arg));
)
VMCASE(OP_PUSHTAGDELIM,
CHECK_SUSPEND(pushtagdelim(d, arg));
)
VMCASE(OP_SETBIGGROUPNUM,
d->top->groupnum = *d->pc++;
)
VMCASE(OP_POP,
UPB_ASSERT(d->top > d->stack);
decoder_pop(d);
)
VMCASE(OP_PUSHLENDELIM,
uint32_t len;
CHECK_RETURN(decode_v32(d, &len));
CHECK_SUSPEND(decoder_push(d, offset(d) + len));
set_delim_end(d);
)
VMCASE(OP_SETDELIM,
set_delim_end(d);
)
VMCASE(OP_CHECKDELIM,
/* We are guaranteed of this assert because we never allow ourselves to
* consume bytes beyond data_end, which covers delim_end when non-NULL.
*/
UPB_ASSERT(!(d->delim_end && d->ptr > d->delim_end));
if (d->ptr == d->delim_end)
d->pc += longofs;
)
VMCASE(OP_CALL,
d->callstack[d->call_len++] = d->pc;
d->pc += longofs;
)
VMCASE(OP_RET,
UPB_ASSERT(d->call_len > 0);
d->pc = d->callstack[--d->call_len];
)
VMCASE(OP_BRANCH,
d->pc += longofs;
)
VMCASE(OP_TAG1,
uint8_t expected;
CHECK_SUSPEND(curbufleft(d) > 0);
expected = (arg >> 8) & 0xff;
if (*d->ptr == expected) {
advance(d, 1);
} else {
int8_t shortofs;
badtag:
shortofs = arg;
if (shortofs == LABEL_DISPATCH) {
CHECK_RETURN(dispatch(d));
} else {
d->pc += shortofs;
break; /* Avoid checkpoint(). */
}
}
)
VMCASE(OP_TAG2,
uint16_t expected;
CHECK_SUSPEND(curbufleft(d) > 0);
expected = (arg >> 8) & 0xffff;
if (curbufleft(d) >= 2) {
uint16_t actual;
memcpy(&actual, d->ptr, 2);
if (expected == actual) {
advance(d, 2);
} else {
goto badtag;
}
} else {
int32_t result = upb_pbdecoder_checktag_slow(d, expected);
if (result == DECODE_MISMATCH) goto badtag;
if (result >= 0) return result;
}
)
VMCASE(OP_TAGN, {
uint64_t expected;
int32_t result;
memcpy(&expected, d->pc, 8);
d->pc += 2;
result = upb_pbdecoder_checktag_slow(d, expected);
if (result == DECODE_MISMATCH) goto badtag;
if (result >= 0) return result;
})
VMCASE(OP_DISPATCH, {
CHECK_RETURN(dispatch(d));
})
VMCASE(OP_HALT, {
return d->size_param;
})
}
}
}
/* BytesHandler handlers ******************************************************/
void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint) {
upb_pbdecoder *d = closure;
UPB_UNUSED(size_hint);
d->top->end_ofs = UINT64_MAX;
d->bufstart_ofs = 0;
d->call_len = 1;
d->callstack[0] = &halt;
d->pc = pc;
d->skip = 0;
return d;
}
void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint) {
upb_pbdecoder *d = closure;
UPB_UNUSED(hd);
UPB_UNUSED(size_hint);
d->top->end_ofs = UINT64_MAX;
d->bufstart_ofs = 0;
d->call_len = 0;
d->skip = 0;
return d;
}
bool upb_pbdecoder_end(void *closure, const void *handler_data) {
upb_pbdecoder *d = closure;
const upb_pbdecodermethod *method = handler_data;
uint64_t end;
char dummy;
if (d->residual_end > d->residual) {
seterr(d, "Unexpected EOF: decoder still has buffered unparsed data");
return false;
}
if (d->skip) {
seterr(d, "Unexpected EOF inside skipped data");
return false;
}
if (d->top->end_ofs != UINT64_MAX) {
seterr(d, "Unexpected EOF inside delimited string");
return false;
}
/* The user's end() call indicates that the message ends here. */
end = offset(d);
d->top->end_ofs = end;
#ifdef UPB_USE_JIT_X64
if (method->is_native_) {
const mgroup *group = (const mgroup*)method->group;
if (d->top != d->stack)
d->stack->end_ofs = 0;
group->jit_code(closure, method->code_base.ptr, &dummy, 0, NULL);
} else
#endif
{
const uint32_t *p = d->pc;
d->stack->end_ofs = end;
/* Check the previous bytecode, but guard against beginning. */
if (p != method->code_base.ptr) p--;
if (getop(*p) == OP_CHECKDELIM) {
/* Rewind from OP_TAG* to OP_CHECKDELIM. */
UPB_ASSERT(getop(*d->pc) == OP_TAG1 ||
getop(*d->pc) == OP_TAG2 ||
getop(*d->pc) == OP_TAGN ||
getop(*d->pc) == OP_DISPATCH);
d->pc = p;
}
upb_pbdecoder_decode(closure, handler_data, &dummy, 0, NULL);
}
if (d->call_len != 0) {
seterr(d, "Unexpected EOF inside submessage or group");
return false;
}
return true;
}
size_t upb_pbdecoder_decode(void *decoder, const void *group, const char *buf,
size_t size, const upb_bufhandle *handle) {
int32_t result = upb_pbdecoder_resume(decoder, NULL, buf, size, handle);
if (result == DECODE_ENDGROUP) goto_endmsg(decoder);
CHECK_RETURN(result);
return run_decoder_vm(decoder, group, handle);
}
/* Public API *****************************************************************/
void upb_pbdecoder_reset(upb_pbdecoder *d) {
d->top = d->stack;
d->top->groupnum = 0;
d->ptr = d->residual;
d->buf = d->residual;
d->end = d->residual;
d->residual_end = d->residual;
}
upb_pbdecoder *upb_pbdecoder_create(upb_arena *a, const upb_pbdecodermethod *m,
upb_sink sink, upb_status *status) {
const size_t default_max_nesting = 64;
#ifndef NDEBUG
size_t size_before = upb_arena_bytesallocated(a);
#endif
upb_pbdecoder *d = upb_arena_malloc(a, sizeof(upb_pbdecoder));
if (!d) return NULL;
d->method_ = m;
d->callstack = upb_arena_malloc(a, callstacksize(d, default_max_nesting));
d->stack = upb_arena_malloc(a, stacksize(d, default_max_nesting));
if (!d->stack || !d->callstack) {
return NULL;
}
d->arena = a;
d->limit = d->stack + default_max_nesting - 1;
d->stack_size = default_max_nesting;
d->status = status;
upb_pbdecoder_reset(d);
upb_bytessink_reset(&d->input_, &m->input_handler_, d);
if (d->method_->dest_handlers_) {
if (sink.handlers != d->method_->dest_handlers_)
return NULL;
}
d->top->sink = sink;
/* If this fails, increase the value in decoder.h. */
UPB_ASSERT_DEBUGVAR(upb_arena_bytesallocated(a) - size_before <=
UPB_PB_DECODER_SIZE);
return d;
}
uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d) {
return offset(d);
}
const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d) {
return d->method_;
}
upb_bytessink upb_pbdecoder_input(upb_pbdecoder *d) {
return d->input_;
}
size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d) {
return d->stack_size;
}
bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max) {
UPB_ASSERT(d->top >= d->stack);
if (max < (size_t)(d->top - d->stack)) {
/* Can't set a limit smaller than what we are currently at. */
return false;
}
if (max > d->stack_size) {
/* Need to reallocate stack and callstack to accommodate. */
size_t old_size = stacksize(d, d->stack_size);
size_t new_size = stacksize(d, max);
void *p = upb_arena_realloc(d->arena, d->stack, old_size, new_size);
if (!p) {
return false;
}
d->stack = p;
old_size = callstacksize(d, d->stack_size);
new_size = callstacksize(d, max);
p = upb_arena_realloc(d->arena, d->callstack, old_size, new_size);
if (!p) {
return false;
}
d->callstack = p;
d->stack_size = max;
}
d->limit = d->stack + max - 1;
return true;
}
/*
** upb::Encoder
**
** Since we are implementing pure handlers (ie. without any out-of-band access
** to pre-computed lengths), we have to buffer all submessages before we can
** emit even their first byte.
**
** Not knowing the size of submessages also means we can't write a perfect
** zero-copy implementation, even with buffering. Lengths are stored as
** varints, which means that we don't know how many bytes to reserve for the
** length until we know what the length is.
**
** This leaves us with three main choices:
**
** 1. buffer all submessage data in a temporary buffer, then copy it exactly
** once into the output buffer.
**
** 2. attempt to buffer data directly into the output buffer, estimating how
** many bytes each length will take. When our guesses are wrong, use
** memmove() to grow or shrink the allotted space.
**
** 3. buffer directly into the output buffer, allocating a max length
** ahead-of-time for each submessage length. If we overallocated, we waste
** space, but no memcpy() or memmove() is required. This approach requires
** defining a maximum size for submessages and rejecting submessages that
** exceed that size.
**
** (2) and (3) have the potential to have better performance, but they are more
** complicated and subtle to implement:
**
** (3) requires making an arbitrary choice of the maximum message size; it
** wastes space when submessages are shorter than this and fails
** completely when they are longer. This makes it more finicky and
** requires configuration based on the input. It also makes it impossible
** to perfectly match the output of reference encoders that always use the
** optimal amount of space for each length.
**
** (2) requires guessing the the size upfront, and if multiple lengths are
** guessed wrong the minimum required number of memmove() operations may
** be complicated to compute correctly. Implemented properly, it may have
** a useful amortized or average cost, but more investigation is required
** to determine this and what the optimal algorithm is to achieve it.
**
** (1) makes you always pay for exactly one copy, but its implementation is
** the simplest and its performance is predictable.
**
** So for now, we implement (1) only. If we wish to optimize later, we should
** be able to do it without affecting users.
**
** The strategy is to buffer the segments of data that do *not* depend on
** unknown lengths in one buffer, and keep a separate buffer of segment pointers
** and lengths. When the top-level submessage ends, we can go beginning to end,
** alternating the writing of lengths with memcpy() of the rest of the data.
** At the top level though, no buffering is required.
*/
/* The output buffer is divided into segments; a segment is a string of data
* that is "ready to go" -- it does not need any varint lengths inserted into
* the middle. The seams between segments are where varints will be inserted
* once they are known.
*
* We also use the concept of a "run", which is a range of encoded bytes that
* occur at a single submessage level. Every segment contains one or more runs.
*
* A segment can span messages. Consider:
*
* .--Submessage lengths---------.
* | | |
* | V V
* V | |--------------- | |-----------------
* Submessages: | |-----------------------------------------------
* Top-level msg: ------------------------------------------------------------
*
* Segments: ----- ------------------- -----------------
* Runs: *---- *--------------*--- *----------------
* (* marks the start)
*
* Note that the top-level menssage is not in any segment because it does not
* have any length preceding it.
*
* A segment is only interrupted when another length needs to be inserted. So
* observe how the second segment spans both the inner submessage and part of
* the next enclosing message. */
typedef struct {
uint32_t msglen; /* The length to varint-encode before this segment. */
uint32_t seglen; /* Length of the segment. */
} upb_pb_encoder_segment;
struct upb_pb_encoder {
upb_arena *arena;
/* Our input and output. */
upb_sink input_;
upb_bytessink output_;
/* The "subclosure" -- used as the inner closure as part of the bytessink
* protocol. */
void *subc;
/* The output buffer and limit, and our current write position. "buf"
* initially points to "initbuf", but is dynamically allocated if we need to
* grow beyond the initial size. */
char *buf, *ptr, *limit;
/* The beginning of the current run, or undefined if we are at the top
* level. */
char *runbegin;
/* The list of segments we are accumulating. */
upb_pb_encoder_segment *segbuf, *segptr, *seglimit;
/* The stack of enclosing submessages. Each entry in the stack points to the
* segment where this submessage's length is being accumulated. */
int *stack, *top, *stacklimit;
/* Depth of startmsg/endmsg calls. */
int depth;
};
/* low-level buffering ********************************************************/
/* Low-level functions for interacting with the output buffer. */
/* TODO(haberman): handle pushback */
static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) {
size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL);
UPB_ASSERT(n == len);
}
static upb_pb_encoder_segment *top(upb_pb_encoder *e) {
return &e->segbuf[*e->top];
}
/* Call to ensure that at least "bytes" bytes are available for writing at
* e->ptr. Returns false if the bytes could not be allocated. */
static bool reserve(upb_pb_encoder *e, size_t bytes) {
if ((size_t)(e->limit - e->ptr) < bytes) {
/* Grow buffer. */
char *new_buf;
size_t needed = bytes + (e->ptr - e->buf);
size_t old_size = e->limit - e->buf;
size_t new_size = old_size;
while (new_size < needed) {
new_size *= 2;
}
new_buf = upb_arena_realloc(e->arena, e->buf, old_size, new_size);
if (new_buf == NULL) {
return false;
}
e->ptr = new_buf + (e->ptr - e->buf);
e->runbegin = new_buf + (e->runbegin - e->buf);
e->limit = new_buf + new_size;
e->buf = new_buf;
}
return true;
}
/* Call when "bytes" bytes have been writte at e->ptr. The caller *must* have
* previously called reserve() with at least this many bytes. */
static void encoder_advance(upb_pb_encoder *e, size_t bytes) {
UPB_ASSERT((size_t)(e->limit - e->ptr) >= bytes);
e->ptr += bytes;
}
/* Call when all of the bytes for a handler have been written. Flushes the
* bytes if possible and necessary, returning false if this failed. */
static bool commit(upb_pb_encoder *e) {
if (!e->top) {
/* We aren't inside a delimited region. Flush our accumulated bytes to
* the output.
*
* TODO(haberman): in the future we may want to delay flushing for
* efficiency reasons. */
putbuf(e, e->buf, e->ptr - e->buf);
e->ptr = e->buf;
}
return true;
}
/* Writes the given bytes to the buffer, handling reserve/advance. */
static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) {
if (!reserve(e, len)) {
return false;
}
memcpy(e->ptr, data, len);
encoder_advance(e, len);
return true;
}
/* Finish the current run by adding the run totals to the segment and message
* length. */
static void accumulate(upb_pb_encoder *e) {
size_t run_len;
UPB_ASSERT(e->ptr >= e->runbegin);
run_len = e->ptr - e->runbegin;
e->segptr->seglen += run_len;
top(e)->msglen += run_len;
e->runbegin = e->ptr;
}
/* Call to indicate the start of delimited region for which the full length is
* not yet known. All data will be buffered until the length is known.
* Delimited regions may be nested; their lengths will all be tracked properly. */
static bool start_delim(upb_pb_encoder *e) {
if (e->top) {
/* We are already buffering, advance to the next segment and push it on the
* stack. */
accumulate(e);
if (++e->top == e->stacklimit) {
/* TODO(haberman): grow stack? */
return false;
}
if (++e->segptr == e->seglimit) {
/* Grow segment buffer. */
size_t old_size =
(e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment);
size_t new_size = old_size * 2;
upb_pb_encoder_segment *new_buf =
upb_arena_realloc(e->arena, e->segbuf, old_size, new_size);
if (new_buf == NULL) {
return false;
}
e->segptr = new_buf + (e->segptr - e->segbuf);
e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment));
e->segbuf = new_buf;
}
} else {
/* We were previously at the top level, start buffering. */
e->segptr = e->segbuf;
e->top = e->stack;
e->runbegin = e->ptr;
}
*e->top = e->segptr - e->segbuf;
e->segptr->seglen = 0;
e->segptr->msglen = 0;
return true;
}
/* Call to indicate the end of a delimited region. We now know the length of
* the delimited region. If we are not nested inside any other delimited
* regions, we can now emit all of the buffered data we accumulated. */
static bool end_delim(upb_pb_encoder *e) {
size_t msglen;
accumulate(e);
msglen = top(e)->msglen;
if (e->top == e->stack) {
/* All lengths are now available, emit all buffered data. */
char buf[UPB_PB_VARINT_MAX_LEN];
upb_pb_encoder_segment *s;
const char *ptr = e->buf;
for (s = e->segbuf; s <= e->segptr; s++) {
size_t lenbytes = upb_vencode64(s->msglen, buf);
putbuf(e, buf, lenbytes);
putbuf(e, ptr, s->seglen);
ptr += s->seglen;
}
e->ptr = e->buf;
e->top = NULL;
} else {
/* Need to keep buffering; propagate length info into enclosing
* submessages. */
--e->top;
top(e)->msglen += msglen + upb_varint_size(msglen);
}
return true;
}
/* tag_t **********************************************************************/
/* A precomputed (pre-encoded) tag and length. */
typedef struct {
uint8_t bytes;
char tag[7];
} tag_t;
/* Allocates a new tag for this field, and sets it in these handlerattr. */
static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt,
upb_handlerattr *attr) {
uint32_t n = upb_fielddef_number(f);
tag_t *tag = upb_gmalloc(sizeof(tag_t));
tag->bytes = upb_vencode64((n << 3) | wt, tag->tag);
attr->handler_data = tag;
upb_handlers_addcleanup(h, tag, upb_gfree);
}
static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) {
return encode_bytes(e, tag->tag, tag->bytes);
}
/* encoding of wire types *****************************************************/
static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) {
/* TODO(haberman): byte-swap for big endian. */
return encode_bytes(e, &val, sizeof(uint64_t));
}
static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) {
/* TODO(haberman): byte-swap for big endian. */
return encode_bytes(e, &val, sizeof(uint32_t));
}
static bool encode_varint(upb_pb_encoder *e, uint64_t val) {
if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) {
return false;
}
encoder_advance(e, upb_vencode64(val, e->ptr));
return true;
}
static uint64_t dbl2uint64(double d) {
uint64_t ret;
memcpy(&ret, &d, sizeof(uint64_t));
return ret;
}
static uint32_t flt2uint32(float d) {
uint32_t ret;
memcpy(&ret, &d, sizeof(uint32_t));
return ret;
}
/* encoding of proto types ****************************************************/
static bool startmsg(void *c, const void *hd) {
upb_pb_encoder *e = c;
UPB_UNUSED(hd);
if (e->depth++ == 0) {
upb_bytessink_start(e->output_, 0, &e->subc);
}
return true;
}
static bool endmsg(void *c, const void *hd, upb_status *status) {
upb_pb_encoder *e = c;
UPB_UNUSED(hd);
UPB_UNUSED(status);
if (--e->depth == 0) {
upb_bytessink_end(e->output_);
}
return true;
}
static void *encode_startdelimfield(void *c, const void *hd) {
bool ok = encode_tag(c, hd) && commit(c) && start_delim(c);
return ok ? c : UPB_BREAK;
}
static bool encode_unknown(void *c, const void *hd, const char *buf,
size_t len) {
UPB_UNUSED(hd);
return encode_bytes(c, buf, len) && commit(c);
}
static bool encode_enddelimfield(void *c, const void *hd) {
UPB_UNUSED(hd);
return end_delim(c);
}
static void *encode_startgroup(void *c, const void *hd) {
return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK;
}
static bool encode_endgroup(void *c, const void *hd) {
return encode_tag(c, hd) && commit(c);
}
static void *encode_startstr(void *c, const void *hd, size_t size_hint) {
UPB_UNUSED(size_hint);
return encode_startdelimfield(c, hd);
}
static size_t encode_strbuf(void *c, const void *hd, const char *buf,
size_t len, const upb_bufhandle *h) {
UPB_UNUSED(hd);
UPB_UNUSED(h);
return encode_bytes(c, buf, len) ? len : 0;
}
#define T(type, ctype, convert, encode) \
static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \
return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e); \
} \
static bool encode_packed_##type(void *e, const void *hd, ctype val) { \
UPB_UNUSED(hd); \
return encode(e, (convert)(val)); \
}
T(double, double, dbl2uint64, encode_fixed64)
T(float, float, flt2uint32, encode_fixed32)
T(int64, int64_t, uint64_t, encode_varint)
T(int32, int32_t, int64_t, encode_varint)
T(fixed64, uint64_t, uint64_t, encode_fixed64)
T(fixed32, uint32_t, uint32_t, encode_fixed32)
T(bool, bool, bool, encode_varint)
T(uint32, uint32_t, uint32_t, encode_varint)
T(uint64, uint64_t, uint64_t, encode_varint)
T(enum, int32_t, uint32_t, encode_varint)
T(sfixed32, int32_t, uint32_t, encode_fixed32)
T(sfixed64, int64_t, uint64_t, encode_fixed64)
T(sint32, int32_t, upb_zzenc_32, encode_varint)
T(sint64, int64_t, upb_zzenc_64, encode_varint)
#undef T
/* code to build the handlers *************************************************/
#include <stdio.h>
static void newhandlers_callback(const void *closure, upb_handlers *h) {
const upb_msgdef *m;
upb_msg_field_iter i;
UPB_UNUSED(closure);
upb_handlers_setstartmsg(h, startmsg, NULL);
upb_handlers_setendmsg(h, endmsg, NULL);
upb_handlers_setunknown(h, encode_unknown, NULL);
m = upb_handlers_msgdef(h);
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) &&
upb_fielddef_packed(f);
upb_handlerattr attr = UPB_HANDLERATTR_INIT;
upb_wiretype_t wt =
packed ? UPB_WIRE_TYPE_DELIMITED
: upb_pb_native_wire_types[upb_fielddef_descriptortype(f)];
/* Pre-encode the tag for this field. */
new_tag(h, f, wt, &attr);
if (packed) {
upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr);
upb_handlers_setendseq(h, f, encode_enddelimfield, &attr);
}
#define T(upper, lower, upbtype) \
case UPB_DESCRIPTOR_TYPE_##upper: \
if (packed) { \
upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \
} else { \
upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \
} \
break;
switch (upb_fielddef_descriptortype(f)) {
T(DOUBLE, double, double);
T(FLOAT, float, float);
T(INT64, int64, int64);
T(INT32, int32, int32);
T(FIXED64, fixed64, uint64);
T(FIXED32, fixed32, uint32);
T(BOOL, bool, bool);
T(UINT32, uint32, uint32);
T(UINT64, uint64, uint64);
T(ENUM, enum, int32);
T(SFIXED32, sfixed32, int32);
T(SFIXED64, sfixed64, int64);
T(SINT32, sint32, int32);
T(SINT64, sint64, int64);
case UPB_DESCRIPTOR_TYPE_STRING:
case UPB_DESCRIPTOR_TYPE_BYTES:
upb_handlers_setstartstr(h, f, encode_startstr, &attr);
upb_handlers_setendstr(h, f, encode_enddelimfield, &attr);
upb_handlers_setstring(h, f, encode_strbuf, &attr);
break;
case UPB_DESCRIPTOR_TYPE_MESSAGE:
upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr);
upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr);
break;
case UPB_DESCRIPTOR_TYPE_GROUP: {
/* Endgroup takes a different tag (wire_type = END_GROUP). */
upb_handlerattr attr2 = UPB_HANDLERATTR_INIT;
new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2);
upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr);
upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2);
break;
}
}
#undef T
}
}
void upb_pb_encoder_reset(upb_pb_encoder *e) {
e->segptr = NULL;
e->top = NULL;
e->depth = 0;
}
/* public API *****************************************************************/
upb_handlercache *upb_pb_encoder_newcache(void) {
return upb_handlercache_new(newhandlers_callback, NULL);
}
upb_pb_encoder *upb_pb_encoder_create(upb_arena *arena, const upb_handlers *h,
upb_bytessink output) {
const size_t initial_bufsize = 256;
const size_t initial_segbufsize = 16;
/* TODO(haberman): make this configurable. */
const size_t stack_size = 64;
#ifndef NDEBUG
const size_t size_before = upb_arena_bytesallocated(arena);
#endif
upb_pb_encoder *e = upb_arena_malloc(arena, sizeof(upb_pb_encoder));
if (!e) return NULL;
e->buf = upb_arena_malloc(arena, initial_bufsize);
e->segbuf = upb_arena_malloc(arena, initial_segbufsize * sizeof(*e->segbuf));
e->stack = upb_arena_malloc(arena, stack_size * sizeof(*e->stack));
if (!e->buf || !e->segbuf || !e->stack) {
return NULL;
}
e->limit = e->buf + initial_bufsize;
e->seglimit = e->segbuf + initial_segbufsize;
e->stacklimit = e->stack + stack_size;
upb_pb_encoder_reset(e);
upb_sink_reset(&e->input_, h, e);
e->arena = arena;
e->output_ = output;
e->subc = output.closure;
e->ptr = e->buf;
/* If this fails, increase the value in encoder.h. */
UPB_ASSERT_DEBUGVAR(upb_arena_bytesallocated(arena) - size_before <=
UPB_PB_ENCODER_SIZE);
return e;
}
upb_sink upb_pb_encoder_input(upb_pb_encoder *e) { return e->input_; }
/*
* upb::pb::TextPrinter
*
* OPT: This is not optimized at all. It uses printf() which parses the format
* string every time, and it allocates memory for every put.
*/
#include <ctype.h>
#include <float.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
struct upb_textprinter {
upb_sink input_;
upb_bytessink output_;
int indent_depth_;
bool single_line_;
void *subc;
};
#define CHECK(x) if ((x) < 0) goto err;
static const char *shortname(const char *longname) {
const char *last = strrchr(longname, '.');
return last ? last + 1 : longname;
}
static int indent(upb_textprinter *p) {
int i;
if (!p->single_line_)
for (i = 0; i < p->indent_depth_; i++)
upb_bytessink_putbuf(p->output_, p->subc, " ", 2, NULL);
return 0;
}
static int endfield(upb_textprinter *p) {
const char ch = (p->single_line_ ? ' ' : '\n');
upb_bytessink_putbuf(p->output_, p->subc, &ch, 1, NULL);
return 0;
}
static int putescaped(upb_textprinter *p, const char *buf, size_t len,
bool preserve_utf8) {
/* Based on CEscapeInternal() from Google's protobuf release. */
char dstbuf[4096], *dst = dstbuf, *dstend = dstbuf + sizeof(dstbuf);
const char *end = buf + len;
/* I think hex is prettier and more useful, but proto2 uses octal; should
* investigate whether it can parse hex also. */
const bool use_hex = false;
bool last_hex_escape = false; /* true if last output char was \xNN */
for (; buf < end; buf++) {
bool is_hex_escape;
if (dstend - dst < 4) {
upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL);
dst = dstbuf;
}
is_hex_escape = false;
switch (*buf) {
case '\n': *(dst++) = '\\'; *(dst++) = 'n'; break;
case '\r': *(dst++) = '\\'; *(dst++) = 'r'; break;
case '\t': *(dst++) = '\\'; *(dst++) = 't'; break;
case '\"': *(dst++) = '\\'; *(dst++) = '\"'; break;
case '\'': *(dst++) = '\\'; *(dst++) = '\''; break;
case '\\': *(dst++) = '\\'; *(dst++) = '\\'; break;
default:
/* Note that if we emit \xNN and the buf character after that is a hex
* digit then that digit must be escaped too to prevent it being
* interpreted as part of the character code by C. */
if ((!preserve_utf8 || (uint8_t)*buf < 0x80) &&
(!isprint(*buf) || (last_hex_escape && isxdigit(*buf)))) {
sprintf(dst, (use_hex ? "\\x%02x" : "\\%03o"), (uint8_t)*buf);
is_hex_escape = use_hex;
dst += 4;
} else {
*(dst++) = *buf; break;
}
}
last_hex_escape = is_hex_escape;
}
/* Flush remaining data. */
upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL);
return 0;
}
bool putf(upb_textprinter *p, const char *fmt, ...) {
va_list args;
va_list args_copy;
char *str;
int written;
int len;
bool ok;
va_start(args, fmt);
/* Run once to get the length of the string. */
_upb_va_copy(args_copy, args);
len = _upb_vsnprintf(NULL, 0, fmt, args_copy);
va_end(args_copy);
/* + 1 for NULL terminator (vsprintf() requires it even if we don't). */
str = upb_gmalloc(len + 1);
if (!str) return false;
written = vsprintf(str, fmt, args);
va_end(args);
UPB_ASSERT(written == len);
ok = upb_bytessink_putbuf(p->output_, p->subc, str, len, NULL);
upb_gfree(str);
return ok;
}
/* handlers *******************************************************************/
static bool textprinter_startmsg(void *c, const void *hd) {
upb_textprinter *p = c;
UPB_UNUSED(hd);
if (p->indent_depth_ == 0) {
upb_bytessink_start(p->output_, 0, &p->subc);
}
return true;
}
static bool textprinter_endmsg(void *c, const void *hd, upb_status *s) {
upb_textprinter *p = c;
UPB_UNUSED(hd);
UPB_UNUSED(s);
if (p->indent_depth_ == 0) {
upb_bytessink_end(p->output_);
}
return true;
}
#define TYPE(name, ctype, fmt) \
static bool textprinter_put ## name(void *closure, const void *handler_data, \
ctype val) { \
upb_textprinter *p = closure; \
const upb_fielddef *f = handler_data; \
CHECK(indent(p)); \
putf(p, "%s: " fmt, upb_fielddef_name(f), val); \
CHECK(endfield(p)); \
return true; \
err: \
return false; \
}
static bool textprinter_putbool(void *closure, const void *handler_data,
bool val) {
upb_textprinter *p = closure;
const upb_fielddef *f = handler_data;
CHECK(indent(p));
putf(p, "%s: %s", upb_fielddef_name(f), val ? "true" : "false");
CHECK(endfield(p));
return true;
err:
return false;
}
#define STRINGIFY_HELPER(x) #x
#define STRINGIFY_MACROVAL(x) STRINGIFY_HELPER(x)
TYPE(int32, int32_t, "%" PRId32)
TYPE(int64, int64_t, "%" PRId64)
TYPE(uint32, uint32_t, "%" PRIu32)
TYPE(uint64, uint64_t, "%" PRIu64)
TYPE(float, float, "%." STRINGIFY_MACROVAL(FLT_DIG) "g")
TYPE(double, double, "%." STRINGIFY_MACROVAL(DBL_DIG) "g")
#undef TYPE
/* Output a symbolic value from the enum if found, else just print as int32. */
static bool textprinter_putenum(void *closure, const void *handler_data,
int32_t val) {
upb_textprinter *p = closure;
const upb_fielddef *f = handler_data;
const upb_enumdef *enum_def = upb_fielddef_enumsubdef(f);
const char *label = upb_enumdef_iton(enum_def, val);
if (label) {
indent(p);
putf(p, "%s: %s", upb_fielddef_name(f), label);
endfield(p);
} else {
if (!textprinter_putint32(closure, handler_data, val))
return false;
}
return true;
}
static void *textprinter_startstr(void *closure, const void *handler_data,
size_t size_hint) {
upb_textprinter *p = closure;
const upb_fielddef *f = handler_data;
UPB_UNUSED(size_hint);
indent(p);
putf(p, "%s: \"", upb_fielddef_name(f));
return p;
}
static bool textprinter_endstr(void *closure, const void *handler_data) {
upb_textprinter *p = closure;
UPB_UNUSED(handler_data);
putf(p, "\"");
endfield(p);
return true;
}
static size_t textprinter_putstr(void *closure, const void *hd, const char *buf,
size_t len, const upb_bufhandle *handle) {
upb_textprinter *p = closure;
const upb_fielddef *f = hd;
UPB_UNUSED(handle);
CHECK(putescaped(p, buf, len, upb_fielddef_type(f) == UPB_TYPE_STRING));
return len;
err:
return 0;
}
static void *textprinter_startsubmsg(void *closure, const void *handler_data) {
upb_textprinter *p = closure;
const char *name = handler_data;
CHECK(indent(p));
putf(p, "%s {%c", name, p->single_line_ ? ' ' : '\n');
p->indent_depth_++;
return p;
err:
return UPB_BREAK;
}
static bool textprinter_endsubmsg(void *closure, const void *handler_data) {
upb_textprinter *p = closure;
UPB_UNUSED(handler_data);
p->indent_depth_--;
CHECK(indent(p));
upb_bytessink_putbuf(p->output_, p->subc, "}", 1, NULL);
CHECK(endfield(p));
return true;
err:
return false;
}
static void onmreg(const void *c, upb_handlers *h) {
const upb_msgdef *m = upb_handlers_msgdef(h);
upb_msg_field_iter i;
UPB_UNUSED(c);
upb_handlers_setstartmsg(h, textprinter_startmsg, NULL);
upb_handlers_setendmsg(h, textprinter_endmsg, NULL);
for(upb_msg_field_begin(&i, m);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
upb_handlerattr attr = UPB_HANDLERATTR_INIT;
attr.handler_data = f;
switch (upb_fielddef_type(f)) {
case UPB_TYPE_INT32:
upb_handlers_setint32(h, f, textprinter_putint32, &attr);
break;
case UPB_TYPE_INT64:
upb_handlers_setint64(h, f, textprinter_putint64, &attr);
break;
case UPB_TYPE_UINT32:
upb_handlers_setuint32(h, f, textprinter_putuint32, &attr);
break;
case UPB_TYPE_UINT64:
upb_handlers_setuint64(h, f, textprinter_putuint64, &attr);
break;
case UPB_TYPE_FLOAT:
upb_handlers_setfloat(h, f, textprinter_putfloat, &attr);
break;
case UPB_TYPE_DOUBLE:
upb_handlers_setdouble(h, f, textprinter_putdouble, &attr);
break;
case UPB_TYPE_BOOL:
upb_handlers_setbool(h, f, textprinter_putbool, &attr);
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
upb_handlers_setstartstr(h, f, textprinter_startstr, &attr);
upb_handlers_setstring(h, f, textprinter_putstr, &attr);
upb_handlers_setendstr(h, f, textprinter_endstr, &attr);
break;
case UPB_TYPE_MESSAGE: {
const char *name =
upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_GROUP
? shortname(upb_msgdef_fullname(upb_fielddef_msgsubdef(f)))
: upb_fielddef_name(f);
attr.handler_data = name;
upb_handlers_setstartsubmsg(h, f, textprinter_startsubmsg, &attr);
upb_handlers_setendsubmsg(h, f, textprinter_endsubmsg, &attr);
break;
}
case UPB_TYPE_ENUM:
upb_handlers_setint32(h, f, textprinter_putenum, &attr);
break;
}
}
}
static void textprinter_reset(upb_textprinter *p, bool single_line) {
p->single_line_ = single_line;
p->indent_depth_ = 0;
}
/* Public API *****************************************************************/
upb_textprinter *upb_textprinter_create(upb_arena *arena, const upb_handlers *h,
upb_bytessink output) {
upb_textprinter *p = upb_arena_malloc(arena, sizeof(upb_textprinter));
if (!p) return NULL;
p->output_ = output;
upb_sink_reset(&p->input_, h, p);
textprinter_reset(p, false);
return p;
}
upb_handlercache *upb_textprinter_newcache(void) {
return upb_handlercache_new(&onmreg, NULL);
}
upb_sink upb_textprinter_input(upb_textprinter *p) { return p->input_; }
void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line) {
p->single_line_ = single_line;
}
/* Index is descriptor type. */
const uint8_t upb_pb_native_wire_types[] = {
UPB_WIRE_TYPE_END_GROUP, /* ENDGROUP */
UPB_WIRE_TYPE_64BIT, /* DOUBLE */
UPB_WIRE_TYPE_32BIT, /* FLOAT */
UPB_WIRE_TYPE_VARINT, /* INT64 */
UPB_WIRE_TYPE_VARINT, /* UINT64 */
UPB_WIRE_TYPE_VARINT, /* INT32 */
UPB_WIRE_TYPE_64BIT, /* FIXED64 */
UPB_WIRE_TYPE_32BIT, /* FIXED32 */
UPB_WIRE_TYPE_VARINT, /* BOOL */
UPB_WIRE_TYPE_DELIMITED, /* STRING */
UPB_WIRE_TYPE_START_GROUP, /* GROUP */
UPB_WIRE_TYPE_DELIMITED, /* MESSAGE */
UPB_WIRE_TYPE_DELIMITED, /* BYTES */
UPB_WIRE_TYPE_VARINT, /* UINT32 */
UPB_WIRE_TYPE_VARINT, /* ENUM */
UPB_WIRE_TYPE_32BIT, /* SFIXED32 */
UPB_WIRE_TYPE_64BIT, /* SFIXED64 */
UPB_WIRE_TYPE_VARINT, /* SINT32 */
UPB_WIRE_TYPE_VARINT, /* SINT64 */
};
/* A basic branch-based decoder, uses 32-bit values to get good performance
* on 32-bit architectures (but performs well on 64-bits also).
* This scheme comes from the original Google Protobuf implementation
* (proto2). */
upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r) {
upb_decoderet err = {NULL, 0};
const char *p = r.p;
uint32_t low = (uint32_t)r.val;
uint32_t high = 0;
uint32_t b;
b = *(p++); low |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done;
b = *(p++); low |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done;
b = *(p++); low |= (b & 0x7fU) << 28;
high = (b & 0x7fU) >> 4; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 3; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 10; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 17; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 24; if (!(b & 0x80)) goto done;
b = *(p++); high |= (b & 0x7fU) << 31; if (!(b & 0x80)) goto done;
return err;
done:
r.val = ((uint64_t)high << 32) | low;
r.p = p;
return r;
}
/* Like the previous, but uses 64-bit values. */
upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r) {
const char *p = r.p;
uint64_t val = r.val;
uint64_t b;
upb_decoderet err = {NULL, 0};
b = *(p++); val |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 28; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 35; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 42; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 49; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 56; if (!(b & 0x80)) goto done;
b = *(p++); val |= (b & 0x7fU) << 63; if (!(b & 0x80)) goto done;
return err;
done:
r.val = val;
r.p = p;
return r;
}
#line 1 "upb/json/parser.rl"
/*
** upb::json::Parser (upb_json_parser)
**
** A parser that uses the Ragel State Machine Compiler to generate
** the finite automata.
**
** Ragel only natively handles regular languages, but we can manually
** program it a bit to handle context-free languages like JSON, by using
** the "fcall" and "fret" constructs.
**
** This parser can handle the basics, but needs several things to be fleshed
** out:
**
** - handling of unicode escape sequences (including high surrogate pairs).
** - properly check and report errors for unknown fields, stack overflow,
** improper array nesting (or lack of nesting).
** - handling of base64 sequences with padding characters.
** - handling of push-back (non-success returns from sink functions).
** - handling of keys/escape-sequences/etc that span input buffers.
*/
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include <math.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define UPB_JSON_MAX_DEPTH 64
/* Type of value message */
enum {
VALUE_NULLVALUE = 0,
VALUE_NUMBERVALUE = 1,
VALUE_STRINGVALUE = 2,
VALUE_BOOLVALUE = 3,
VALUE_STRUCTVALUE = 4,
VALUE_LISTVALUE = 5
};
/* Forward declare */
static bool is_top_level(upb_json_parser *p);
static bool is_wellknown_msg(upb_json_parser *p, upb_wellknowntype_t type);
static bool is_wellknown_field(upb_json_parser *p, upb_wellknowntype_t type);
static bool is_number_wrapper_object(upb_json_parser *p);
static bool does_number_wrapper_start(upb_json_parser *p);
static bool does_number_wrapper_end(upb_json_parser *p);
static bool is_string_wrapper_object(upb_json_parser *p);
static bool does_string_wrapper_start(upb_json_parser *p);
static bool does_string_wrapper_end(upb_json_parser *p);
static bool does_fieldmask_start(upb_json_parser *p);
static bool does_fieldmask_end(upb_json_parser *p);
static void start_fieldmask_object(upb_json_parser *p);
static void end_fieldmask_object(upb_json_parser *p);
static void start_wrapper_object(upb_json_parser *p);
static void end_wrapper_object(upb_json_parser *p);
static void start_value_object(upb_json_parser *p, int value_type);
static void end_value_object(upb_json_parser *p);
static void start_listvalue_object(upb_json_parser *p);
static void end_listvalue_object(upb_json_parser *p);
static void start_structvalue_object(upb_json_parser *p);
static void end_structvalue_object(upb_json_parser *p);
static void start_object(upb_json_parser *p);
static void end_object(upb_json_parser *p);
static void start_any_object(upb_json_parser *p, const char *ptr);
static bool end_any_object(upb_json_parser *p, const char *ptr);
static bool start_subobject(upb_json_parser *p);
static void end_subobject(upb_json_parser *p);
static void start_member(upb_json_parser *p);
static void end_member(upb_json_parser *p);
static bool end_membername(upb_json_parser *p);
static void start_any_member(upb_json_parser *p, const char *ptr);
static void end_any_member(upb_json_parser *p, const char *ptr);
static bool end_any_membername(upb_json_parser *p);
size_t parse(void *closure, const void *hd, const char *buf, size_t size,
const upb_bufhandle *handle);
static bool end(void *closure, const void *hd);
static const char eof_ch = 'e';
/* stringsink */
typedef struct {
upb_byteshandler handler;
upb_bytessink sink;
char *ptr;
size_t len, size;
} upb_stringsink;
static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
upb_stringsink *sink = _sink;
sink->len = 0;
UPB_UNUSED(hd);
UPB_UNUSED(size_hint);
return sink;
}
static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
size_t len, const upb_bufhandle *handle) {
upb_stringsink *sink = _sink;
size_t new_size = sink->size;
UPB_UNUSED(hd);
UPB_UNUSED(handle);
while (sink->len + len > new_size) {
new_size *= 2;
}
if (new_size != sink->size) {
sink->ptr = realloc(sink->ptr, new_size);
sink->size = new_size;
}
memcpy(sink->ptr + sink->len, ptr, len);
sink->len += len;
return len;
}
void upb_stringsink_init(upb_stringsink *sink) {
upb_byteshandler_init(&sink->handler);
upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
upb_bytessink_reset(&sink->sink, &sink->handler, sink);
sink->size = 32;
sink->ptr = malloc(sink->size);
sink->len = 0;
}
void upb_stringsink_uninit(upb_stringsink *sink) { free(sink->ptr); }
typedef struct {
/* For encoding Any value field in binary format. */
upb_handlercache *encoder_handlercache;
upb_stringsink stringsink;
/* For decoding Any value field in json format. */
upb_json_codecache *parser_codecache;
upb_sink sink;
upb_json_parser *parser;
/* Mark the range of uninterpreted values in json input before type url. */
const char *before_type_url_start;
const char *before_type_url_end;
/* Mark the range of uninterpreted values in json input after type url. */
const char *after_type_url_start;
} upb_jsonparser_any_frame;
typedef struct {
upb_sink sink;
/* The current message in which we're parsing, and the field whose value we're
* expecting next. */
const upb_msgdef *m;
const upb_fielddef *f;
/* The table mapping json name to fielddef for this message. */
const upb_strtable *name_table;
/* We are in a repeated-field context. We need this flag to decide whether to
* handle the array as a normal repeated field or a
* google.protobuf.ListValue/google.protobuf.Value. */
bool is_repeated;
/* We are in a repeated-field context, ready to emit mapentries as
* submessages. This flag alters the start-of-object (open-brace) behavior to
* begin a sequence of mapentry messages rather than a single submessage. */
bool is_map;
/* We are in a map-entry message context. This flag is set when parsing the
* value field of a single map entry and indicates to all value-field parsers
* (subobjects, strings, numbers, and bools) that the map-entry submessage
* should end as soon as the value is parsed. */
bool is_mapentry;
/* If |is_map| or |is_mapentry| is true, |mapfield| refers to the parent
* message's map field that we're currently parsing. This differs from |f|
* because |f| is the field in the *current* message (i.e., the map-entry
* message itself), not the parent's field that leads to this map. */
const upb_fielddef *mapfield;
/* We are in an Any message context. This flag is set when parsing the Any
* message and indicates to all field parsers (subobjects, strings, numbers,
* and bools) that the parsed field should be serialized as binary data or
* cached (type url not found yet). */
bool is_any;
/* The type of packed message in Any. */
upb_jsonparser_any_frame *any_frame;
/* True if the field to be parsed is unknown. */
bool is_unknown_field;
} upb_jsonparser_frame;
static void init_frame(upb_jsonparser_frame* frame) {
frame->m = NULL;
frame->f = NULL;
frame->name_table = NULL;
frame->is_repeated = false;
frame->is_map = false;
frame->is_mapentry = false;
frame->mapfield = NULL;
frame->is_any = false;
frame->any_frame = NULL;
frame->is_unknown_field = false;
}
struct upb_json_parser {
upb_arena *arena;
const upb_json_parsermethod *method;
upb_bytessink input_;
/* Stack to track the JSON scopes we are in. */
upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH];
upb_jsonparser_frame *top;
upb_jsonparser_frame *limit;
upb_status *status;
/* Ragel's internal parsing stack for the parsing state machine. */
int current_state;
int parser_stack[UPB_JSON_MAX_DEPTH];
int parser_top;
/* The handle for the current buffer. */
const upb_bufhandle *handle;
/* Accumulate buffer. See details in parser.rl. */
const char *accumulated;
size_t accumulated_len;
char *accumulate_buf;
size_t accumulate_buf_size;
/* Multi-part text data. See details in parser.rl. */
int multipart_state;
upb_selector_t string_selector;
/* Input capture. See details in parser.rl. */
const char *capture;
/* Intermediate result of parsing a unicode escape sequence. */
uint32_t digit;
/* For resolve type url in Any. */
const upb_symtab *symtab;
/* Whether to proceed if unknown field is met. */
bool ignore_json_unknown;
/* Cache for parsing timestamp due to base and zone are handled in different
* handlers. */
struct tm tm;
};
static upb_jsonparser_frame* start_jsonparser_frame(upb_json_parser *p) {
upb_jsonparser_frame *inner;
inner = p->top + 1;
init_frame(inner);
return inner;
}
struct upb_json_codecache {
upb_arena *arena;
upb_inttable methods; /* upb_msgdef* -> upb_json_parsermethod* */
};
struct upb_json_parsermethod {
const upb_json_codecache *cache;
upb_byteshandler input_handler_;
/* Maps json_name -> fielddef */
upb_strtable name_table;
};
#define PARSER_CHECK_RETURN(x) if (!(x)) return false
static upb_jsonparser_any_frame *json_parser_any_frame_new(
upb_json_parser *p) {
upb_jsonparser_any_frame *frame;
frame = upb_arena_malloc(p->arena, sizeof(upb_jsonparser_any_frame));
frame->encoder_handlercache = upb_pb_encoder_newcache();
frame->parser_codecache = upb_json_codecache_new();
frame->parser = NULL;
frame->before_type_url_start = NULL;
frame->before_type_url_end = NULL;
frame->after_type_url_start = NULL;
upb_stringsink_init(&frame->stringsink);
return frame;
}
static void json_parser_any_frame_set_payload_type(
upb_json_parser *p,
upb_jsonparser_any_frame *frame,
const upb_msgdef *payload_type) {
const upb_handlers *h;
const upb_json_parsermethod *parser_method;
upb_pb_encoder *encoder;
/* Initialize encoder. */
h = upb_handlercache_get(frame->encoder_handlercache, payload_type);
encoder = upb_pb_encoder_create(p->arena, h, frame->stringsink.sink);
/* Initialize parser. */
parser_method = upb_json_codecache_get(frame->parser_codecache, payload_type);
upb_sink_reset(&frame->sink, h, encoder);
frame->parser =
upb_json_parser_create(p->arena, parser_method, p->symtab, frame->sink,
p->status, p->ignore_json_unknown);
}
static void json_parser_any_frame_free(upb_jsonparser_any_frame *frame) {
upb_handlercache_free(frame->encoder_handlercache);
upb_json_codecache_free(frame->parser_codecache);
upb_stringsink_uninit(&frame->stringsink);
}
static bool json_parser_any_frame_has_type_url(
upb_jsonparser_any_frame *frame) {
return frame->parser != NULL;
}
static bool json_parser_any_frame_has_value_before_type_url(
upb_jsonparser_any_frame *frame) {
return frame->before_type_url_start != frame->before_type_url_end;
}
static bool json_parser_any_frame_has_value_after_type_url(
upb_jsonparser_any_frame *frame) {
return frame->after_type_url_start != NULL;
}
static bool json_parser_any_frame_has_value(
upb_jsonparser_any_frame *frame) {
return json_parser_any_frame_has_value_before_type_url(frame) ||
json_parser_any_frame_has_value_after_type_url(frame);
}
static void json_parser_any_frame_set_before_type_url_end(
upb_jsonparser_any_frame *frame,
const char *ptr) {
if (frame->parser == NULL) {
frame->before_type_url_end = ptr;
}
}
static void json_parser_any_frame_set_after_type_url_start_once(
upb_jsonparser_any_frame *frame,
const char *ptr) {
if (json_parser_any_frame_has_type_url(frame) &&
frame->after_type_url_start == NULL) {
frame->after_type_url_start = ptr;
}
}
/* Used to signal that a capture has been suspended. */
static char suspend_capture;
static upb_selector_t getsel_for_handlertype(upb_json_parser *p,
upb_handlertype_t type) {
upb_selector_t sel;
bool ok = upb_handlers_getselector(p->top->f, type, &sel);
UPB_ASSERT(ok);
return sel;
}
static upb_selector_t parser_getsel(upb_json_parser *p) {
return getsel_for_handlertype(
p, upb_handlers_getprimitivehandlertype(p->top->f));
}
static bool check_stack(upb_json_parser *p) {
if ((p->top + 1) == p->limit) {
upb_status_seterrmsg(p->status, "Nesting too deep");
return false;
}
return true;
}
static void set_name_table(upb_json_parser *p, upb_jsonparser_frame *frame) {
upb_value v;
const upb_json_codecache *cache = p->method->cache;
bool ok;
const upb_json_parsermethod *method;
ok = upb_inttable_lookupptr(&cache->methods, frame->m, &v);
UPB_ASSERT(ok);
method = upb_value_getconstptr(v);
frame->name_table = &method->name_table;
}
/* There are GCC/Clang built-ins for overflow checking which we could start
* using if there was any performance benefit to it. */
static bool checked_add(size_t a, size_t b, size_t *c) {
if (SIZE_MAX - a < b) return false;
*c = a + b;
return true;
}
static size_t saturating_multiply(size_t a, size_t b) {
/* size_t is unsigned, so this is defined behavior even on overflow. */
size_t ret = a * b;
if (b != 0 && ret / b != a) {
ret = SIZE_MAX;
}
return ret;
}
/* Base64 decoding ************************************************************/
/* TODO(haberman): make this streaming. */
static const signed char b64table[] = {
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */,
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1,
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1
};
/* Returns the table value sign-extended to 32 bits. Knowing that the upper
* bits will be 1 for unrecognized characters makes it easier to check for
* this error condition later (see below). */
int32_t b64lookup(unsigned char ch) { return b64table[ch]; }
/* Returns true if the given character is not a valid base64 character or
* padding. */
bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; }
static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr,
size_t len) {
const char *limit = ptr + len;
for (; ptr < limit; ptr += 4) {
uint32_t val;
char output[3];
if (limit - ptr < 4) {
upb_status_seterrf(p->status,
"Base64 input for bytes field not a multiple of 4: %s",
upb_fielddef_name(p->top->f));
return false;
}
val = b64lookup(ptr[0]) << 18 |
b64lookup(ptr[1]) << 12 |
b64lookup(ptr[2]) << 6 |
b64lookup(ptr[3]);
/* Test the upper bit; returns true if any of the characters returned -1. */
if (val & 0x80000000) {
goto otherchar;
}
output[0] = val >> 16;
output[1] = (val >> 8) & 0xff;
output[2] = val & 0xff;
upb_sink_putstring(p->top->sink, sel, output, 3, NULL);
}
return true;
otherchar:
if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) ||
nonbase64(ptr[3]) ) {
upb_status_seterrf(p->status,
"Non-base64 characters in bytes field: %s",
upb_fielddef_name(p->top->f));
return false;
} if (ptr[2] == '=') {
uint32_t val;
char output;
/* Last group contains only two input bytes, one output byte. */
if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') {
goto badpadding;
}
val = b64lookup(ptr[0]) << 18 |
b64lookup(ptr[1]) << 12;
UPB_ASSERT(!(val & 0x80000000));
output = val >> 16;
upb_sink_putstring(p->top->sink, sel, &output, 1, NULL);
return true;
} else {
uint32_t val;
char output[2];
/* Last group contains only three input bytes, two output bytes. */
if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') {
goto badpadding;
}
val = b64lookup(ptr[0]) << 18 |
b64lookup(ptr[1]) << 12 |
b64lookup(ptr[2]) << 6;
output[0] = val >> 16;
output[1] = (val >> 8) & 0xff;
upb_sink_putstring(p->top->sink, sel, output, 2, NULL);
return true;
}
badpadding:
upb_status_seterrf(p->status,
"Incorrect base64 padding for field: %s (%.*s)",
upb_fielddef_name(p->top->f),
4, ptr);
return false;
}
/* Accumulate buffer **********************************************************/
/* Functionality for accumulating a buffer.
*
* Some parts of the parser need an entire value as a contiguous string. For
* example, to look up a member name in a hash table, or to turn a string into
* a number, the relevant library routines need the input string to be in
* contiguous memory, even if the value spanned two or more buffers in the
* input. These routines handle that.
*
* In the common case we can just point to the input buffer to get this
* contiguous string and avoid any actual copy. So we optimistically begin
* this way. But there are a few cases where we must instead copy into a
* separate buffer:
*
* 1. The string was not contiguous in the input (it spanned buffers).
*
* 2. The string included escape sequences that need to be interpreted to get
* the true value in a contiguous buffer. */
static void assert_accumulate_empty(upb_json_parser *p) {
UPB_ASSERT(p->accumulated == NULL);
UPB_ASSERT(p->accumulated_len == 0);
}
static void accumulate_clear(upb_json_parser *p) {
p->accumulated = NULL;
p->accumulated_len = 0;
}
/* Used internally by accumulate_append(). */
static bool accumulate_realloc(upb_json_parser *p, size_t need) {
void *mem;
size_t old_size = p->accumulate_buf_size;
size_t new_size = UPB_MAX(old_size, 128);
while (new_size < need) {
new_size = saturating_multiply(new_size, 2);
}
mem = upb_arena_realloc(p->arena, p->accumulate_buf, old_size, new_size);
if (!mem) {
upb_status_seterrmsg(p->status, "Out of memory allocating buffer.");
return false;
}
p->accumulate_buf = mem;
p->accumulate_buf_size = new_size;
return true;
}
/* Logically appends the given data to the append buffer.
* If "can_alias" is true, we will try to avoid actually copying, but the buffer
* must be valid until the next accumulate_append() call (if any). */
static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len,
bool can_alias) {
size_t need;
if (!p->accumulated && can_alias) {
p->accumulated = buf;
p->accumulated_len = len;
return true;
}
if (!checked_add(p->accumulated_len, len, &need)) {
upb_status_seterrmsg(p->status, "Integer overflow.");
return false;
}
if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) {
return false;
}
if (p->accumulated != p->accumulate_buf) {
memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len);
p->accumulated = p->accumulate_buf;
}
memcpy(p->accumulate_buf + p->accumulated_len, buf, len);
p->accumulated_len += len;
return true;
}
/* Returns a pointer to the data accumulated since the last accumulate_clear()
* call, and writes the length to *len. This with point either to the input
* buffer or a temporary accumulate buffer. */
static const char *accumulate_getptr(upb_json_parser *p, size_t *len) {
UPB_ASSERT(p->accumulated);
*len = p->accumulated_len;
return p->accumulated;
}
/* Mult-part text data ********************************************************/
/* When we have text data in the input, it can often come in multiple segments.
* For example, there may be some raw string data followed by an escape
* sequence. The two segments are processed with different logic. Also buffer
* seams in the input can cause multiple segments.
*
* As we see segments, there are two main cases for how we want to process them:
*
* 1. we want to push the captured input directly to string handlers.
*
* 2. we need to accumulate all the parts into a contiguous buffer for further
* processing (field name lookup, string->number conversion, etc). */
/* This is the set of states for p->multipart_state. */
enum {
/* We are not currently processing multipart data. */
MULTIPART_INACTIVE = 0,
/* We are processing multipart data by accumulating it into a contiguous
* buffer. */
MULTIPART_ACCUMULATE = 1,
/* We are processing multipart data by pushing each part directly to the
* current string handlers. */
MULTIPART_PUSHEAGERLY = 2
};
/* Start a multi-part text value where we accumulate the data for processing at
* the end. */
static void multipart_startaccum(upb_json_parser *p) {
assert_accumulate_empty(p);
UPB_ASSERT(p->multipart_state == MULTIPART_INACTIVE);
p->multipart_state = MULTIPART_ACCUMULATE;
}
/* Start a multi-part text value where we immediately push text data to a string
* value with the given selector. */
static void multipart_start(upb_json_parser *p, upb_selector_t sel) {
assert_accumulate_empty(p);
UPB_ASSERT(p->multipart_state == MULTIPART_INACTIVE);
p->multipart_state = MULTIPART_PUSHEAGERLY;
p->string_selector = sel;
}
static bool multipart_text(upb_json_parser *p, const char *buf, size_t len,
bool can_alias) {
switch (p->multipart_state) {
case MULTIPART_INACTIVE:
upb_status_seterrmsg(
p->status, "Internal error: unexpected state MULTIPART_INACTIVE");
return false;
case MULTIPART_ACCUMULATE:
if (!accumulate_append(p, buf, len, can_alias)) {
return false;
}
break;
case MULTIPART_PUSHEAGERLY: {
const upb_bufhandle *handle = can_alias ? p->handle : NULL;
upb_sink_putstring(p->top->sink, p->string_selector, buf, len, handle);
break;
}
}
return true;
}
/* Note: this invalidates the accumulate buffer! Call only after reading its
* contents. */
static void multipart_end(upb_json_parser *p) {
UPB_ASSERT(p->multipart_state != MULTIPART_INACTIVE);
p->multipart_state = MULTIPART_INACTIVE;
accumulate_clear(p);
}
/* Input capture **************************************************************/
/* Functionality for capturing a region of the input as text. Gracefully
* handles the case where a buffer seam occurs in the middle of the captured
* region. */
static void capture_begin(upb_json_parser *p, const char *ptr) {
UPB_ASSERT(p->multipart_state != MULTIPART_INACTIVE);
UPB_ASSERT(p->capture == NULL);
p->capture = ptr;
}
static bool capture_end(upb_json_parser *p, const char *ptr) {
UPB_ASSERT(p->capture);
if (multipart_text(p, p->capture, ptr - p->capture, true)) {
p->capture = NULL;
return true;
} else {
return false;
}
}
/* This is called at the end of each input buffer (ie. when we have hit a
* buffer seam). If we are in the middle of capturing the input, this
* processes the unprocessed capture region. */
static void capture_suspend(upb_json_parser *p, const char **ptr) {
if (!p->capture) return;
if (multipart_text(p, p->capture, *ptr - p->capture, false)) {
/* We use this as a signal that we were in the middle of capturing, and
* that capturing should resume at the beginning of the next buffer.
*
* We can't use *ptr here, because we have no guarantee that this pointer
* will be valid when we resume (if the underlying memory is freed, then
* using the pointer at all, even to compare to NULL, is likely undefined
* behavior). */
p->capture = &suspend_capture;
} else {
/* Need to back up the pointer to the beginning of the capture, since
* we were not able to actually preserve it. */
*ptr = p->capture;
}
}
static void capture_resume(upb_json_parser *p, const char *ptr) {
if (p->capture) {
UPB_ASSERT(p->capture == &suspend_capture);
p->capture = ptr;
}
}
/* Callbacks from the parser **************************************************/
/* These are the functions called directly from the parser itself.
* We define these in the same order as their declarations in the parser. */
static char escape_char(char in) {
switch (in) {
case 'r': return '\r';
case 't': return '\t';
case 'n': return '\n';
case 'f': return '\f';
case 'b': return '\b';
case '/': return '/';
case '"': return '"';
case '\\': return '\\';
default:
UPB_ASSERT(0);
return 'x';
}
}
static bool escape(upb_json_parser *p, const char *ptr) {
char ch = escape_char(*ptr);
return multipart_text(p, &ch, 1, false);
}
static void start_hex(upb_json_parser *p) {
p->digit = 0;
}
static void hexdigit(upb_json_parser *p, const char *ptr) {
char ch = *ptr;
p->digit <<= 4;
if (ch >= '0' && ch <= '9') {
p->digit += (ch - '0');
} else if (ch >= 'a' && ch <= 'f') {
p->digit += ((ch - 'a') + 10);
} else {
UPB_ASSERT(ch >= 'A' && ch <= 'F');
p->digit += ((ch - 'A') + 10);
}
}
static bool end_hex(upb_json_parser *p) {
uint32_t codepoint = p->digit;
/* emit the codepoint as UTF-8. */
char utf8[3]; /* support \u0000 -- \uFFFF -- need only three bytes. */
int length = 0;
if (codepoint <= 0x7F) {
utf8[0] = codepoint;
length = 1;
} else if (codepoint <= 0x07FF) {
utf8[1] = (codepoint & 0x3F) | 0x80;
codepoint >>= 6;
utf8[0] = (codepoint & 0x1F) | 0xC0;
length = 2;
} else /* codepoint <= 0xFFFF */ {
utf8[2] = (codepoint & 0x3F) | 0x80;
codepoint >>= 6;
utf8[1] = (codepoint & 0x3F) | 0x80;
codepoint >>= 6;
utf8[0] = (codepoint & 0x0F) | 0xE0;
length = 3;
}
/* TODO(haberman): Handle high surrogates: if codepoint is a high surrogate
* we have to wait for the next escape to get the full code point). */
return multipart_text(p, utf8, length, false);
}
static void start_text(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_text(upb_json_parser *p, const char *ptr) {
return capture_end(p, ptr);
}
static bool start_number(upb_json_parser *p, const char *ptr) {
if (is_top_level(p)) {
if (is_number_wrapper_object(p)) {
start_wrapper_object(p);
} else if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
start_value_object(p, VALUE_NUMBERVALUE);
} else {
return false;
}
} else if (does_number_wrapper_start(p)) {
if (!start_subobject(p)) {
return false;
}
start_wrapper_object(p);
} else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) {
if (!start_subobject(p)) {
return false;
}
start_value_object(p, VALUE_NUMBERVALUE);
}
multipart_startaccum(p);
capture_begin(p, ptr);
return true;
}
static bool parse_number(upb_json_parser *p, bool is_quoted);
static bool end_number_nontop(upb_json_parser *p, const char *ptr) {
if (!capture_end(p, ptr)) {
return false;
}
if (p->top->f == NULL) {
multipart_end(p);
return true;
}
return parse_number(p, false);
}
static bool end_number(upb_json_parser *p, const char *ptr) {
if (!end_number_nontop(p, ptr)) {
return false;
}
if (does_number_wrapper_end(p)) {
end_wrapper_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
return true;
}
if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
end_value_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
return true;
}
return true;
}
/* |buf| is NULL-terminated. |buf| itself will never include quotes;
* |is_quoted| tells us whether this text originally appeared inside quotes. */
static bool parse_number_from_buffer(upb_json_parser *p, const char *buf,
bool is_quoted) {
size_t len = strlen(buf);
const char *bufend = buf + len;
char *end;
upb_fieldtype_t type = upb_fielddef_type(p->top->f);
double val;
double dummy;
double inf = UPB_INFINITY;
errno = 0;
if (len == 0 || buf[0] == ' ') {
return false;
}
/* For integer types, first try parsing with integer-specific routines.
* If these succeed, they will be more accurate for int64/uint64 than
* strtod().
*/
switch (type) {
case UPB_TYPE_ENUM:
case UPB_TYPE_INT32: {
long val = strtol(buf, &end, 0);
if (errno == ERANGE || end != bufend) {
break;
} else if (val > INT32_MAX || val < INT32_MIN) {
return false;
} else {
upb_sink_putint32(p->top->sink, parser_getsel(p), val);
return true;
}
}
case UPB_TYPE_UINT32: {
unsigned long val = strtoul(buf, &end, 0);
if (end != bufend) {
break;
} else if (val > UINT32_MAX || errno == ERANGE) {
return false;
} else {
upb_sink_putuint32(p->top->sink, parser_getsel(p), val);
return true;
}
}
/* XXX: We can't handle [u]int64 properly on 32-bit machines because
* strto[u]ll isn't in C89. */
case UPB_TYPE_INT64: {
long val = strtol(buf, &end, 0);
if (errno == ERANGE || end != bufend) {
break;
} else {
upb_sink_putint64(p->top->sink, parser_getsel(p), val);
return true;
}
}
case UPB_TYPE_UINT64: {
unsigned long val = strtoul(p->accumulated, &end, 0);
if (end != bufend) {
break;
} else if (errno == ERANGE) {
return false;
} else {
upb_sink_putuint64(p->top->sink, parser_getsel(p), val);
return true;
}
}
default:
break;
}
if (type != UPB_TYPE_DOUBLE && type != UPB_TYPE_FLOAT && is_quoted) {
/* Quoted numbers for integer types are not allowed to be in double form. */
return false;
}
if (len == strlen("Infinity") && strcmp(buf, "Infinity") == 0) {
/* C89 does not have an INFINITY macro. */
val = inf;
} else if (len == strlen("-Infinity") && strcmp(buf, "-Infinity") == 0) {
val = -inf;
} else {
val = strtod(buf, &end);
if (errno == ERANGE || end != bufend) {
return false;
}
}
switch (type) {
#define CASE(capitaltype, smalltype, ctype, min, max) \
case UPB_TYPE_ ## capitaltype: { \
if (modf(val, &dummy) != 0 || val > max || val < min) { \
return false; \
} else { \
upb_sink_put ## smalltype(p->top->sink, parser_getsel(p), \
(ctype)val); \
return true; \
} \
break; \
}
case UPB_TYPE_ENUM:
CASE(INT32, int32, int32_t, INT32_MIN, INT32_MAX);
CASE(INT64, int64, int64_t, INT64_MIN, INT64_MAX);
CASE(UINT32, uint32, uint32_t, 0, UINT32_MAX);
CASE(UINT64, uint64, uint64_t, 0, UINT64_MAX);
#undef CASE
case UPB_TYPE_DOUBLE:
upb_sink_putdouble(p->top->sink, parser_getsel(p), val);
return true;
case UPB_TYPE_FLOAT:
if ((val > FLT_MAX || val < -FLT_MAX) && val != inf && val != -inf) {
return false;
} else {
upb_sink_putfloat(p->top->sink, parser_getsel(p), val);
return true;
}
default:
return false;
}
}
static bool parse_number(upb_json_parser *p, bool is_quoted) {
size_t len;
const char *buf;
/* strtol() and friends unfortunately do not support specifying the length of
* the input string, so we need to force a copy into a NULL-terminated buffer. */
if (!multipart_text(p, "\0", 1, false)) {
return false;
}
buf = accumulate_getptr(p, &len);
if (parse_number_from_buffer(p, buf, is_quoted)) {
multipart_end(p);
return true;
} else {
upb_status_seterrf(p->status, "error parsing number: %s", buf);
multipart_end(p);
return false;
}
}
static bool parser_putbool(upb_json_parser *p, bool val) {
bool ok;
if (p->top->f == NULL) {
return true;
}
if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) {
upb_status_seterrf(p->status,
"Boolean value specified for non-bool field: %s",
upb_fielddef_name(p->top->f));
return false;
}
ok = upb_sink_putbool(p->top->sink, parser_getsel(p), val);
UPB_ASSERT(ok);
return true;
}
static bool end_bool(upb_json_parser *p, bool val) {
if (is_top_level(p)) {
if (is_wellknown_msg(p, UPB_WELLKNOWN_BOOLVALUE)) {
start_wrapper_object(p);
} else if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
start_value_object(p, VALUE_BOOLVALUE);
} else {
return false;
}
} else if (is_wellknown_field(p, UPB_WELLKNOWN_BOOLVALUE)) {
if (!start_subobject(p)) {
return false;
}
start_wrapper_object(p);
} else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) {
if (!start_subobject(p)) {
return false;
}
start_value_object(p, VALUE_BOOLVALUE);
}
if (p->top->is_unknown_field) {
return true;
}
if (!parser_putbool(p, val)) {
return false;
}
if (is_wellknown_msg(p, UPB_WELLKNOWN_BOOLVALUE)) {
end_wrapper_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
return true;
}
if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
end_value_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
return true;
}
return true;
}
static bool end_null(upb_json_parser *p) {
const char *zero_ptr = "0";
if (is_top_level(p)) {
if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
start_value_object(p, VALUE_NULLVALUE);
} else {
return true;
}
} else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) {
if (!start_subobject(p)) {
return false;
}
start_value_object(p, VALUE_NULLVALUE);
} else {
return true;
}
/* Fill null_value field. */
multipart_startaccum(p);
capture_begin(p, zero_ptr);
capture_end(p, zero_ptr + 1);
parse_number(p, false);
end_value_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
return true;
}
static bool start_any_stringval(upb_json_parser *p) {
multipart_startaccum(p);
return true;
}
static bool start_stringval(upb_json_parser *p) {
if (is_top_level(p)) {
if (is_string_wrapper_object(p) ||
is_number_wrapper_object(p)) {
start_wrapper_object(p);
} else if (is_wellknown_msg(p, UPB_WELLKNOWN_FIELDMASK)) {
start_fieldmask_object(p);
return true;
} else if (is_wellknown_msg(p, UPB_WELLKNOWN_TIMESTAMP) ||
is_wellknown_msg(p, UPB_WELLKNOWN_DURATION)) {
start_object(p);
} else if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
start_value_object(p, VALUE_STRINGVALUE);
} else {
return false;
}
} else if (does_string_wrapper_start(p) ||
does_number_wrapper_start(p)) {
if (!start_subobject(p)) {
return false;
}
start_wrapper_object(p);
} else if (does_fieldmask_start(p)) {
if (!start_subobject(p)) {
return false;
}
start_fieldmask_object(p);
return true;
} else if (is_wellknown_field(p, UPB_WELLKNOWN_TIMESTAMP) ||
is_wellknown_field(p, UPB_WELLKNOWN_DURATION)) {
if (!start_subobject(p)) {
return false;
}
start_object(p);
} else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) {
if (!start_subobject(p)) {
return false;
}
start_value_object(p, VALUE_STRINGVALUE);
}
if (p->top->f == NULL) {
multipart_startaccum(p);
return true;
}
if (p->top->is_any) {
return start_any_stringval(p);
}
if (upb_fielddef_isstring(p->top->f)) {
upb_jsonparser_frame *inner;
upb_selector_t sel;
if (!check_stack(p)) return false;
/* Start a new parser frame: parser frames correspond one-to-one with
* handler frames, and string events occur in a sub-frame. */
inner = start_jsonparser_frame(p);
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
upb_sink_startstr(p->top->sink, sel, 0, &inner->sink);
inner->m = p->top->m;
inner->f = p->top->f;
p->top = inner;
if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) {
/* For STRING fields we push data directly to the handlers as it is
* parsed. We don't do this yet for BYTES fields, because our base64
* decoder is not streaming.
*
* TODO(haberman): make base64 decoding streaming also. */
multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING));
return true;
} else {
multipart_startaccum(p);
return true;
}
} else if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL &&
upb_fielddef_type(p->top->f) != UPB_TYPE_MESSAGE) {
/* No need to push a frame -- numeric values in quotes remain in the
* current parser frame. These values must accmulate so we can convert
* them all at once at the end. */
multipart_startaccum(p);
return true;
} else {
upb_status_seterrf(p->status,
"String specified for bool or submessage field: %s",
upb_fielddef_name(p->top->f));
return false;
}
}
static bool end_any_stringval(upb_json_parser *p) {
size_t len;
const char *buf = accumulate_getptr(p, &len);
/* Set type_url */
upb_selector_t sel;
upb_jsonparser_frame *inner;
if (!check_stack(p)) return false;
inner = p->top + 1;
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
upb_sink_startstr(p->top->sink, sel, 0, &inner->sink);
sel = getsel_for_handlertype(p, UPB_HANDLER_STRING);
upb_sink_putstring(inner->sink, sel, buf, len, NULL);
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
upb_sink_endstr(inner->sink, sel);
multipart_end(p);
/* Resolve type url */
if (strncmp(buf, "type.googleapis.com/", 20) == 0 && len > 20) {
const upb_msgdef *payload_type = NULL;
buf += 20;
len -= 20;
payload_type = upb_symtab_lookupmsg2(p->symtab, buf, len);
if (payload_type == NULL) {
upb_status_seterrf(
p->status, "Cannot find packed type: %.*s\n", (int)len, buf);
return false;
}
json_parser_any_frame_set_payload_type(p, p->top->any_frame, payload_type);
return true;
} else {
upb_status_seterrf(
p->status, "Invalid type url: %.*s\n", (int)len, buf);
return false;
}
}
static bool end_stringval_nontop(upb_json_parser *p) {
bool ok = true;
if (is_wellknown_msg(p, UPB_WELLKNOWN_TIMESTAMP) ||
is_wellknown_msg(p, UPB_WELLKNOWN_DURATION)) {
multipart_end(p);
return true;
}
if (p->top->f == NULL) {
multipart_end(p);
return true;
}
if (p->top->is_any) {
return end_any_stringval(p);
}
switch (upb_fielddef_type(p->top->f)) {
case UPB_TYPE_BYTES:
if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING),
p->accumulated, p->accumulated_len)) {
return false;
}
/* Fall through. */
case UPB_TYPE_STRING: {
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
upb_sink_endstr(p->top->sink, sel);
p->top--;
break;
}
case UPB_TYPE_ENUM: {
/* Resolve enum symbolic name to integer value. */
const upb_enumdef *enumdef = upb_fielddef_enumsubdef(p->top->f);
size_t len;
const char *buf = accumulate_getptr(p, &len);
int32_t int_val = 0;
ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val);
if (ok) {
upb_selector_t sel = parser_getsel(p);
upb_sink_putint32(p->top->sink, sel, int_val);
} else {
upb_status_seterrf(p->status, "Enum value unknown: '%.*s'", len, buf);
}
break;
}
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_UINT64:
case UPB_TYPE_DOUBLE:
case UPB_TYPE_FLOAT:
ok = parse_number(p, true);
break;
default:
UPB_ASSERT(false);
upb_status_seterrmsg(p->status, "Internal error in JSON decoder");
ok = false;
break;
}
multipart_end(p);
return ok;
}
static bool end_stringval(upb_json_parser *p) {
/* FieldMask's stringvals have been ended when handling them. Only need to
* close FieldMask here.*/
if (does_fieldmask_end(p)) {
end_fieldmask_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
return true;
}
if (!end_stringval_nontop(p)) {
return false;
}
if (does_string_wrapper_end(p) ||
does_number_wrapper_end(p)) {
end_wrapper_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
return true;
}
if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
end_value_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
return true;
}
if (is_wellknown_msg(p, UPB_WELLKNOWN_TIMESTAMP) ||
is_wellknown_msg(p, UPB_WELLKNOWN_DURATION) ||
is_wellknown_msg(p, UPB_WELLKNOWN_FIELDMASK)) {
end_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
return true;
}
return true;
}
static void start_duration_base(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_duration_base(upb_json_parser *p, const char *ptr) {
size_t len;
const char *buf;
char seconds_buf[14];
char nanos_buf[12];
char *end;
int64_t seconds = 0;
int32_t nanos = 0;
double val = 0.0;
const char *seconds_membername = "seconds";
const char *nanos_membername = "nanos";
size_t fraction_start;
if (!capture_end(p, ptr)) {
return false;
}
buf = accumulate_getptr(p, &len);
memset(seconds_buf, 0, 14);
memset(nanos_buf, 0, 12);
/* Find out base end. The maximus duration is 315576000000, which cannot be
* represented by double without losing precision. Thus, we need to handle
* fraction and base separately. */
for (fraction_start = 0; fraction_start < len && buf[fraction_start] != '.';
fraction_start++);
/* Parse base */
memcpy(seconds_buf, buf, fraction_start);
seconds = strtol(seconds_buf, &end, 10);
if (errno == ERANGE || end != seconds_buf + fraction_start) {
upb_status_seterrf(p->status, "error parsing duration: %s",
seconds_buf);
return false;
}
if (seconds > 315576000000) {
upb_status_seterrf(p->status, "error parsing duration: "
"maximum acceptable value is "
"315576000000");
return false;
}
if (seconds < -315576000000) {
upb_status_seterrf(p->status, "error parsing duration: "
"minimum acceptable value is "
"-315576000000");
return false;
}
/* Parse fraction */
nanos_buf[0] = '0';
memcpy(nanos_buf + 1, buf + fraction_start, len - fraction_start);
val = strtod(nanos_buf, &end);
if (errno == ERANGE || end != nanos_buf + len - fraction_start + 1) {
upb_status_seterrf(p->status, "error parsing duration: %s",
nanos_buf);
return false;
}
nanos = val * 1000000000;
if (seconds < 0) nanos = -nanos;
/* Clean up buffer */
multipart_end(p);
/* Set seconds */
start_member(p);
capture_begin(p, seconds_membername);
capture_end(p, seconds_membername + 7);
end_membername(p);
upb_sink_putint64(p->top->sink, parser_getsel(p), seconds);
end_member(p);
/* Set nanos */
start_member(p);
capture_begin(p, nanos_membername);
capture_end(p, nanos_membername + 5);
end_membername(p);
upb_sink_putint32(p->top->sink, parser_getsel(p), nanos);
end_member(p);
/* Continue previous arena */
multipart_startaccum(p);
return true;
}
static int parse_timestamp_number(upb_json_parser *p) {
size_t len;
const char *buf;
int val;
/* atoi() and friends unfortunately do not support specifying the length of
* the input string, so we need to force a copy into a NULL-terminated buffer. */
multipart_text(p, "\0", 1, false);
buf = accumulate_getptr(p, &len);
val = atoi(buf);
multipart_end(p);
multipart_startaccum(p);
return val;
}
static void start_year(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_year(upb_json_parser *p, const char *ptr) {
if (!capture_end(p, ptr)) {
return false;
}
p->tm.tm_year = parse_timestamp_number(p) - 1900;
return true;
}
static void start_month(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_month(upb_json_parser *p, const char *ptr) {
if (!capture_end(p, ptr)) {
return false;
}
p->tm.tm_mon = parse_timestamp_number(p) - 1;
return true;
}
static void start_day(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_day(upb_json_parser *p, const char *ptr) {
if (!capture_end(p, ptr)) {
return false;
}
p->tm.tm_mday = parse_timestamp_number(p);
return true;
}
static void start_hour(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_hour(upb_json_parser *p, const char *ptr) {
if (!capture_end(p, ptr)) {
return false;
}
p->tm.tm_hour = parse_timestamp_number(p);
return true;
}
static void start_minute(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_minute(upb_json_parser *p, const char *ptr) {
if (!capture_end(p, ptr)) {
return false;
}
p->tm.tm_min = parse_timestamp_number(p);
return true;
}
static void start_second(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_second(upb_json_parser *p, const char *ptr) {
if (!capture_end(p, ptr)) {
return false;
}
p->tm.tm_sec = parse_timestamp_number(p);
return true;
}
static void start_timestamp_base(upb_json_parser *p) {
memset(&p->tm, 0, sizeof(struct tm));
}
static void start_timestamp_fraction(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_timestamp_fraction(upb_json_parser *p, const char *ptr) {
size_t len;
const char *buf;
char nanos_buf[12];
char *end;
double val = 0.0;
int32_t nanos;
const char *nanos_membername = "nanos";
memset(nanos_buf, 0, 12);
if (!capture_end(p, ptr)) {
return false;
}
buf = accumulate_getptr(p, &len);
if (len > 10) {
upb_status_seterrf(p->status,
"error parsing timestamp: at most 9-digit fraction.");
return false;
}
/* Parse nanos */
nanos_buf[0] = '0';
memcpy(nanos_buf + 1, buf, len);
val = strtod(nanos_buf, &end);
if (errno == ERANGE || end != nanos_buf + len + 1) {
upb_status_seterrf(p->status, "error parsing timestamp nanos: %s",
nanos_buf);
return false;
}
nanos = val * 1000000000;
/* Clean up previous environment */
multipart_end(p);
/* Set nanos */
start_member(p);
capture_begin(p, nanos_membername);
capture_end(p, nanos_membername + 5);
end_membername(p);
upb_sink_putint32(p->top->sink, parser_getsel(p), nanos);
end_member(p);
/* Continue previous environment */
multipart_startaccum(p);
return true;
}
static void start_timestamp_zone(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
#define EPOCH_YEAR 1970
#define TM_YEAR_BASE 1900
static bool isleap(int year) {
return (year % 4) == 0 && (year % 100 != 0 || (year % 400) == 0);
}
const unsigned short int __mon_yday[2][13] = {
/* Normal years. */
{ 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
/* Leap years. */
{ 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
};
int64_t epoch(int year, int yday, int hour, int min, int sec) {
int64_t years = year - EPOCH_YEAR;
int64_t leap_days = years / 4 - years / 100 + years / 400;
int64_t days = years * 365 + yday + leap_days;
int64_t hours = days * 24 + hour;
int64_t mins = hours * 60 + min;
int64_t secs = mins * 60 + sec;
return secs;
}
static int64_t upb_mktime(const struct tm *tp) {
int sec = tp->tm_sec;
int min = tp->tm_min;
int hour = tp->tm_hour;
int mday = tp->tm_mday;
int mon = tp->tm_mon;
int year = tp->tm_year + TM_YEAR_BASE;
/* Calculate day of year from year, month, and day of month. */
int mon_yday = ((__mon_yday[isleap(year)][mon]) - 1);
int yday = mon_yday + mday;
return epoch(year, yday, hour, min, sec);
}
static bool end_timestamp_zone(upb_json_parser *p, const char *ptr) {
size_t len;
const char *buf;
int hours;
int64_t seconds;
const char *seconds_membername = "seconds";
if (!capture_end(p, ptr)) {
return false;
}
buf = accumulate_getptr(p, &len);
if (buf[0] != 'Z') {
if (sscanf(buf + 1, "%2d:00", &hours) != 1) {
upb_status_seterrf(p->status, "error parsing timestamp offset");
return false;
}
if (buf[0] == '+') {
hours = -hours;
}
p->tm.tm_hour += hours;
}
/* Normalize tm */
seconds = upb_mktime(&p->tm);
/* Check timestamp boundary */
if (seconds < -62135596800) {
upb_status_seterrf(p->status, "error parsing timestamp: "
"minimum acceptable value is "
"0001-01-01T00:00:00Z");
return false;
}
/* Clean up previous environment */
multipart_end(p);
/* Set seconds */
start_member(p);
capture_begin(p, seconds_membername);
capture_end(p, seconds_membername + 7);
end_membername(p);
upb_sink_putint64(p->top->sink, parser_getsel(p), seconds);
end_member(p);
/* Continue previous environment */
multipart_startaccum(p);
return true;
}
static void start_fieldmask_path_text(upb_json_parser *p, const char *ptr) {
capture_begin(p, ptr);
}
static bool end_fieldmask_path_text(upb_json_parser *p, const char *ptr) {
return capture_end(p, ptr);
}
static bool start_fieldmask_path(upb_json_parser *p) {
upb_jsonparser_frame *inner;
upb_selector_t sel;
if (!check_stack(p)) return false;
/* Start a new parser frame: parser frames correspond one-to-one with
* handler frames, and string events occur in a sub-frame. */
inner = start_jsonparser_frame(p);
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
upb_sink_startstr(p->top->sink, sel, 0, &inner->sink);
inner->m = p->top->m;
inner->f = p->top->f;
p->top = inner;
multipart_startaccum(p);
return true;
}
static bool lower_camel_push(
upb_json_parser *p, upb_selector_t sel, const char *ptr, size_t len) {
const char *limit = ptr + len;
bool first = true;
for (;ptr < limit; ptr++) {
if (*ptr >= 'A' && *ptr <= 'Z' && !first) {
char lower = tolower(*ptr);
upb_sink_putstring(p->top->sink, sel, "_", 1, NULL);
upb_sink_putstring(p->top->sink, sel, &lower, 1, NULL);
} else {
upb_sink_putstring(p->top->sink, sel, ptr, 1, NULL);
}
first = false;
}
return true;
}
static bool end_fieldmask_path(upb_json_parser *p) {
upb_selector_t sel;
if (!lower_camel_push(
p, getsel_for_handlertype(p, UPB_HANDLER_STRING),
p->accumulated, p->accumulated_len)) {
return false;
}
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
upb_sink_endstr(p->top->sink, sel);
p->top--;
multipart_end(p);
return true;
}
static void start_member(upb_json_parser *p) {
UPB_ASSERT(!p->top->f);
multipart_startaccum(p);
}
/* Helper: invoked during parse_mapentry() to emit the mapentry message's key
* field based on the current contents of the accumulate buffer. */
static bool parse_mapentry_key(upb_json_parser *p) {
size_t len;
const char *buf = accumulate_getptr(p, &len);
/* Emit the key field. We do a bit of ad-hoc parsing here because the
* parser state machine has already decided that this is a string field
* name, and we are reinterpreting it as some arbitrary key type. In
* particular, integer and bool keys are quoted, so we need to parse the
* quoted string contents here. */
p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_KEY);
if (p->top->f == NULL) {
upb_status_seterrmsg(p->status, "mapentry message has no key");
return false;
}
switch (upb_fielddef_type(p->top->f)) {
case UPB_TYPE_INT32:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT32:
case UPB_TYPE_UINT64:
/* Invoke end_number. The accum buffer has the number's text already. */
if (!parse_number(p, true)) {
return false;
}
break;
case UPB_TYPE_BOOL:
if (len == 4 && !strncmp(buf, "true", 4)) {
if (!parser_putbool(p, true)) {
return false;
}
} else if (len == 5 && !strncmp(buf, "false", 5)) {
if (!parser_putbool(p, false)) {
return false;
}
} else {
upb_status_seterrmsg(p->status,
"Map bool key not 'true' or 'false'");
return false;
}
multipart_end(p);
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
upb_sink subsink;
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
upb_sink_startstr(p->top->sink, sel, len, &subsink);
sel = getsel_for_handlertype(p, UPB_HANDLER_STRING);
upb_sink_putstring(subsink, sel, buf, len, NULL);
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
upb_sink_endstr(subsink, sel);
multipart_end(p);
break;
}
default:
upb_status_seterrmsg(p->status, "Invalid field type for map key");
return false;
}
return true;
}
/* Helper: emit one map entry (as a submessage in the map field sequence). This
* is invoked from end_membername(), at the end of the map entry's key string,
* with the map key in the accumulate buffer. It parses the key from that
* buffer, emits the handler calls to start the mapentry submessage (setting up
* its subframe in the process), and sets up state in the subframe so that the
* value parser (invoked next) will emit the mapentry's value field and then
* end the mapentry message. */
static bool handle_mapentry(upb_json_parser *p) {
const upb_fielddef *mapfield;
const upb_msgdef *mapentrymsg;
upb_jsonparser_frame *inner;
upb_selector_t sel;
/* Map entry: p->top->sink is the seq frame, so we need to start a frame
* for the mapentry itself, and then set |f| in that frame so that the map
* value field is parsed, and also set a flag to end the frame after the
* map-entry value is parsed. */
if (!check_stack(p)) return false;
mapfield = p->top->mapfield;
mapentrymsg = upb_fielddef_msgsubdef(mapfield);
inner = start_jsonparser_frame(p);
p->top->f = mapfield;
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG);
upb_sink_startsubmsg(p->top->sink, sel, &inner->sink);
inner->m = mapentrymsg;
inner->mapfield = mapfield;
/* Don't set this to true *yet* -- we reuse parsing handlers below to push
* the key field value to the sink, and these handlers will pop the frame
* if they see is_mapentry (when invoked by the parser state machine, they
* would have just seen the map-entry value, not key). */
inner->is_mapentry = false;
p->top = inner;
/* send STARTMSG in submsg frame. */
upb_sink_startmsg(p->top->sink);
parse_mapentry_key(p);
/* Set up the value field to receive the map-entry value. */
p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_VALUE);
p->top->is_mapentry = true; /* set up to pop frame after value is parsed. */
p->top->mapfield = mapfield;
if (p->top->f == NULL) {
upb_status_seterrmsg(p->status, "mapentry message has no value");
return false;
}
return true;
}
static bool end_membername(upb_json_parser *p) {
UPB_ASSERT(!p->top->f);
if (!p->top->m) {
p->top->is_unknown_field = true;
multipart_end(p);
return true;
}
if (p->top->is_any) {
return end_any_membername(p);
} else if (p->top->is_map) {
return handle_mapentry(p);
} else {
size_t len;
const char *buf = accumulate_getptr(p, &len);
upb_value v;
if (upb_strtable_lookup2(p->top->name_table, buf, len, &v)) {
p->top->f = upb_value_getconstptr(v);
multipart_end(p);
return true;
} else if (p->ignore_json_unknown) {
p->top->is_unknown_field = true;
multipart_end(p);
return true;
} else {
upb_status_seterrf(p->status, "No such field: %.*s\n", (int)len, buf);
return false;
}
}
}
static bool end_any_membername(upb_json_parser *p) {
size_t len;
const char *buf = accumulate_getptr(p, &len);
upb_value v;
if (len == 5 && strncmp(buf, "@type", len) == 0) {
upb_strtable_lookup2(p->top->name_table, "type_url", 8, &v);
p->top->f = upb_value_getconstptr(v);
multipart_end(p);
return true;
} else {
p->top->is_unknown_field = true;
multipart_end(p);
return true;
}
}
static void end_member(upb_json_parser *p) {
/* If we just parsed a map-entry value, end that frame too. */
if (p->top->is_mapentry) {
upb_selector_t sel;
bool ok;
const upb_fielddef *mapfield;
UPB_ASSERT(p->top > p->stack);
/* send ENDMSG on submsg. */
upb_sink_endmsg(p->top->sink, p->status);
mapfield = p->top->mapfield;
/* send ENDSUBMSG in repeated-field-of-mapentries frame. */
p->top--;
ok = upb_handlers_getselector(mapfield, UPB_HANDLER_ENDSUBMSG, &sel);
UPB_ASSERT(ok);
upb_sink_endsubmsg(p->top->sink, sel);
}
p->top->f = NULL;
p->top->is_unknown_field = false;
}
static void start_any_member(upb_json_parser *p, const char *ptr) {
start_member(p);
json_parser_any_frame_set_after_type_url_start_once(p->top->any_frame, ptr);
}
static void end_any_member(upb_json_parser *p, const char *ptr) {
json_parser_any_frame_set_before_type_url_end(p->top->any_frame, ptr);
end_member(p);
}
static bool start_subobject(upb_json_parser *p) {
if (p->top->is_unknown_field) {
if (!check_stack(p)) return false;
p->top = start_jsonparser_frame(p);
return true;
}
if (upb_fielddef_ismap(p->top->f)) {
upb_jsonparser_frame *inner;
upb_selector_t sel;
/* Beginning of a map. Start a new parser frame in a repeated-field
* context. */
if (!check_stack(p)) return false;
inner = start_jsonparser_frame(p);
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ);
upb_sink_startseq(p->top->sink, sel, &inner->sink);
inner->m = upb_fielddef_msgsubdef(p->top->f);
inner->mapfield = p->top->f;
inner->is_map = true;
p->top = inner;
return true;
} else if (upb_fielddef_issubmsg(p->top->f)) {
upb_jsonparser_frame *inner;
upb_selector_t sel;
/* Beginning of a subobject. Start a new parser frame in the submsg
* context. */
if (!check_stack(p)) return false;
inner = start_jsonparser_frame(p);
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG);
upb_sink_startsubmsg(p->top->sink, sel, &inner->sink);
inner->m = upb_fielddef_msgsubdef(p->top->f);
set_name_table(p, inner);
p->top = inner;
if (is_wellknown_msg(p, UPB_WELLKNOWN_ANY)) {
p->top->is_any = true;
p->top->any_frame = json_parser_any_frame_new(p);
} else {
p->top->is_any = false;
p->top->any_frame = NULL;
}
return true;
} else {
upb_status_seterrf(p->status,
"Object specified for non-message/group field: %s",
upb_fielddef_name(p->top->f));
return false;
}
}
static bool start_subobject_full(upb_json_parser *p) {
if (is_top_level(p)) {
if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
start_value_object(p, VALUE_STRUCTVALUE);
if (!start_subobject(p)) return false;
start_structvalue_object(p);
} else if (is_wellknown_msg(p, UPB_WELLKNOWN_STRUCT)) {
start_structvalue_object(p);
} else {
return true;
}
} else if (is_wellknown_field(p, UPB_WELLKNOWN_STRUCT)) {
if (!start_subobject(p)) return false;
start_structvalue_object(p);
} else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE)) {
if (!start_subobject(p)) return false;
start_value_object(p, VALUE_STRUCTVALUE);
if (!start_subobject(p)) return false;
start_structvalue_object(p);
}
return start_subobject(p);
}
static void end_subobject(upb_json_parser *p) {
if (is_top_level(p)) {
return;
}
if (p->top->is_map) {
upb_selector_t sel;
p->top--;
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ);
upb_sink_endseq(p->top->sink, sel);
} else {
upb_selector_t sel;
bool is_unknown = p->top->m == NULL;
p->top--;
if (!is_unknown) {
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG);
upb_sink_endsubmsg(p->top->sink, sel);
}
}
}
static void end_subobject_full(upb_json_parser *p) {
end_subobject(p);
if (is_wellknown_msg(p, UPB_WELLKNOWN_STRUCT)) {
end_structvalue_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
}
if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
end_value_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
}
}
static bool start_array(upb_json_parser *p) {
upb_jsonparser_frame *inner;
upb_selector_t sel;
if (is_top_level(p)) {
if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
start_value_object(p, VALUE_LISTVALUE);
if (!start_subobject(p)) return false;
start_listvalue_object(p);
} else if (is_wellknown_msg(p, UPB_WELLKNOWN_LISTVALUE)) {
start_listvalue_object(p);
} else {
return false;
}
} else if (is_wellknown_field(p, UPB_WELLKNOWN_LISTVALUE) &&
(!upb_fielddef_isseq(p->top->f) ||
p->top->is_repeated)) {
if (!start_subobject(p)) return false;
start_listvalue_object(p);
} else if (is_wellknown_field(p, UPB_WELLKNOWN_VALUE) &&
(!upb_fielddef_isseq(p->top->f) ||
p->top->is_repeated)) {
if (!start_subobject(p)) return false;
start_value_object(p, VALUE_LISTVALUE);
if (!start_subobject(p)) return false;
start_listvalue_object(p);
}
if (p->top->is_unknown_field) {
inner = start_jsonparser_frame(p);
inner->is_unknown_field = true;
p->top = inner;
return true;
}
if (!upb_fielddef_isseq(p->top->f)) {
upb_status_seterrf(p->status,
"Array specified for non-repeated field: %s",
upb_fielddef_name(p->top->f));
return false;
}
if (!check_stack(p)) return false;
inner = start_jsonparser_frame(p);
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ);
upb_sink_startseq(p->top->sink, sel, &inner->sink);
inner->m = p->top->m;
inner->f = p->top->f;
inner->is_repeated = true;
p->top = inner;
return true;
}
static void end_array(upb_json_parser *p) {
upb_selector_t sel;
UPB_ASSERT(p->top > p->stack);
p->top--;
if (p->top->is_unknown_field) {
return;
}
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ);
upb_sink_endseq(p->top->sink, sel);
if (is_wellknown_msg(p, UPB_WELLKNOWN_LISTVALUE)) {
end_listvalue_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
}
if (is_wellknown_msg(p, UPB_WELLKNOWN_VALUE)) {
end_value_object(p);
if (!is_top_level(p)) {
end_subobject(p);
}
}
}
static void start_object(upb_json_parser *p) {
if (!p->top->is_map && p->top->m != NULL) {
upb_sink_startmsg(p->top->sink);
}
}
static void end_object(upb_json_parser *p) {
if (!p->top->is_map && p->top->m != NULL) {
upb_sink_endmsg(p->top->sink, p->status);
}
}
static void start_any_object(upb_json_parser *p, const char *ptr) {
start_object(p);
p->top->any_frame->before_type_url_start = ptr;
p->top->any_frame->before_type_url_end = ptr;
}
static bool end_any_object(upb_json_parser *p, const char *ptr) {
const char *value_membername = "value";
bool is_well_known_packed = false;
const char *packed_end = ptr + 1;
upb_selector_t sel;
upb_jsonparser_frame *inner;
if (json_parser_any_frame_has_value(p->top->any_frame) &&
!json_parser_any_frame_has_type_url(p->top->any_frame)) {
upb_status_seterrmsg(p->status, "No valid type url");
return false;
}
/* Well known types data is represented as value field. */
if (upb_msgdef_wellknowntype(p->top->any_frame->parser->top->m) !=
UPB_WELLKNOWN_UNSPECIFIED) {
is_well_known_packed = true;
if (json_parser_any_frame_has_value_before_type_url(p->top->any_frame)) {
p->top->any_frame->before_type_url_start =
memchr(p->top->any_frame->before_type_url_start, ':',
p->top->any_frame->before_type_url_end -
p->top->any_frame->before_type_url_start);
if (p->top->any_frame->before_type_url_start == NULL) {
upb_status_seterrmsg(p->status, "invalid data for well known type.");
return false;
}
p->top->any_frame->before_type_url_start++;
}
if (json_parser_any_frame_has_value_after_type_url(p->top->any_frame)) {
p->top->any_frame->after_type_url_start =
memchr(p->top->any_frame->after_type_url_start, ':',
(ptr + 1) -
p->top->any_frame->after_type_url_start);
if (p->top->any_frame->after_type_url_start == NULL) {
upb_status_seterrmsg(p->status, "Invalid data for well known type.");
return false;
}
p->top->any_frame->after_type_url_start++;
packed_end = ptr;
}
}
if (json_parser_any_frame_has_value_before_type_url(p->top->any_frame)) {
if (!parse(p->top->any_frame->parser, NULL,
p->top->any_frame->before_type_url_start,
p->top->any_frame->before_type_url_end -
p->top->any_frame->before_type_url_start, NULL)) {
return false;
}
} else {
if (!is_well_known_packed) {
if (!parse(p->top->any_frame->parser, NULL, "{", 1, NULL)) {
return false;
}
}
}
if (json_parser_any_frame_has_value_before_type_url(p->top->any_frame) &&
json_parser_any_frame_has_value_after_type_url(p->top->any_frame)) {
if (!parse(p->top->any_frame->parser, NULL, ",", 1, NULL)) {
return false;
}
}
if (json_parser_any_frame_has_value_after_type_url(p->top->any_frame)) {
if (!parse(p->top->any_frame->parser, NULL,
p->top->any_frame->after_type_url_start,
packed_end - p->top->any_frame->after_type_url_start, NULL)) {
return false;
}
} else {
if (!is_well_known_packed) {
if (!parse(p->top->any_frame->parser, NULL, "}", 1, NULL)) {
return false;
}
}
}
if (!end(p->top->any_frame->parser, NULL)) {
return false;
}
p->top->is_any = false;
/* Set value */
start_member(p);
capture_begin(p, value_membername);
capture_end(p, value_membername + 5);
end_membername(p);
if (!check_stack(p)) return false;
inner = p->top + 1;
sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR);
upb_sink_startstr(p->top->sink, sel, 0, &inner->sink);
sel = getsel_for_handlertype(p, UPB_HANDLER_STRING);
upb_sink_putstring(inner->sink, sel, p->top->any_frame->stringsink.ptr,
p->top->any_frame->stringsink.len, NULL);
sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR);
upb_sink_endstr(inner->sink, sel);
end_member(p);
end_object(p);
/* Deallocate any parse frame. */
json_parser_any_frame_free(p->top->any_frame);
return true;
}
static bool is_string_wrapper(const upb_msgdef *m) {
upb_wellknowntype_t type = upb_msgdef_wellknowntype(m);
return type == UPB_WELLKNOWN_STRINGVALUE ||
type == UPB_WELLKNOWN_BYTESVALUE;
}
static bool is_fieldmask(const upb_msgdef *m) {
upb_wellknowntype_t type = upb_msgdef_wellknowntype(m);
return type == UPB_WELLKNOWN_FIELDMASK;
}
static void start_fieldmask_object(upb_json_parser *p) {
const char *membername = "paths";
start_object(p);
/* Set up context for parsing value */
start_member(p);
capture_begin(p, membername);
capture_end(p, membername + 5);
end_membername(p);
start_array(p);
}
static void end_fieldmask_object(upb_json_parser *p) {
end_array(p);
end_member(p);
end_object(p);
}
static void start_wrapper_object(upb_json_parser *p) {
const char *membername = "value";
start_object(p);
/* Set up context for parsing value */
start_member(p);
capture_begin(p, membername);
capture_end(p, membername + 5);
end_membername(p);
}
static void end_wrapper_object(upb_json_parser *p) {
end_member(p);
end_object(p);
}
static void start_value_object(upb_json_parser *p, int value_type) {
const char *nullmember = "null_value";
const char *numbermember = "number_value";
const char *stringmember = "string_value";
const char *boolmember = "bool_value";
const char *structmember = "struct_value";
const char *listmember = "list_value";
const char *membername = "";
switch (value_type) {
case VALUE_NULLVALUE:
membername = nullmember;
break;
case VALUE_NUMBERVALUE:
membername = numbermember;
break;
case VALUE_STRINGVALUE:
membername = stringmember;
break;
case VALUE_BOOLVALUE:
membername = boolmember;
break;
case VALUE_STRUCTVALUE:
membername = structmember;
break;
case VALUE_LISTVALUE:
membername = listmember;
break;
}
start_object(p);
/* Set up context for parsing value */
start_member(p);
capture_begin(p, membername);
capture_end(p, membername + strlen(membername));
end_membername(p);
}
static void end_value_object(upb_json_parser *p) {
end_member(p);
end_object(p);
}
static void start_listvalue_object(upb_json_parser *p) {
const char *membername = "values";
start_object(p);
/* Set up context for parsing value */
start_member(p);
capture_begin(p, membername);
capture_end(p, membername + strlen(membername));
end_membername(p);
}
static void end_listvalue_object(upb_json_parser *p) {
end_member(p);
end_object(p);
}
static void start_structvalue_object(upb_json_parser *p) {
const char *membername = "fields";
start_object(p);
/* Set up context for parsing value */
start_member(p);
capture_begin(p, membername);
capture_end(p, membername + strlen(membername));
end_membername(p);
}
static void end_structvalue_object(upb_json_parser *p) {
end_member(p);
end_object(p);
}
static bool is_top_level(upb_json_parser *p) {
return p->top == p->stack && p->top->f == NULL && !p->top->is_unknown_field;
}
static bool is_wellknown_msg(upb_json_parser *p, upb_wellknowntype_t type) {
return p->top->m != NULL && upb_msgdef_wellknowntype(p->top->m) == type;
}
static bool is_wellknown_field(upb_json_parser *p, upb_wellknowntype_t type) {
return p->top->f != NULL &&
upb_fielddef_issubmsg(p->top->f) &&
(upb_msgdef_wellknowntype(upb_fielddef_msgsubdef(p->top->f))
== type);
}
static bool does_number_wrapper_start(upb_json_parser *p) {
return p->top->f != NULL &&
upb_fielddef_issubmsg(p->top->f) &&
upb_msgdef_isnumberwrapper(upb_fielddef_msgsubdef(p->top->f));
}
static bool does_number_wrapper_end(upb_json_parser *p) {
return p->top->m != NULL && upb_msgdef_isnumberwrapper(p->top->m);
}
static bool is_number_wrapper_object(upb_json_parser *p) {
return p->top->m != NULL && upb_msgdef_isnumberwrapper(p->top->m);
}
static bool does_string_wrapper_start(upb_json_parser *p) {
return p->top->f != NULL &&
upb_fielddef_issubmsg(p->top->f) &&
is_string_wrapper(upb_fielddef_msgsubdef(p->top->f));
}
static bool does_string_wrapper_end(upb_json_parser *p) {
return p->top->m != NULL && is_string_wrapper(p->top->m);
}
static bool is_string_wrapper_object(upb_json_parser *p) {
return p->top->m != NULL && is_string_wrapper(p->top->m);
}
static bool does_fieldmask_start(upb_json_parser *p) {
return p->top->f != NULL &&
upb_fielddef_issubmsg(p->top->f) &&
is_fieldmask(upb_fielddef_msgsubdef(p->top->f));
}
static bool does_fieldmask_end(upb_json_parser *p) {
return p->top->m != NULL && is_fieldmask(p->top->m);
}
#define CHECK_RETURN_TOP(x) if (!(x)) goto error
/* The actual parser **********************************************************/
/* What follows is the Ragel parser itself. The language is specified in Ragel
* and the actions call our C functions above.
*
* Ragel has an extensive set of functionality, and we use only a small part of
* it. There are many action types but we only use a few:
*
* ">" -- transition into a machine
* "%" -- transition out of a machine
* "@" -- transition into a final state of a machine.
*
* "@" transitions are tricky because a machine can transition into a final
* state repeatedly. But in some cases we know this can't happen, for example
* a string which is delimited by a final '"' can only transition into its
* final state once, when the closing '"' is seen. */
#line 2794 "upb/json/parser.rl"
#line 2597 "upb/json/parser.c"
static const char _json_actions[] = {
0, 1, 0, 1, 1, 1, 3, 1,
4, 1, 6, 1, 7, 1, 8, 1,
9, 1, 11, 1, 12, 1, 13, 1,
14, 1, 15, 1, 16, 1, 17, 1,
18, 1, 19, 1, 20, 1, 22, 1,
23, 1, 24, 1, 35, 1, 37, 1,
39, 1, 40, 1, 42, 1, 43, 1,
44, 1, 46, 1, 48, 1, 49, 1,
50, 1, 51, 1, 53, 1, 54, 2,
4, 9, 2, 5, 6, 2, 7, 3,
2, 7, 9, 2, 21, 26, 2, 25,
10, 2, 27, 28, 2, 29, 30, 2,
32, 34, 2, 33, 31, 2, 38, 36,
2, 40, 42, 2, 45, 2, 2, 46,
54, 2, 47, 36, 2, 49, 54, 2,
50, 54, 2, 51, 54, 2, 52, 41,
2, 53, 54, 3, 32, 34, 35, 4,
21, 26, 27, 28
};
static const short _json_key_offsets[] = {
0, 0, 12, 13, 18, 23, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37,
38, 43, 44, 48, 53, 58, 63, 67,
71, 74, 77, 79, 83, 87, 89, 91,
96, 98, 100, 109, 115, 121, 127, 133,
135, 139, 142, 144, 146, 149, 150, 154,
156, 158, 160, 162, 163, 165, 167, 168,
170, 172, 173, 175, 177, 178, 180, 182,
183, 185, 187, 191, 193, 195, 196, 197,
198, 199, 201, 206, 208, 210, 212, 221,
222, 222, 222, 227, 232, 237, 238, 239,
240, 241, 241, 242, 243, 244, 244, 245,
246, 247, 247, 252, 253, 257, 262, 267,
272, 276, 276, 279, 282, 285, 288, 291,
294, 294, 294, 294, 294, 294
};
static const char _json_trans_keys[] = {
32, 34, 45, 91, 102, 110, 116, 123,
9, 13, 48, 57, 34, 32, 93, 125,
9, 13, 32, 44, 93, 9, 13, 32,
93, 125, 9, 13, 97, 108, 115, 101,
117, 108, 108, 114, 117, 101, 32, 34,
125, 9, 13, 34, 32, 58, 9, 13,
32, 93, 125, 9, 13, 32, 44, 125,
9, 13, 32, 44, 125, 9, 13, 32,
34, 9, 13, 45, 48, 49, 57, 48,
49, 57, 46, 69, 101, 48, 57, 69,
101, 48, 57, 43, 45, 48, 57, 48,
57, 48, 57, 46, 69, 101, 48, 57,
34, 92, 34, 92, 34, 47, 92, 98,
102, 110, 114, 116, 117, 48, 57, 65,
70, 97, 102, 48, 57, 65, 70, 97,
102, 48, 57, 65, 70, 97, 102, 48,
57, 65, 70, 97, 102, 34, 92, 45,
48, 49, 57, 48, 49, 57, 46, 115,
48, 57, 115, 48, 57, 34, 46, 115,
48, 57, 48, 57, 48, 57, 48, 57,
48, 57, 45, 48, 57, 48, 57, 45,
48, 57, 48, 57, 84, 48, 57, 48,
57, 58, 48, 57, 48, 57, 58, 48,
57, 48, 57, 43, 45, 46, 90, 48,
57, 48, 57, 58, 48, 48, 34, 48,
57, 43, 45, 90, 48, 57, 34, 44,
34, 44, 34, 44, 34, 45, 91, 102,
110, 116, 123, 48, 57, 34, 32, 93,
125, 9, 13, 32, 44, 93, 9, 13,
32, 93, 125, 9, 13, 97, 108, 115,
101, 117, 108, 108, 114, 117, 101, 32,
34, 125, 9, 13, 34, 32, 58, 9,
13, 32, 93, 125, 9, 13, 32, 44,
125, 9, 13, 32, 44, 125, 9, 13,
32, 34, 9, 13, 32, 9, 13, 32,
9, 13, 32, 9, 13, 32, 9, 13,
32, 9, 13, 32, 9, 13, 0
};
static const char _json_single_lengths[] = {
0, 8, 1, 3, 3, 3, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
3, 1, 2, 3, 3, 3, 2, 2,
1, 3, 0, 2, 2, 0, 0, 3,
2, 2, 9, 0, 0, 0, 0, 2,
2, 1, 2, 0, 1, 1, 2, 0,
0, 0, 0, 1, 0, 0, 1, 0,
0, 1, 0, 0, 1, 0, 0, 1,
0, 0, 4, 0, 0, 1, 1, 1,
1, 0, 3, 2, 2, 2, 7, 1,
0, 0, 3, 3, 3, 1, 1, 1,
1, 0, 1, 1, 1, 0, 1, 1,
1, 0, 3, 1, 2, 3, 3, 3,
2, 0, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0
};
static const char _json_range_lengths[] = {
0, 2, 0, 1, 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 0, 1, 1, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 0, 3, 3, 3, 3, 0,
1, 1, 0, 1, 1, 0, 1, 1,
1, 1, 1, 0, 1, 1, 0, 1,
1, 0, 1, 1, 0, 1, 1, 0,
1, 1, 0, 1, 1, 0, 0, 0,
0, 1, 1, 0, 0, 0, 1, 0,
0, 0, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 0, 1, 1, 1, 1,
1, 0, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0
};
static const short _json_index_offsets[] = {
0, 0, 11, 13, 18, 23, 28, 30,
32, 34, 36, 38, 40, 42, 44, 46,
48, 53, 55, 59, 64, 69, 74, 78,
82, 85, 89, 91, 95, 99, 101, 103,
108, 111, 114, 124, 128, 132, 136, 140,
143, 147, 150, 153, 155, 158, 160, 164,
166, 168, 170, 172, 174, 176, 178, 180,
182, 184, 186, 188, 190, 192, 194, 196,
198, 200, 202, 207, 209, 211, 213, 215,
217, 219, 221, 226, 229, 232, 235, 244,
246, 247, 248, 253, 258, 263, 265, 267,
269, 271, 272, 274, 276, 278, 279, 281,
283, 285, 286, 291, 293, 297, 302, 307,
312, 316, 317, 320, 323, 326, 329, 332,
335, 336, 337, 338, 339, 340
};
static const unsigned char _json_indicies[] = {
0, 2, 3, 4, 5, 6, 7, 8,
0, 3, 1, 9, 1, 11, 12, 1,
11, 10, 13, 14, 12, 13, 1, 14,
1, 1, 14, 10, 15, 1, 16, 1,
17, 1, 18, 1, 19, 1, 20, 1,
21, 1, 22, 1, 23, 1, 24, 1,
25, 26, 27, 25, 1, 28, 1, 29,
30, 29, 1, 30, 1, 1, 30, 31,
32, 33, 34, 32, 1, 35, 36, 27,
35, 1, 36, 26, 36, 1, 37, 38,
39, 1, 38, 39, 1, 41, 42, 42,
40, 43, 1, 42, 42, 43, 40, 44,
44, 45, 1, 45, 1, 45, 40, 41,
42, 42, 39, 40, 47, 48, 46, 50,
51, 49, 52, 52, 52, 52, 52, 52,
52, 52, 53, 1, 54, 54, 54, 1,
55, 55, 55, 1, 56, 56, 56, 1,
57, 57, 57, 1, 59, 60, 58, 61,
62, 63, 1, 64, 65, 1, 66, 67,
1, 68, 1, 67, 68, 1, 69, 1,
66, 67, 65, 1, 70, 1, 71, 1,
72, 1, 73, 1, 74, 1, 75, 1,
76, 1, 77, 1, 78, 1, 79, 1,
80, 1, 81, 1, 82, 1, 83, 1,
84, 1, 85, 1, 86, 1, 87, 1,
88, 1, 89, 89, 90, 91, 1, 92,
1, 93, 1, 94, 1, 95, 1, 96,
1, 97, 1, 98, 1, 99, 99, 100,
98, 1, 102, 1, 101, 104, 105, 103,
1, 1, 101, 106, 107, 108, 109, 110,
111, 112, 107, 1, 113, 1, 114, 115,
117, 118, 1, 117, 116, 119, 120, 118,
119, 1, 120, 1, 1, 120, 116, 121,
1, 122, 1, 123, 1, 124, 1, 125,
126, 1, 127, 1, 128, 1, 129, 130,
1, 131, 1, 132, 1, 133, 134, 135,
136, 134, 1, 137, 1, 138, 139, 138,
1, 139, 1, 1, 139, 140, 141, 142,
143, 141, 1, 144, 145, 136, 144, 1,
145, 135, 145, 1, 146, 147, 147, 1,
148, 148, 1, 149, 149, 1, 150, 150,
1, 151, 151, 1, 152, 152, 1, 1,
1, 1, 1, 1, 1, 0
};
static const char _json_trans_targs[] = {
1, 0, 2, 107, 3, 6, 10, 13,
16, 106, 4, 3, 106, 4, 5, 7,
8, 9, 108, 11, 12, 109, 14, 15,
110, 16, 17, 111, 18, 18, 19, 20,
21, 22, 111, 21, 22, 24, 25, 31,
112, 26, 28, 27, 29, 30, 33, 113,
34, 33, 113, 34, 32, 35, 36, 37,
38, 39, 33, 113, 34, 41, 42, 46,
42, 46, 43, 45, 44, 114, 48, 49,
50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 61, 62, 63, 64, 65,
66, 67, 73, 72, 68, 69, 70, 71,
72, 115, 74, 67, 72, 76, 116, 76,
116, 77, 79, 81, 82, 85, 90, 94,
98, 80, 117, 117, 83, 82, 80, 83,
84, 86, 87, 88, 89, 117, 91, 92,
93, 117, 95, 96, 97, 117, 98, 99,
105, 100, 100, 101, 102, 103, 104, 105,
103, 104, 117, 106, 106, 106, 106, 106,
106
};
static const unsigned char _json_trans_actions[] = {
0, 0, 113, 107, 53, 0, 0, 0,
125, 59, 45, 0, 55, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 101, 51, 47, 0, 0, 45,
49, 49, 104, 0, 0, 0, 0, 0,
3, 0, 0, 0, 0, 0, 5, 15,
0, 0, 71, 7, 13, 0, 74, 9,
9, 9, 77, 80, 11, 37, 37, 37,
0, 0, 0, 39, 0, 41, 86, 0,
0, 0, 17, 19, 0, 21, 23, 0,
25, 27, 0, 29, 31, 0, 33, 35,
0, 135, 83, 135, 0, 0, 0, 0,
0, 92, 0, 89, 89, 98, 43, 0,
131, 95, 113, 107, 53, 0, 0, 0,
125, 59, 69, 110, 45, 0, 55, 0,
0, 0, 0, 0, 0, 119, 0, 0,
0, 122, 0, 0, 0, 116, 0, 101,
51, 47, 0, 0, 45, 49, 49, 104,
0, 0, 128, 0, 57, 63, 65, 61,
67
};
static const unsigned char _json_eof_actions[] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 1, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 57, 63, 65, 61, 67,
0, 0, 0, 0, 0, 0
};
static const int json_start = 1;
static const int json_en_number_machine = 23;
static const int json_en_string_machine = 32;
static const int json_en_duration_machine = 40;
static const int json_en_timestamp_machine = 47;
static const int json_en_fieldmask_machine = 75;
static const int json_en_value_machine = 78;
static const int json_en_main = 1;
#line 2797 "upb/json/parser.rl"
size_t parse(void *closure, const void *hd, const char *buf, size_t size,
const upb_bufhandle *handle) {
upb_json_parser *parser = closure;
/* Variables used by Ragel's generated code. */
int cs = parser->current_state;
int *stack = parser->parser_stack;
int top = parser->parser_top;
const char *p = buf;
const char *pe = buf + size;
const char *eof = &eof_ch;
parser->handle = handle;
UPB_UNUSED(hd);
UPB_UNUSED(handle);
capture_resume(parser, buf);
#line 2875 "upb/json/parser.c"
{
int _klen;
unsigned int _trans;
const char *_acts;
unsigned int _nacts;
const char *_keys;
if ( p == pe )
goto _test_eof;
if ( cs == 0 )
goto _out;
_resume:
_keys = _json_trans_keys + _json_key_offsets[cs];
_trans = _json_index_offsets[cs];
_klen = _json_single_lengths[cs];
if ( _klen > 0 ) {
const char *_lower = _keys;
const char *_mid;
const char *_upper = _keys + _klen - 1;
while (1) {
if ( _upper < _lower )
break;
_mid = _lower + ((_upper-_lower) >> 1);
if ( (*p) < *_mid )
_upper = _mid - 1;
else if ( (*p) > *_mid )
_lower = _mid + 1;
else {
_trans += (unsigned int)(_mid - _keys);
goto _match;
}
}
_keys += _klen;
_trans += _klen;
}
_klen = _json_range_lengths[cs];
if ( _klen > 0 ) {
const char *_lower = _keys;
const char *_mid;
const char *_upper = _keys + (_klen<<1) - 2;
while (1) {
if ( _upper < _lower )
break;
_mid = _lower + (((_upper-_lower) >> 1) & ~1);
if ( (*p) < _mid[0] )
_upper = _mid - 2;
else if ( (*p) > _mid[1] )
_lower = _mid + 2;
else {
_trans += (unsigned int)((_mid - _keys)>>1);
goto _match;
}
}
_trans += _klen;
}
_match:
_trans = _json_indicies[_trans];
cs = _json_trans_targs[_trans];
if ( _json_trans_actions[_trans] == 0 )
goto _again;
_acts = _json_actions + _json_trans_actions[_trans];
_nacts = (unsigned int) *_acts++;
while ( _nacts-- > 0 )
{
switch ( *_acts++ )
{
case 1:
#line 2602 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; goto _again;} }
break;
case 2:
#line 2604 "upb/json/parser.rl"
{ p--; {stack[top++] = cs; cs = 23;goto _again;} }
break;
case 3:
#line 2608 "upb/json/parser.rl"
{ start_text(parser, p); }
break;
case 4:
#line 2609 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_text(parser, p)); }
break;
case 5:
#line 2615 "upb/json/parser.rl"
{ start_hex(parser); }
break;
case 6:
#line 2616 "upb/json/parser.rl"
{ hexdigit(parser, p); }
break;
case 7:
#line 2617 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_hex(parser)); }
break;
case 8:
#line 2623 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(escape(parser, p)); }
break;
case 9:
#line 2629 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; goto _again;} }
break;
case 10:
#line 2634 "upb/json/parser.rl"
{ start_year(parser, p); }
break;
case 11:
#line 2635 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_year(parser, p)); }
break;
case 12:
#line 2639 "upb/json/parser.rl"
{ start_month(parser, p); }
break;
case 13:
#line 2640 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_month(parser, p)); }
break;
case 14:
#line 2644 "upb/json/parser.rl"
{ start_day(parser, p); }
break;
case 15:
#line 2645 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_day(parser, p)); }
break;
case 16:
#line 2649 "upb/json/parser.rl"
{ start_hour(parser, p); }
break;
case 17:
#line 2650 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_hour(parser, p)); }
break;
case 18:
#line 2654 "upb/json/parser.rl"
{ start_minute(parser, p); }
break;
case 19:
#line 2655 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_minute(parser, p)); }
break;
case 20:
#line 2659 "upb/json/parser.rl"
{ start_second(parser, p); }
break;
case 21:
#line 2660 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_second(parser, p)); }
break;
case 22:
#line 2665 "upb/json/parser.rl"
{ start_duration_base(parser, p); }
break;
case 23:
#line 2666 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_duration_base(parser, p)); }
break;
case 24:
#line 2668 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; goto _again;} }
break;
case 25:
#line 2673 "upb/json/parser.rl"
{ start_timestamp_base(parser); }
break;
case 26:
#line 2675 "upb/json/parser.rl"
{ start_timestamp_fraction(parser, p); }
break;
case 27:
#line 2676 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_timestamp_fraction(parser, p)); }
break;
case 28:
#line 2678 "upb/json/parser.rl"
{ start_timestamp_zone(parser, p); }
break;
case 29:
#line 2679 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_timestamp_zone(parser, p)); }
break;
case 30:
#line 2681 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; goto _again;} }
break;
case 31:
#line 2686 "upb/json/parser.rl"
{ start_fieldmask_path_text(parser, p); }
break;
case 32:
#line 2687 "upb/json/parser.rl"
{ end_fieldmask_path_text(parser, p); }
break;
case 33:
#line 2692 "upb/json/parser.rl"
{ start_fieldmask_path(parser); }
break;
case 34:
#line 2693 "upb/json/parser.rl"
{ end_fieldmask_path(parser); }
break;
case 35:
#line 2699 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; goto _again;} }
break;
case 36:
#line 2704 "upb/json/parser.rl"
{
if (is_wellknown_msg(parser, UPB_WELLKNOWN_TIMESTAMP)) {
{stack[top++] = cs; cs = 47;goto _again;}
} else if (is_wellknown_msg(parser, UPB_WELLKNOWN_DURATION)) {
{stack[top++] = cs; cs = 40;goto _again;}
} else if (is_wellknown_msg(parser, UPB_WELLKNOWN_FIELDMASK)) {
{stack[top++] = cs; cs = 75;goto _again;}
} else {
{stack[top++] = cs; cs = 32;goto _again;}
}
}
break;
case 37:
#line 2717 "upb/json/parser.rl"
{ p--; {stack[top++] = cs; cs = 78;goto _again;} }
break;
case 38:
#line 2722 "upb/json/parser.rl"
{
if (is_wellknown_msg(parser, UPB_WELLKNOWN_ANY)) {
start_any_member(parser, p);
} else {
start_member(parser);
}
}
break;
case 39:
#line 2729 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_membername(parser)); }
break;
case 40:
#line 2732 "upb/json/parser.rl"
{
if (is_wellknown_msg(parser, UPB_WELLKNOWN_ANY)) {
end_any_member(parser, p);
} else {
end_member(parser);
}
}
break;
case 41:
#line 2743 "upb/json/parser.rl"
{
if (is_wellknown_msg(parser, UPB_WELLKNOWN_ANY)) {
start_any_object(parser, p);
} else {
start_object(parser);
}
}
break;
case 42:
#line 2752 "upb/json/parser.rl"
{
if (is_wellknown_msg(parser, UPB_WELLKNOWN_ANY)) {
CHECK_RETURN_TOP(end_any_object(parser, p));
} else {
end_object(parser);
}
}
break;
case 43:
#line 2764 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(start_array(parser)); }
break;
case 44:
#line 2768 "upb/json/parser.rl"
{ end_array(parser); }
break;
case 45:
#line 2773 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(start_number(parser, p)); }
break;
case 46:
#line 2774 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_number(parser, p)); }
break;
case 47:
#line 2776 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(start_stringval(parser)); }
break;
case 48:
#line 2777 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_stringval(parser)); }
break;
case 49:
#line 2779 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_bool(parser, true)); }
break;
case 50:
#line 2781 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_bool(parser, false)); }
break;
case 51:
#line 2783 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_null(parser)); }
break;
case 52:
#line 2785 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(start_subobject_full(parser)); }
break;
case 53:
#line 2786 "upb/json/parser.rl"
{ end_subobject_full(parser); }
break;
case 54:
#line 2791 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; goto _again;} }
break;
#line 3199 "upb/json/parser.c"
}
}
_again:
if ( cs == 0 )
goto _out;
if ( ++p != pe )
goto _resume;
_test_eof: {}
if ( p == eof )
{
const char *__acts = _json_actions + _json_eof_actions[cs];
unsigned int __nacts = (unsigned int) *__acts++;
while ( __nacts-- > 0 ) {
switch ( *__acts++ ) {
case 0:
#line 2600 "upb/json/parser.rl"
{ p--; {cs = stack[--top]; if ( p == pe )
goto _test_eof;
goto _again;} }
break;
case 46:
#line 2774 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_number(parser, p)); }
break;
case 49:
#line 2779 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_bool(parser, true)); }
break;
case 50:
#line 2781 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_bool(parser, false)); }
break;
case 51:
#line 2783 "upb/json/parser.rl"
{ CHECK_RETURN_TOP(end_null(parser)); }
break;
case 53:
#line 2786 "upb/json/parser.rl"
{ end_subobject_full(parser); }
break;
#line 3241 "upb/json/parser.c"
}
}
}
_out: {}
}
#line 2819 "upb/json/parser.rl"
if (p != pe) {
upb_status_seterrf(parser->status, "Parse error at '%.*s'\n", pe - p, p);
} else {
capture_suspend(parser, &p);
}
error:
/* Save parsing state back to parser. */
parser->current_state = cs;
parser->parser_top = top;
return p - buf;
}
static bool end(void *closure, const void *hd) {
upb_json_parser *parser = closure;
/* Prevent compile warning on unused static constants. */
UPB_UNUSED(json_start);
UPB_UNUSED(json_en_duration_machine);
UPB_UNUSED(json_en_fieldmask_machine);
UPB_UNUSED(json_en_number_machine);
UPB_UNUSED(json_en_string_machine);
UPB_UNUSED(json_en_timestamp_machine);
UPB_UNUSED(json_en_value_machine);
UPB_UNUSED(json_en_main);
parse(parser, hd, &eof_ch, 0, NULL);
return parser->current_state >= 106;
}
static void json_parser_reset(upb_json_parser *p) {
int cs;
int top;
p->top = p->stack;
init_frame(p->top);
/* Emit Ragel initialization of the parser. */
#line 3292 "upb/json/parser.c"
{
cs = json_start;
top = 0;
}
#line 2861 "upb/json/parser.rl"
p->current_state = cs;
p->parser_top = top;
accumulate_clear(p);
p->multipart_state = MULTIPART_INACTIVE;
p->capture = NULL;
p->accumulated = NULL;
}
static upb_json_parsermethod *parsermethod_new(upb_json_codecache *c,
const upb_msgdef *md) {
upb_msg_field_iter i;
upb_alloc *alloc = upb_arena_alloc(c->arena);
upb_json_parsermethod *m = upb_malloc(alloc, sizeof(*m));
m->cache = c;
upb_byteshandler_init(&m->input_handler_);
upb_byteshandler_setstring(&m->input_handler_, parse, m);
upb_byteshandler_setendstr(&m->input_handler_, end, m);
upb_strtable_init2(&m->name_table, UPB_CTYPE_CONSTPTR, alloc);
/* Build name_table */
for(upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
upb_value v = upb_value_constptr(f);
char *buf;
/* Add an entry for the JSON name. */
size_t len = upb_fielddef_getjsonname(f, NULL, 0);
buf = upb_malloc(alloc, len);
upb_fielddef_getjsonname(f, buf, len);
upb_strtable_insert3(&m->name_table, buf, strlen(buf), v, alloc);
if (strcmp(buf, upb_fielddef_name(f)) != 0) {
/* Since the JSON name is different from the regular field name, add an
* entry for the raw name (compliant proto3 JSON parsers must accept
* both). */
const char *name = upb_fielddef_name(f);
upb_strtable_insert3(&m->name_table, name, strlen(name), v, alloc);
}
}
return m;
}
/* Public API *****************************************************************/
upb_json_parser *upb_json_parser_create(upb_arena *arena,
const upb_json_parsermethod *method,
const upb_symtab* symtab,
upb_sink output,
upb_status *status,
bool ignore_json_unknown) {
#ifndef NDEBUG
const size_t size_before = upb_arena_bytesallocated(arena);
#endif
upb_json_parser *p = upb_arena_malloc(arena, sizeof(upb_json_parser));
if (!p) return false;
p->arena = arena;
p->method = method;
p->status = status;
p->limit = p->stack + UPB_JSON_MAX_DEPTH;
p->accumulate_buf = NULL;
p->accumulate_buf_size = 0;
upb_bytessink_reset(&p->input_, &method->input_handler_, p);
json_parser_reset(p);
p->top->sink = output;
p->top->m = upb_handlers_msgdef(output.handlers);
if (is_wellknown_msg(p, UPB_WELLKNOWN_ANY)) {
p->top->is_any = true;
p->top->any_frame = json_parser_any_frame_new(p);
} else {
p->top->is_any = false;
p->top->any_frame = NULL;
}
set_name_table(p, p->top);
p->symtab = symtab;
p->ignore_json_unknown = ignore_json_unknown;
/* If this fails, uncomment and increase the value in parser.h. */
/* fprintf(stderr, "%zd\n", upb_arena_bytesallocated(arena) - size_before); */
UPB_ASSERT_DEBUGVAR(upb_arena_bytesallocated(arena) - size_before <=
UPB_JSON_PARSER_SIZE);
return p;
}
upb_bytessink upb_json_parser_input(upb_json_parser *p) {
return p->input_;
}
const upb_byteshandler *upb_json_parsermethod_inputhandler(
const upb_json_parsermethod *m) {
return &m->input_handler_;
}
upb_json_codecache *upb_json_codecache_new(void) {
upb_alloc *alloc;
upb_json_codecache *c;
c = upb_gmalloc(sizeof(*c));
c->arena = upb_arena_new();
alloc = upb_arena_alloc(c->arena);
upb_inttable_init2(&c->methods, UPB_CTYPE_CONSTPTR, alloc);
return c;
}
void upb_json_codecache_free(upb_json_codecache *c) {
upb_arena_free(c->arena);
upb_gfree(c);
}
const upb_json_parsermethod *upb_json_codecache_get(upb_json_codecache *c,
const upb_msgdef *md) {
upb_json_parsermethod *m;
upb_value v;
upb_msg_field_iter i;
upb_alloc *alloc = upb_arena_alloc(c->arena);
if (upb_inttable_lookupptr(&c->methods, md, &v)) {
return upb_value_getconstptr(v);
}
m = parsermethod_new(c, md);
v = upb_value_constptr(m);
if (!m) return NULL;
if (!upb_inttable_insertptr2(&c->methods, md, v, alloc)) return NULL;
/* Populate parser methods for all submessages, so the name tables will
* be available during parsing. */
for(upb_msg_field_begin(&i, md);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
if (upb_fielddef_issubmsg(f)) {
const upb_msgdef *subdef = upb_fielddef_msgsubdef(f);
const upb_json_parsermethod *sub_method =
upb_json_codecache_get(c, subdef);
if (!sub_method) return NULL;
}
}
return m;
}
/*
** This currently uses snprintf() to format primitives, and could be optimized
** further.
*/
#include <ctype.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
struct upb_json_printer {
upb_sink input_;
/* BytesSink closure. */
void *subc_;
upb_bytessink output_;
/* We track the depth so that we know when to emit startstr/endstr on the
* output. */
int depth_;
/* Have we emitted the first element? This state is necessary to emit commas
* without leaving a trailing comma in arrays/maps. We keep this state per
* frame depth.
*
* Why max_depth * 2? UPB_MAX_HANDLER_DEPTH counts depth as nested messages.
* We count frames (contexts in which we separate elements by commas) as both
* repeated fields and messages (maps), and the worst case is a
* message->repeated field->submessage->repeated field->... nesting. */
bool first_elem_[UPB_MAX_HANDLER_DEPTH * 2];
/* To print timestamp, printer needs to cache its seconds and nanos values
* and convert them when ending timestamp message. See comments of
* printer_sethandlers_timestamp for more detail. */
int64_t seconds;
int32_t nanos;
};
/* StringPiece; a pointer plus a length. */
typedef struct {
char *ptr;
size_t len;
} strpc;
void freestrpc(void *ptr) {
strpc *pc = ptr;
upb_gfree(pc->ptr);
upb_gfree(pc);
}
typedef struct {
bool preserve_fieldnames;
} upb_json_printercache;
/* Convert fielddef name to JSON name and return as a string piece. */
strpc *newstrpc(upb_handlers *h, const upb_fielddef *f,
bool preserve_fieldnames) {
/* TODO(haberman): handle malloc failure. */
strpc *ret = upb_gmalloc(sizeof(*ret));
if (preserve_fieldnames) {
ret->ptr = upb_gstrdup(upb_fielddef_name(f));
ret->len = strlen(ret->ptr);
} else {
size_t len;
ret->len = upb_fielddef_getjsonname(f, NULL, 0);
ret->ptr = upb_gmalloc(ret->len);
len = upb_fielddef_getjsonname(f, ret->ptr, ret->len);
UPB_ASSERT(len == ret->len);
ret->len--; /* NULL */
}
upb_handlers_addcleanup(h, ret, freestrpc);
return ret;
}
/* Convert a null-terminated const char* to a string piece. */
strpc *newstrpc_str(upb_handlers *h, const char * str) {
strpc * ret = upb_gmalloc(sizeof(*ret));
ret->ptr = upb_gstrdup(str);
ret->len = strlen(str);
upb_handlers_addcleanup(h, ret, freestrpc);
return ret;
}
/* ------------ JSON string printing: values, maps, arrays ------------------ */
static void print_data(
upb_json_printer *p, const char *buf, unsigned int len) {
/* TODO: Will need to change if we support pushback from the sink. */
size_t n = upb_bytessink_putbuf(p->output_, p->subc_, buf, len, NULL);
UPB_ASSERT(n == len);
}
static void print_comma(upb_json_printer *p) {
if (!p->first_elem_[p->depth_]) {
print_data(p, ",", 1);
}
p->first_elem_[p->depth_] = false;
}
/* Helpers that print properly formatted elements to the JSON output stream. */
/* Used for escaping control chars in strings. */
static const char kControlCharLimit = 0x20;
UPB_INLINE bool is_json_escaped(char c) {
/* See RFC 4627. */
unsigned char uc = (unsigned char)c;
return uc < kControlCharLimit || uc == '"' || uc == '\\';
}
UPB_INLINE const char* json_nice_escape(char c) {
switch (c) {
case '"': return "\\\"";
case '\\': return "\\\\";
case '\b': return "\\b";
case '\f': return "\\f";
case '\n': return "\\n";
case '\r': return "\\r";
case '\t': return "\\t";
default: return NULL;
}
}
/* Write a properly escaped string chunk. The surrounding quotes are *not*
* printed; this is so that the caller has the option of emitting the string
* content in chunks. */
static void putstring(upb_json_printer *p, const char *buf, unsigned int len) {
const char* unescaped_run = NULL;
unsigned int i;
for (i = 0; i < len; i++) {
char c = buf[i];
/* Handle escaping. */
if (is_json_escaped(c)) {
/* Use a "nice" escape, like \n, if one exists for this character. */
const char* escape = json_nice_escape(c);
/* If we don't have a specific 'nice' escape code, use a \uXXXX-style
* escape. */
char escape_buf[8];
if (!escape) {
unsigned char byte = (unsigned char)c;
_upb_snprintf(escape_buf, sizeof(escape_buf), "\\u%04x", (int)byte);
escape = escape_buf;
}
/* N.B. that we assume that the input encoding is equal to the output
* encoding (both UTF-8 for now), so for chars >= 0x20 and != \, ", we
* can simply pass the bytes through. */
/* If there's a current run of unescaped chars, print that run first. */
if (unescaped_run) {
print_data(p, unescaped_run, &buf[i] - unescaped_run);
unescaped_run = NULL;
}
/* Then print the escape code. */
print_data(p, escape, strlen(escape));
} else {
/* Add to the current unescaped run of characters. */
if (unescaped_run == NULL) {
unescaped_run = &buf[i];
}
}
}
/* If the string ended in a run of unescaped characters, print that last run. */
if (unescaped_run) {
print_data(p, unescaped_run, &buf[len] - unescaped_run);
}
}
#define CHKLENGTH(x) if (!(x)) return -1;
/* Helpers that format floating point values according to our custom formats.
* Right now we use %.8g and %.17g for float/double, respectively, to match
* proto2::util::JsonFormat's defaults. May want to change this later. */
const char neginf[] = "\"-Infinity\"";
const char inf[] = "\"Infinity\"";
static size_t fmt_double(double val, char* buf, size_t length) {
if (val == UPB_INFINITY) {
CHKLENGTH(length >= strlen(inf));
strcpy(buf, inf);
return strlen(inf);
} else if (val == -UPB_INFINITY) {
CHKLENGTH(length >= strlen(neginf));
strcpy(buf, neginf);
return strlen(neginf);
} else {
size_t n = _upb_snprintf(buf, length, "%.17g", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
}
static size_t fmt_float(float val, char* buf, size_t length) {
size_t n = _upb_snprintf(buf, length, "%.8g", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
static size_t fmt_bool(bool val, char* buf, size_t length) {
size_t n = _upb_snprintf(buf, length, "%s", (val ? "true" : "false"));
CHKLENGTH(n > 0 && n < length);
return n;
}
static size_t fmt_int64_as_number(long long val, char* buf, size_t length) {
size_t n = _upb_snprintf(buf, length, "%lld", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
static size_t fmt_uint64_as_number(
unsigned long long val, char* buf, size_t length) {
size_t n = _upb_snprintf(buf, length, "%llu", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
static size_t fmt_int64_as_string(long long val, char* buf, size_t length) {
size_t n = _upb_snprintf(buf, length, "\"%lld\"", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
static size_t fmt_uint64_as_string(
unsigned long long val, char* buf, size_t length) {
size_t n = _upb_snprintf(buf, length, "\"%llu\"", val);
CHKLENGTH(n > 0 && n < length);
return n;
}
/* Print a map key given a field name. Called by scalar field handlers and by
* startseq for repeated fields. */
static bool putkey(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
const strpc *key = handler_data;
print_comma(p);
print_data(p, "\"", 1);
putstring(p, key->ptr, key->len);
print_data(p, "\":", 2);
return true;
}
#define CHKFMT(val) if ((val) == (size_t)-1) return false;
#define CHK(val) if (!(val)) return false;
#define TYPE_HANDLERS(type, fmt_func) \
static bool put##type(void *closure, const void *handler_data, type val) { \
upb_json_printer *p = closure; \
char data[64]; \
size_t length = fmt_func(val, data, sizeof(data)); \
UPB_UNUSED(handler_data); \
CHKFMT(length); \
print_data(p, data, length); \
return true; \
} \
static bool scalar_##type(void *closure, const void *handler_data, \
type val) { \
CHK(putkey(closure, handler_data)); \
CHK(put##type(closure, handler_data, val)); \
return true; \
} \
static bool repeated_##type(void *closure, const void *handler_data, \
type val) { \
upb_json_printer *p = closure; \
print_comma(p); \
CHK(put##type(closure, handler_data, val)); \
return true; \
}
#define TYPE_HANDLERS_MAPKEY(type, fmt_func) \
static bool putmapkey_##type(void *closure, const void *handler_data, \
type val) { \
upb_json_printer *p = closure; \
char data[64]; \
size_t length = fmt_func(val, data, sizeof(data)); \
UPB_UNUSED(handler_data); \
print_data(p, "\"", 1); \
print_data(p, data, length); \
print_data(p, "\":", 2); \
return true; \
}
TYPE_HANDLERS(double, fmt_double)
TYPE_HANDLERS(float, fmt_float)
TYPE_HANDLERS(bool, fmt_bool)
TYPE_HANDLERS(int32_t, fmt_int64_as_number)
TYPE_HANDLERS(uint32_t, fmt_int64_as_number)
TYPE_HANDLERS(int64_t, fmt_int64_as_string)
TYPE_HANDLERS(uint64_t, fmt_uint64_as_string)
/* double and float are not allowed to be map keys. */
TYPE_HANDLERS_MAPKEY(bool, fmt_bool)
TYPE_HANDLERS_MAPKEY(int32_t, fmt_int64_as_number)
TYPE_HANDLERS_MAPKEY(uint32_t, fmt_int64_as_number)
TYPE_HANDLERS_MAPKEY(int64_t, fmt_int64_as_number)
TYPE_HANDLERS_MAPKEY(uint64_t, fmt_uint64_as_number)
#undef TYPE_HANDLERS
#undef TYPE_HANDLERS_MAPKEY
typedef struct {
void *keyname;
const upb_enumdef *enumdef;
} EnumHandlerData;
static bool scalar_enum(void *closure, const void *handler_data,
int32_t val) {
const EnumHandlerData *hd = handler_data;
upb_json_printer *p = closure;
const char *symbolic_name;
CHK(putkey(closure, hd->keyname));
symbolic_name = upb_enumdef_iton(hd->enumdef, val);
if (symbolic_name) {
print_data(p, "\"", 1);
putstring(p, symbolic_name, strlen(symbolic_name));
print_data(p, "\"", 1);
} else {
putint32_t(closure, NULL, val);
}
return true;
}
static void print_enum_symbolic_name(upb_json_printer *p,
const upb_enumdef *def,
int32_t val) {
const char *symbolic_name = upb_enumdef_iton(def, val);
if (symbolic_name) {
print_data(p, "\"", 1);
putstring(p, symbolic_name, strlen(symbolic_name));
print_data(p, "\"", 1);
} else {
putint32_t(p, NULL, val);
}
}
static bool repeated_enum(void *closure, const void *handler_data,
int32_t val) {
const EnumHandlerData *hd = handler_data;
upb_json_printer *p = closure;
print_comma(p);
print_enum_symbolic_name(p, hd->enumdef, val);
return true;
}
static bool mapvalue_enum(void *closure, const void *handler_data,
int32_t val) {
const EnumHandlerData *hd = handler_data;
upb_json_printer *p = closure;
print_enum_symbolic_name(p, hd->enumdef, val);
return true;
}
static void *scalar_startsubmsg(void *closure, const void *handler_data) {
return putkey(closure, handler_data) ? closure : UPB_BREAK;
}
static void *repeated_startsubmsg(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
print_comma(p);
return closure;
}
static void start_frame(upb_json_printer *p) {
p->depth_++;
p->first_elem_[p->depth_] = true;
print_data(p, "{", 1);
}
static void end_frame(upb_json_printer *p) {
print_data(p, "}", 1);
p->depth_--;
}
static bool printer_startmsg(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
if (p->depth_ == 0) {
upb_bytessink_start(p->output_, 0, &p->subc_);
}
start_frame(p);
return true;
}
static bool printer_endmsg(void *closure, const void *handler_data, upb_status *s) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(s);
end_frame(p);
if (p->depth_ == 0) {
upb_bytessink_end(p->output_);
}
return true;
}
static void *startseq(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
CHK(putkey(closure, handler_data));
p->depth_++;
p->first_elem_[p->depth_] = true;
print_data(p, "[", 1);
return closure;
}
static bool endseq(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
print_data(p, "]", 1);
p->depth_--;
return true;
}
static void *startmap(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
CHK(putkey(closure, handler_data));
p->depth_++;
p->first_elem_[p->depth_] = true;
print_data(p, "{", 1);
return closure;
}
static bool endmap(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
print_data(p, "}", 1);
p->depth_--;
return true;
}
static size_t putstr(void *closure, const void *handler_data, const char *str,
size_t len, const upb_bufhandle *handle) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(handle);
putstring(p, str, len);
return len;
}
/* This has to Base64 encode the bytes, because JSON has no "bytes" type. */
static size_t putbytes(void *closure, const void *handler_data, const char *str,
size_t len, const upb_bufhandle *handle) {
upb_json_printer *p = closure;
/* This is the regular base64, not the "web-safe" version. */
static const char base64[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/* Base64-encode. */
char data[16000];
const char *limit = data + sizeof(data);
const unsigned char *from = (const unsigned char*)str;
char *to = data;
size_t remaining = len;
size_t bytes;
UPB_UNUSED(handler_data);
UPB_UNUSED(handle);
print_data(p, "\"", 1);
while (remaining > 2) {
if (limit - to < 4) {
bytes = to - data;
putstring(p, data, bytes);
to = data;
}
to[0] = base64[from[0] >> 2];
to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)];
to[2] = base64[((from[1] & 0xf) << 2) | (from[2] >> 6)];
to[3] = base64[from[2] & 0x3f];
remaining -= 3;
to += 4;
from += 3;
}
switch (remaining) {
case 2:
to[0] = base64[from[0] >> 2];
to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)];
to[2] = base64[(from[1] & 0xf) << 2];
to[3] = '=';
to += 4;
from += 2;
break;
case 1:
to[0] = base64[from[0] >> 2];
to[1] = base64[((from[0] & 0x3) << 4)];
to[2] = '=';
to[3] = '=';
to += 4;
from += 1;
break;
}
bytes = to - data;
putstring(p, data, bytes);
print_data(p, "\"", 1);
return len;
}
static void *scalar_startstr(void *closure, const void *handler_data,
size_t size_hint) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(size_hint);
CHK(putkey(closure, handler_data));
print_data(p, "\"", 1);
return p;
}
static size_t scalar_str(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
CHK(putstr(closure, handler_data, str, len, handle));
return len;
}
static bool scalar_endstr(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
print_data(p, "\"", 1);
return true;
}
static void *repeated_startstr(void *closure, const void *handler_data,
size_t size_hint) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(size_hint);
print_comma(p);
print_data(p, "\"", 1);
return p;
}
static size_t repeated_str(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
CHK(putstr(closure, handler_data, str, len, handle));
return len;
}
static bool repeated_endstr(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
print_data(p, "\"", 1);
return true;
}
static void *mapkeyval_startstr(void *closure, const void *handler_data,
size_t size_hint) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(size_hint);
print_data(p, "\"", 1);
return p;
}
static size_t mapkey_str(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
CHK(putstr(closure, handler_data, str, len, handle));
return len;
}
static bool mapkey_endstr(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
print_data(p, "\":", 2);
return true;
}
static bool mapvalue_endstr(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
print_data(p, "\"", 1);
return true;
}
static size_t scalar_bytes(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
CHK(putkey(closure, handler_data));
CHK(putbytes(closure, handler_data, str, len, handle));
return len;
}
static size_t repeated_bytes(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
upb_json_printer *p = closure;
print_comma(p);
CHK(putbytes(closure, handler_data, str, len, handle));
return len;
}
static size_t mapkey_bytes(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
upb_json_printer *p = closure;
CHK(putbytes(closure, handler_data, str, len, handle));
print_data(p, ":", 1);
return len;
}
static void set_enum_hd(upb_handlers *h,
const upb_fielddef *f,
bool preserve_fieldnames,
upb_handlerattr *attr) {
EnumHandlerData *hd = upb_gmalloc(sizeof(EnumHandlerData));
hd->enumdef = upb_fielddef_enumsubdef(f);
hd->keyname = newstrpc(h, f, preserve_fieldnames);
upb_handlers_addcleanup(h, hd, upb_gfree);
attr->handler_data = hd;
}
/* Set up handlers for a mapentry submessage (i.e., an individual key/value pair
* in a map).
*
* TODO: Handle missing key, missing value, out-of-order key/value, or repeated
* key or value cases properly. The right way to do this is to allocate a
* temporary structure at the start of a mapentry submessage, store key and
* value data in it as key and value handlers are called, and then print the
* key/value pair once at the end of the submessage. If we don't do this, we
* should at least detect the case and throw an error. However, so far all of
* our sources that emit mapentry messages do so canonically (with one key
* field, and then one value field), so this is not a pressing concern at the
* moment. */
void printer_sethandlers_mapentry(const void *closure, bool preserve_fieldnames,
upb_handlers *h) {
const upb_msgdef *md = upb_handlers_msgdef(h);
/* A mapentry message is printed simply as '"key": value'. Rather than
* special-case key and value for every type below, we just handle both
* fields explicitly here. */
const upb_fielddef* key_field = upb_msgdef_itof(md, UPB_MAPENTRY_KEY);
const upb_fielddef* value_field = upb_msgdef_itof(md, UPB_MAPENTRY_VALUE);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT;
UPB_UNUSED(closure);
switch (upb_fielddef_type(key_field)) {
case UPB_TYPE_INT32:
upb_handlers_setint32(h, key_field, putmapkey_int32_t, &empty_attr);
break;
case UPB_TYPE_INT64:
upb_handlers_setint64(h, key_field, putmapkey_int64_t, &empty_attr);
break;
case UPB_TYPE_UINT32:
upb_handlers_setuint32(h, key_field, putmapkey_uint32_t, &empty_attr);
break;
case UPB_TYPE_UINT64:
upb_handlers_setuint64(h, key_field, putmapkey_uint64_t, &empty_attr);
break;
case UPB_TYPE_BOOL:
upb_handlers_setbool(h, key_field, putmapkey_bool, &empty_attr);
break;
case UPB_TYPE_STRING:
upb_handlers_setstartstr(h, key_field, mapkeyval_startstr, &empty_attr);
upb_handlers_setstring(h, key_field, mapkey_str, &empty_attr);
upb_handlers_setendstr(h, key_field, mapkey_endstr, &empty_attr);
break;
case UPB_TYPE_BYTES:
upb_handlers_setstring(h, key_field, mapkey_bytes, &empty_attr);
break;
default:
UPB_ASSERT(false);
break;
}
switch (upb_fielddef_type(value_field)) {
case UPB_TYPE_INT32:
upb_handlers_setint32(h, value_field, putint32_t, &empty_attr);
break;
case UPB_TYPE_INT64:
upb_handlers_setint64(h, value_field, putint64_t, &empty_attr);
break;
case UPB_TYPE_UINT32:
upb_handlers_setuint32(h, value_field, putuint32_t, &empty_attr);
break;
case UPB_TYPE_UINT64:
upb_handlers_setuint64(h, value_field, putuint64_t, &empty_attr);
break;
case UPB_TYPE_BOOL:
upb_handlers_setbool(h, value_field, putbool, &empty_attr);
break;
case UPB_TYPE_FLOAT:
upb_handlers_setfloat(h, value_field, putfloat, &empty_attr);
break;
case UPB_TYPE_DOUBLE:
upb_handlers_setdouble(h, value_field, putdouble, &empty_attr);
break;
case UPB_TYPE_STRING:
upb_handlers_setstartstr(h, value_field, mapkeyval_startstr, &empty_attr);
upb_handlers_setstring(h, value_field, putstr, &empty_attr);
upb_handlers_setendstr(h, value_field, mapvalue_endstr, &empty_attr);
break;
case UPB_TYPE_BYTES:
upb_handlers_setstring(h, value_field, putbytes, &empty_attr);
break;
case UPB_TYPE_ENUM: {
upb_handlerattr enum_attr = UPB_HANDLERATTR_INIT;
set_enum_hd(h, value_field, preserve_fieldnames, &enum_attr);
upb_handlers_setint32(h, value_field, mapvalue_enum, &enum_attr);
break;
}
case UPB_TYPE_MESSAGE:
/* No handler necessary -- the submsg handlers will print the message
* as appropriate. */
break;
}
}
static bool putseconds(void *closure, const void *handler_data,
int64_t seconds) {
upb_json_printer *p = closure;
p->seconds = seconds;
UPB_UNUSED(handler_data);
return true;
}
static bool putnanos(void *closure, const void *handler_data,
int32_t nanos) {
upb_json_printer *p = closure;
p->nanos = nanos;
UPB_UNUSED(handler_data);
return true;
}
static void *scalar_startstr_nokey(void *closure, const void *handler_data,
size_t size_hint) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(size_hint);
print_data(p, "\"", 1);
return p;
}
static size_t putstr_nokey(void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(handle);
print_data(p, "\"", 1);
putstring(p, str, len);
print_data(p, "\"", 1);
return len + 2;
}
static void *startseq_nokey(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
p->depth_++;
p->first_elem_[p->depth_] = true;
print_data(p, "[", 1);
return closure;
}
static void *startseq_fieldmask(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
p->depth_++;
p->first_elem_[p->depth_] = true;
return closure;
}
static bool endseq_fieldmask(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
p->depth_--;
return true;
}
static void *repeated_startstr_fieldmask(
void *closure, const void *handler_data,
size_t size_hint) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(size_hint);
print_comma(p);
return p;
}
static size_t repeated_str_fieldmask(
void *closure, const void *handler_data,
const char *str, size_t len,
const upb_bufhandle *handle) {
const char* limit = str + len;
bool upper = false;
size_t result_len = 0;
for (; str < limit; str++) {
if (*str == '_') {
upper = true;
continue;
}
if (upper && *str >= 'a' && *str <= 'z') {
char upper_char = toupper(*str);
CHK(putstr(closure, handler_data, &upper_char, 1, handle));
} else {
CHK(putstr(closure, handler_data, str, 1, handle));
}
upper = false;
result_len++;
}
return result_len;
}
static void *startmap_nokey(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
p->depth_++;
p->first_elem_[p->depth_] = true;
print_data(p, "{", 1);
return closure;
}
static bool putnull(void *closure, const void *handler_data,
int32_t null) {
upb_json_printer *p = closure;
print_data(p, "null", 4);
UPB_UNUSED(handler_data);
UPB_UNUSED(null);
return true;
}
static bool printer_startdurationmsg(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
if (p->depth_ == 0) {
upb_bytessink_start(p->output_, 0, &p->subc_);
}
return true;
}
#define UPB_DURATION_MAX_JSON_LEN 23
#define UPB_DURATION_MAX_NANO_LEN 9
static bool printer_enddurationmsg(void *closure, const void *handler_data,
upb_status *s) {
upb_json_printer *p = closure;
char buffer[UPB_DURATION_MAX_JSON_LEN];
size_t base_len;
size_t curr;
size_t i;
memset(buffer, 0, UPB_DURATION_MAX_JSON_LEN);
if (p->seconds < -315576000000) {
upb_status_seterrf(s, "error parsing duration: "
"minimum acceptable value is "
"-315576000000");
return false;
}
if (p->seconds > 315576000000) {
upb_status_seterrf(s, "error serializing duration: "
"maximum acceptable value is "
"315576000000");
return false;
}
_upb_snprintf(buffer, sizeof(buffer), "%ld", (long)p->seconds);
base_len = strlen(buffer);
if (p->nanos != 0) {
char nanos_buffer[UPB_DURATION_MAX_NANO_LEN + 3];
_upb_snprintf(nanos_buffer, sizeof(nanos_buffer), "%.9f",
p->nanos / 1000000000.0);
/* Remove trailing 0. */
for (i = UPB_DURATION_MAX_NANO_LEN + 2;
nanos_buffer[i] == '0'; i--) {
nanos_buffer[i] = 0;
}
strcpy(buffer + base_len, nanos_buffer + 1);
}
curr = strlen(buffer);
strcpy(buffer + curr, "s");
p->seconds = 0;
p->nanos = 0;
print_data(p, "\"", 1);
print_data(p, buffer, strlen(buffer));
print_data(p, "\"", 1);
if (p->depth_ == 0) {
upb_bytessink_end(p->output_);
}
UPB_UNUSED(handler_data);
return true;
}
static bool printer_starttimestampmsg(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
if (p->depth_ == 0) {
upb_bytessink_start(p->output_, 0, &p->subc_);
}
return true;
}
#define UPB_TIMESTAMP_MAX_JSON_LEN 31
#define UPB_TIMESTAMP_BEFORE_NANO_LEN 19
#define UPB_TIMESTAMP_MAX_NANO_LEN 9
static bool printer_endtimestampmsg(void *closure, const void *handler_data,
upb_status *s) {
upb_json_printer *p = closure;
char buffer[UPB_TIMESTAMP_MAX_JSON_LEN];
time_t time = p->seconds;
size_t curr;
size_t i;
size_t year_length =
strftime(buffer, UPB_TIMESTAMP_MAX_JSON_LEN, "%Y", gmtime(&time));
if (p->seconds < -62135596800) {
upb_status_seterrf(s, "error parsing timestamp: "
"minimum acceptable value is "
"0001-01-01T00:00:00Z");
return false;
}
if (p->seconds > 253402300799) {
upb_status_seterrf(s, "error parsing timestamp: "
"maximum acceptable value is "
"9999-12-31T23:59:59Z");
return false;
}
/* strftime doesn't guarantee 4 digits for year. Prepend 0 by ourselves. */
for (i = 0; i < 4 - year_length; i++) {
buffer[i] = '0';
}
strftime(buffer + (4 - year_length), UPB_TIMESTAMP_MAX_JSON_LEN,
"%Y-%m-%dT%H:%M:%S", gmtime(&time));
if (p->nanos != 0) {
char nanos_buffer[UPB_TIMESTAMP_MAX_NANO_LEN + 3];
_upb_snprintf(nanos_buffer, sizeof(nanos_buffer), "%.9f",
p->nanos / 1000000000.0);
/* Remove trailing 0. */
for (i = UPB_TIMESTAMP_MAX_NANO_LEN + 2;
nanos_buffer[i] == '0'; i--) {
nanos_buffer[i] = 0;
}
strcpy(buffer + UPB_TIMESTAMP_BEFORE_NANO_LEN, nanos_buffer + 1);
}
curr = strlen(buffer);
strcpy(buffer + curr, "Z");
p->seconds = 0;
p->nanos = 0;
print_data(p, "\"", 1);
print_data(p, buffer, strlen(buffer));
print_data(p, "\"", 1);
if (p->depth_ == 0) {
upb_bytessink_end(p->output_);
}
UPB_UNUSED(handler_data);
UPB_UNUSED(s);
return true;
}
static bool printer_startmsg_noframe(void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
if (p->depth_ == 0) {
upb_bytessink_start(p->output_, 0, &p->subc_);
}
return true;
}
static bool printer_endmsg_noframe(
void *closure, const void *handler_data, upb_status *s) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(s);
if (p->depth_ == 0) {
upb_bytessink_end(p->output_);
}
return true;
}
static bool printer_startmsg_fieldmask(
void *closure, const void *handler_data) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
if (p->depth_ == 0) {
upb_bytessink_start(p->output_, 0, &p->subc_);
}
print_data(p, "\"", 1);
return true;
}
static bool printer_endmsg_fieldmask(
void *closure, const void *handler_data, upb_status *s) {
upb_json_printer *p = closure;
UPB_UNUSED(handler_data);
UPB_UNUSED(s);
print_data(p, "\"", 1);
if (p->depth_ == 0) {
upb_bytessink_end(p->output_);
}
return true;
}
static void *scalar_startstr_onlykey(
void *closure, const void *handler_data, size_t size_hint) {
upb_json_printer *p = closure;
UPB_UNUSED(size_hint);
CHK(putkey(closure, handler_data));
return p;
}
/* Set up handlers for an Any submessage. */
void printer_sethandlers_any(const void *closure, upb_handlers *h) {
const upb_msgdef *md = upb_handlers_msgdef(h);
const upb_fielddef* type_field = upb_msgdef_itof(md, UPB_ANY_TYPE);
const upb_fielddef* value_field = upb_msgdef_itof(md, UPB_ANY_VALUE);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT;
/* type_url's json name is "@type" */
upb_handlerattr type_name_attr = UPB_HANDLERATTR_INIT;
upb_handlerattr value_name_attr = UPB_HANDLERATTR_INIT;
strpc *type_url_json_name = newstrpc_str(h, "@type");
strpc *value_json_name = newstrpc_str(h, "value");
type_name_attr.handler_data = type_url_json_name;
value_name_attr.handler_data = value_json_name;
/* Set up handlers. */
upb_handlers_setstartmsg(h, printer_startmsg, &empty_attr);
upb_handlers_setendmsg(h, printer_endmsg, &empty_attr);
upb_handlers_setstartstr(h, type_field, scalar_startstr, &type_name_attr);
upb_handlers_setstring(h, type_field, scalar_str, &empty_attr);
upb_handlers_setendstr(h, type_field, scalar_endstr, &empty_attr);
/* This is not the full and correct JSON encoding for the Any value field. It
* requires further processing by the wrapper code based on the type URL.
*/
upb_handlers_setstartstr(h, value_field, scalar_startstr_onlykey,
&value_name_attr);
UPB_UNUSED(closure);
}
/* Set up handlers for a fieldmask submessage. */
void printer_sethandlers_fieldmask(const void *closure, upb_handlers *h) {
const upb_msgdef *md = upb_handlers_msgdef(h);
const upb_fielddef* f = upb_msgdef_itof(md, 1);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT;
upb_handlers_setstartseq(h, f, startseq_fieldmask, &empty_attr);
upb_handlers_setendseq(h, f, endseq_fieldmask, &empty_attr);
upb_handlers_setstartmsg(h, printer_startmsg_fieldmask, &empty_attr);
upb_handlers_setendmsg(h, printer_endmsg_fieldmask, &empty_attr);
upb_handlers_setstartstr(h, f, repeated_startstr_fieldmask, &empty_attr);
upb_handlers_setstring(h, f, repeated_str_fieldmask, &empty_attr);
UPB_UNUSED(closure);
}
/* Set up handlers for a duration submessage. */
void printer_sethandlers_duration(const void *closure, upb_handlers *h) {
const upb_msgdef *md = upb_handlers_msgdef(h);
const upb_fielddef* seconds_field =
upb_msgdef_itof(md, UPB_DURATION_SECONDS);
const upb_fielddef* nanos_field =
upb_msgdef_itof(md, UPB_DURATION_NANOS);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT;
upb_handlers_setstartmsg(h, printer_startdurationmsg, &empty_attr);
upb_handlers_setint64(h, seconds_field, putseconds, &empty_attr);
upb_handlers_setint32(h, nanos_field, putnanos, &empty_attr);
upb_handlers_setendmsg(h, printer_enddurationmsg, &empty_attr);
UPB_UNUSED(closure);
}
/* Set up handlers for a timestamp submessage. Instead of printing fields
* separately, the json representation of timestamp follows RFC 3339 */
void printer_sethandlers_timestamp(const void *closure, upb_handlers *h) {
const upb_msgdef *md = upb_handlers_msgdef(h);
const upb_fielddef* seconds_field =
upb_msgdef_itof(md, UPB_TIMESTAMP_SECONDS);
const upb_fielddef* nanos_field =
upb_msgdef_itof(md, UPB_TIMESTAMP_NANOS);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT;
upb_handlers_setstartmsg(h, printer_starttimestampmsg, &empty_attr);
upb_handlers_setint64(h, seconds_field, putseconds, &empty_attr);
upb_handlers_setint32(h, nanos_field, putnanos, &empty_attr);
upb_handlers_setendmsg(h, printer_endtimestampmsg, &empty_attr);
UPB_UNUSED(closure);
}
void printer_sethandlers_value(const void *closure, upb_handlers *h) {
const upb_msgdef *md = upb_handlers_msgdef(h);
upb_msg_field_iter i;
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT;
upb_handlers_setstartmsg(h, printer_startmsg_noframe, &empty_attr);
upb_handlers_setendmsg(h, printer_endmsg_noframe, &empty_attr);
upb_msg_field_begin(&i, md);
for(; !upb_msg_field_done(&i); upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
switch (upb_fielddef_type(f)) {
case UPB_TYPE_ENUM:
upb_handlers_setint32(h, f, putnull, &empty_attr);
break;
case UPB_TYPE_DOUBLE:
upb_handlers_setdouble(h, f, putdouble, &empty_attr);
break;
case UPB_TYPE_STRING:
upb_handlers_setstartstr(h, f, scalar_startstr_nokey, &empty_attr);
upb_handlers_setstring(h, f, scalar_str, &empty_attr);
upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr);
break;
case UPB_TYPE_BOOL:
upb_handlers_setbool(h, f, putbool, &empty_attr);
break;
case UPB_TYPE_MESSAGE:
break;
default:
UPB_ASSERT(false);
break;
}
}
UPB_UNUSED(closure);
}
#define WRAPPER_SETHANDLERS(wrapper, type, putmethod) \
void printer_sethandlers_##wrapper(const void *closure, upb_handlers *h) { \
const upb_msgdef *md = upb_handlers_msgdef(h); \
const upb_fielddef* f = upb_msgdef_itof(md, 1); \
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT; \
upb_handlers_setstartmsg(h, printer_startmsg_noframe, &empty_attr); \
upb_handlers_setendmsg(h, printer_endmsg_noframe, &empty_attr); \
upb_handlers_set##type(h, f, putmethod, &empty_attr); \
UPB_UNUSED(closure); \
}
WRAPPER_SETHANDLERS(doublevalue, double, putdouble)
WRAPPER_SETHANDLERS(floatvalue, float, putfloat)
WRAPPER_SETHANDLERS(int64value, int64, putint64_t)
WRAPPER_SETHANDLERS(uint64value, uint64, putuint64_t)
WRAPPER_SETHANDLERS(int32value, int32, putint32_t)
WRAPPER_SETHANDLERS(uint32value, uint32, putuint32_t)
WRAPPER_SETHANDLERS(boolvalue, bool, putbool)
WRAPPER_SETHANDLERS(stringvalue, string, putstr_nokey)
WRAPPER_SETHANDLERS(bytesvalue, string, putbytes)
#undef WRAPPER_SETHANDLERS
void printer_sethandlers_listvalue(const void *closure, upb_handlers *h) {
const upb_msgdef *md = upb_handlers_msgdef(h);
const upb_fielddef* f = upb_msgdef_itof(md, 1);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT;
upb_handlers_setstartseq(h, f, startseq_nokey, &empty_attr);
upb_handlers_setendseq(h, f, endseq, &empty_attr);
upb_handlers_setstartmsg(h, printer_startmsg_noframe, &empty_attr);
upb_handlers_setendmsg(h, printer_endmsg_noframe, &empty_attr);
upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &empty_attr);
UPB_UNUSED(closure);
}
void printer_sethandlers_structvalue(const void *closure, upb_handlers *h) {
const upb_msgdef *md = upb_handlers_msgdef(h);
const upb_fielddef* f = upb_msgdef_itof(md, 1);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT;
upb_handlers_setstartseq(h, f, startmap_nokey, &empty_attr);
upb_handlers_setendseq(h, f, endmap, &empty_attr);
upb_handlers_setstartmsg(h, printer_startmsg_noframe, &empty_attr);
upb_handlers_setendmsg(h, printer_endmsg_noframe, &empty_attr);
upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &empty_attr);
UPB_UNUSED(closure);
}
void printer_sethandlers(const void *closure, upb_handlers *h) {
const upb_msgdef *md = upb_handlers_msgdef(h);
bool is_mapentry = upb_msgdef_mapentry(md);
upb_handlerattr empty_attr = UPB_HANDLERATTR_INIT;
upb_msg_field_iter i;
const upb_json_printercache *cache = closure;
const bool preserve_fieldnames = cache->preserve_fieldnames;
if (is_mapentry) {
/* mapentry messages are sufficiently different that we handle them
* separately. */
printer_sethandlers_mapentry(closure, preserve_fieldnames, h);
return;
}
switch (upb_msgdef_wellknowntype(md)) {
case UPB_WELLKNOWN_UNSPECIFIED:
break;
case UPB_WELLKNOWN_ANY:
printer_sethandlers_any(closure, h);
return;
case UPB_WELLKNOWN_FIELDMASK:
printer_sethandlers_fieldmask(closure, h);
return;
case UPB_WELLKNOWN_DURATION:
printer_sethandlers_duration(closure, h);
return;
case UPB_WELLKNOWN_TIMESTAMP:
printer_sethandlers_timestamp(closure, h);
return;
case UPB_WELLKNOWN_VALUE:
printer_sethandlers_value(closure, h);
return;
case UPB_WELLKNOWN_LISTVALUE:
printer_sethandlers_listvalue(closure, h);
return;
case UPB_WELLKNOWN_STRUCT:
printer_sethandlers_structvalue(closure, h);
return;
#define WRAPPER(wellknowntype, name) \
case wellknowntype: \
printer_sethandlers_##name(closure, h); \
return; \
WRAPPER(UPB_WELLKNOWN_DOUBLEVALUE, doublevalue);
WRAPPER(UPB_WELLKNOWN_FLOATVALUE, floatvalue);
WRAPPER(UPB_WELLKNOWN_INT64VALUE, int64value);
WRAPPER(UPB_WELLKNOWN_UINT64VALUE, uint64value);
WRAPPER(UPB_WELLKNOWN_INT32VALUE, int32value);
WRAPPER(UPB_WELLKNOWN_UINT32VALUE, uint32value);
WRAPPER(UPB_WELLKNOWN_BOOLVALUE, boolvalue);
WRAPPER(UPB_WELLKNOWN_STRINGVALUE, stringvalue);
WRAPPER(UPB_WELLKNOWN_BYTESVALUE, bytesvalue);
#undef WRAPPER
}
upb_handlers_setstartmsg(h, printer_startmsg, &empty_attr);
upb_handlers_setendmsg(h, printer_endmsg, &empty_attr);
#define TYPE(type, name, ctype) \
case type: \
if (upb_fielddef_isseq(f)) { \
upb_handlers_set##name(h, f, repeated_##ctype, &empty_attr); \
} else { \
upb_handlers_set##name(h, f, scalar_##ctype, &name_attr); \
} \
break;
upb_msg_field_begin(&i, md);
for(; !upb_msg_field_done(&i); upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
upb_handlerattr name_attr = UPB_HANDLERATTR_INIT;
name_attr.handler_data = newstrpc(h, f, preserve_fieldnames);
if (upb_fielddef_ismap(f)) {
upb_handlers_setstartseq(h, f, startmap, &name_attr);
upb_handlers_setendseq(h, f, endmap, &name_attr);
} else if (upb_fielddef_isseq(f)) {
upb_handlers_setstartseq(h, f, startseq, &name_attr);
upb_handlers_setendseq(h, f, endseq, &empty_attr);
}
switch (upb_fielddef_type(f)) {
TYPE(UPB_TYPE_FLOAT, float, float);
TYPE(UPB_TYPE_DOUBLE, double, double);
TYPE(UPB_TYPE_BOOL, bool, bool);
TYPE(UPB_TYPE_INT32, int32, int32_t);
TYPE(UPB_TYPE_UINT32, uint32, uint32_t);
TYPE(UPB_TYPE_INT64, int64, int64_t);
TYPE(UPB_TYPE_UINT64, uint64, uint64_t);
case UPB_TYPE_ENUM: {
/* For now, we always emit symbolic names for enums. We may want an
* option later to control this behavior, but we will wait for a real
* need first. */
upb_handlerattr enum_attr = UPB_HANDLERATTR_INIT;
set_enum_hd(h, f, preserve_fieldnames, &enum_attr);
if (upb_fielddef_isseq(f)) {
upb_handlers_setint32(h, f, repeated_enum, &enum_attr);
} else {
upb_handlers_setint32(h, f, scalar_enum, &enum_attr);
}
break;
}
case UPB_TYPE_STRING:
if (upb_fielddef_isseq(f)) {
upb_handlers_setstartstr(h, f, repeated_startstr, &empty_attr);
upb_handlers_setstring(h, f, repeated_str, &empty_attr);
upb_handlers_setendstr(h, f, repeated_endstr, &empty_attr);
} else {
upb_handlers_setstartstr(h, f, scalar_startstr, &name_attr);
upb_handlers_setstring(h, f, scalar_str, &empty_attr);
upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr);
}
break;
case UPB_TYPE_BYTES:
/* XXX: this doesn't support strings that span buffers yet. The base64
* encoder will need to be made resumable for this to work properly. */
if (upb_fielddef_isseq(f)) {
upb_handlers_setstring(h, f, repeated_bytes, &empty_attr);
} else {
upb_handlers_setstring(h, f, scalar_bytes, &name_attr);
}
break;
case UPB_TYPE_MESSAGE:
if (upb_fielddef_isseq(f)) {
upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &name_attr);
} else {
upb_handlers_setstartsubmsg(h, f, scalar_startsubmsg, &name_attr);
}
break;
}
}
#undef TYPE
}
static void json_printer_reset(upb_json_printer *p) {
p->depth_ = 0;
}
/* Public API *****************************************************************/
upb_json_printer *upb_json_printer_create(upb_arena *a, const upb_handlers *h,
upb_bytessink output) {
#ifndef NDEBUG
size_t size_before = upb_arena_bytesallocated(a);
#endif
upb_json_printer *p = upb_arena_malloc(a, sizeof(upb_json_printer));
if (!p) return NULL;
p->output_ = output;
json_printer_reset(p);
upb_sink_reset(&p->input_, h, p);
p->seconds = 0;
p->nanos = 0;
/* If this fails, increase the value in printer.h. */
UPB_ASSERT_DEBUGVAR(upb_arena_bytesallocated(a) - size_before <=
UPB_JSON_PRINTER_SIZE);
return p;
}
upb_sink upb_json_printer_input(upb_json_printer *p) {
return p->input_;
}
upb_handlercache *upb_json_printer_newcache(bool preserve_proto_fieldnames) {
upb_json_printercache *cache = upb_gmalloc(sizeof(*cache));
upb_handlercache *ret = upb_handlercache_new(printer_sethandlers, cache);
cache->preserve_fieldnames = preserve_proto_fieldnames;
upb_handlercache_addcleanup(ret, cache, upb_gfree);
return ret;
}
/* See port_def.inc. This should #undef all macros #defined there. */
#undef UPB_SIZE
#undef UPB_FIELD_AT
#undef UPB_READ_ONEOF
#undef UPB_WRITE_ONEOF
#undef UPB_INLINE
#undef UPB_FORCEINLINE
#undef UPB_NOINLINE
#undef UPB_NORETURN
#undef UPB_MAX
#undef UPB_MIN
#undef UPB_UNUSED
#undef UPB_ASSERT
#undef UPB_ASSERT_DEBUGVAR
#undef UPB_UNREACHABLE
#undef UPB_INFINITY
#undef UPB_MSVC_VSNPRINTF
#undef _upb_snprintf
#undef _upb_vsnprintf
#undef _upb_va_copy