Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1066 lines
32 KiB
1066 lines
32 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2008 Google Inc. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
/** |
|
* @fileoverview This file contains helper code used by jspb.BinaryReader |
|
* and BinaryWriter. |
|
* |
|
* @author aappleby@google.com (Austin Appleby) |
|
*/ |
|
|
|
goog.provide('jspb.utils'); |
|
|
|
goog.require('goog.asserts'); |
|
goog.require('goog.crypt'); |
|
goog.require('goog.crypt.base64'); |
|
goog.require('goog.string'); |
|
goog.require('jspb.BinaryConstants'); |
|
|
|
|
|
/** |
|
* Javascript can't natively handle 64-bit data types, so to manipulate them we |
|
* have to split them into two 32-bit halves and do the math manually. |
|
* |
|
* Instead of instantiating and passing small structures around to do this, we |
|
* instead just use two global temporary values. This one stores the low 32 |
|
* bits of a split value - for example, if the original value was a 64-bit |
|
* integer, this temporary value will contain the low 32 bits of that integer. |
|
* If the original value was a double, this temporary value will contain the |
|
* low 32 bits of the binary representation of that double, etcetera. |
|
* @type {number} |
|
*/ |
|
jspb.utils.split64Low = 0; |
|
|
|
|
|
/** |
|
* And correspondingly, this temporary variable will contain the high 32 bits |
|
* of whatever value was split. |
|
* @type {number} |
|
*/ |
|
jspb.utils.split64High = 0; |
|
|
|
|
|
/** |
|
* Splits an unsigned Javascript integer into two 32-bit halves and stores it |
|
* in the temp values above. |
|
* @param {number} value The number to split. |
|
*/ |
|
jspb.utils.splitUint64 = function(value) { |
|
// Extract low 32 bits and high 32 bits as unsigned integers. |
|
var lowBits = value >>> 0; |
|
var highBits = Math.floor((value - lowBits) / |
|
jspb.BinaryConstants.TWO_TO_32) >>> 0; |
|
|
|
jspb.utils.split64Low = lowBits; |
|
jspb.utils.split64High = highBits; |
|
}; |
|
|
|
|
|
/** |
|
* Splits a signed Javascript integer into two 32-bit halves and stores it in |
|
* the temp values above. |
|
* @param {number} value The number to split. |
|
*/ |
|
jspb.utils.splitInt64 = function(value) { |
|
// Convert to sign-magnitude representation. |
|
var sign = (value < 0); |
|
value = Math.abs(value); |
|
|
|
// Extract low 32 bits and high 32 bits as unsigned integers. |
|
var lowBits = value >>> 0; |
|
var highBits = Math.floor((value - lowBits) / |
|
jspb.BinaryConstants.TWO_TO_32); |
|
highBits = highBits >>> 0; |
|
|
|
// Perform two's complement conversion if the sign bit was set. |
|
if (sign) { |
|
highBits = ~highBits >>> 0; |
|
lowBits = ~lowBits >>> 0; |
|
lowBits += 1; |
|
if (lowBits > 0xFFFFFFFF) { |
|
lowBits = 0; |
|
highBits++; |
|
if (highBits > 0xFFFFFFFF) highBits = 0; |
|
} |
|
} |
|
|
|
jspb.utils.split64Low = lowBits; |
|
jspb.utils.split64High = highBits; |
|
}; |
|
|
|
|
|
/** |
|
* Converts a signed Javascript integer into zigzag format, splits it into two |
|
* 32-bit halves, and stores it in the temp values above. |
|
* @param {number} value The number to split. |
|
*/ |
|
jspb.utils.splitZigzag64 = function(value) { |
|
// Convert to sign-magnitude and scale by 2 before we split the value. |
|
var sign = (value < 0); |
|
value = Math.abs(value) * 2; |
|
|
|
jspb.utils.splitUint64(value); |
|
var lowBits = jspb.utils.split64Low; |
|
var highBits = jspb.utils.split64High; |
|
|
|
// If the value is negative, subtract 1 from the split representation so we |
|
// don't lose the sign bit due to precision issues. |
|
if (sign) { |
|
if (lowBits == 0) { |
|
if (highBits == 0) { |
|
lowBits = 0xFFFFFFFF; |
|
highBits = 0xFFFFFFFF; |
|
} else { |
|
highBits--; |
|
lowBits = 0xFFFFFFFF; |
|
} |
|
} else { |
|
lowBits--; |
|
} |
|
} |
|
|
|
jspb.utils.split64Low = lowBits; |
|
jspb.utils.split64High = highBits; |
|
}; |
|
|
|
|
|
/** |
|
* Converts a floating-point number into 32-bit IEEE representation and stores |
|
* it in the temp values above. |
|
* @param {number} value |
|
*/ |
|
jspb.utils.splitFloat32 = function(value) { |
|
var sign = (value < 0) ? 1 : 0; |
|
value = sign ? -value : value; |
|
var exp; |
|
var mant; |
|
|
|
// Handle zeros. |
|
if (value === 0) { |
|
if ((1 / value) > 0) { |
|
// Positive zero. |
|
jspb.utils.split64High = 0; |
|
jspb.utils.split64Low = 0x00000000; |
|
} else { |
|
// Negative zero. |
|
jspb.utils.split64High = 0; |
|
jspb.utils.split64Low = 0x80000000; |
|
} |
|
return; |
|
} |
|
|
|
// Handle nans. |
|
if (isNaN(value)) { |
|
jspb.utils.split64High = 0; |
|
jspb.utils.split64Low = 0x7FFFFFFF; |
|
return; |
|
} |
|
|
|
// Handle infinities. |
|
if (value > jspb.BinaryConstants.FLOAT32_MAX) { |
|
jspb.utils.split64High = 0; |
|
jspb.utils.split64Low = ((sign << 31) | (0x7F800000)) >>> 0; |
|
return; |
|
} |
|
|
|
// Handle denormals. |
|
if (value < jspb.BinaryConstants.FLOAT32_MIN) { |
|
// Number is a denormal. |
|
mant = Math.round(value / Math.pow(2, -149)); |
|
jspb.utils.split64High = 0; |
|
jspb.utils.split64Low = ((sign << 31) | mant) >>> 0; |
|
return; |
|
} |
|
|
|
exp = Math.floor(Math.log(value) / Math.LN2); |
|
mant = value * Math.pow(2, -exp); |
|
mant = Math.round(mant * jspb.BinaryConstants.TWO_TO_23) & 0x7FFFFF; |
|
|
|
jspb.utils.split64High = 0; |
|
jspb.utils.split64Low = ((sign << 31) | ((exp + 127) << 23) | mant) >>> 0; |
|
}; |
|
|
|
|
|
/** |
|
* Converts a floating-point number into 64-bit IEEE representation and stores |
|
* it in the temp values above. |
|
* @param {number} value |
|
*/ |
|
jspb.utils.splitFloat64 = function(value) { |
|
var sign = (value < 0) ? 1 : 0; |
|
value = sign ? -value : value; |
|
|
|
// Handle zeros. |
|
if (value === 0) { |
|
if ((1 / value) > 0) { |
|
// Positive zero. |
|
jspb.utils.split64High = 0x00000000; |
|
jspb.utils.split64Low = 0x00000000; |
|
} else { |
|
// Negative zero. |
|
jspb.utils.split64High = 0x80000000; |
|
jspb.utils.split64Low = 0x00000000; |
|
} |
|
return; |
|
} |
|
|
|
// Handle nans. |
|
if (isNaN(value)) { |
|
jspb.utils.split64High = 0x7FFFFFFF; |
|
jspb.utils.split64Low = 0xFFFFFFFF; |
|
return; |
|
} |
|
|
|
// Handle infinities. |
|
if (value > jspb.BinaryConstants.FLOAT64_MAX) { |
|
jspb.utils.split64High = ((sign << 31) | (0x7FF00000)) >>> 0; |
|
jspb.utils.split64Low = 0; |
|
return; |
|
} |
|
|
|
// Handle denormals. |
|
if (value < jspb.BinaryConstants.FLOAT64_MIN) { |
|
// Number is a denormal. |
|
var mant = value / Math.pow(2, -1074); |
|
var mantHigh = (mant / jspb.BinaryConstants.TWO_TO_32); |
|
jspb.utils.split64High = ((sign << 31) | mantHigh) >>> 0; |
|
jspb.utils.split64Low = (mant >>> 0); |
|
return; |
|
} |
|
|
|
// Compute the least significant exponent needed to represent the magnitude of |
|
// the value by repeadly dividing/multiplying by 2 until the magnitude |
|
// crosses 2. While tempting to use log math to find the exponent, at the |
|
// bounadaries of precision, the result can be off by one. |
|
var maxDoubleExponent = 1023; |
|
var minDoubleExponent = -1022; |
|
var x = value; |
|
var exp = 0; |
|
if (x >= 2) { |
|
while (x >= 2 && exp < maxDoubleExponent) { |
|
exp++; |
|
x = x / 2; |
|
} |
|
} else { |
|
while (x < 1 && exp > minDoubleExponent) { |
|
x = x * 2; |
|
exp--; |
|
} |
|
} |
|
var mant = value * Math.pow(2, -exp); |
|
|
|
var mantHigh = (mant * jspb.BinaryConstants.TWO_TO_20) & 0xFFFFF; |
|
var mantLow = (mant * jspb.BinaryConstants.TWO_TO_52) >>> 0; |
|
|
|
jspb.utils.split64High = |
|
((sign << 31) | ((exp + 1023) << 20) | mantHigh) >>> 0; |
|
jspb.utils.split64Low = mantLow; |
|
}; |
|
|
|
|
|
/** |
|
* Converts an 8-character hash string into two 32-bit numbers and stores them |
|
* in the temp values above. |
|
* @param {string} hash |
|
*/ |
|
jspb.utils.splitHash64 = function(hash) { |
|
var a = hash.charCodeAt(0); |
|
var b = hash.charCodeAt(1); |
|
var c = hash.charCodeAt(2); |
|
var d = hash.charCodeAt(3); |
|
var e = hash.charCodeAt(4); |
|
var f = hash.charCodeAt(5); |
|
var g = hash.charCodeAt(6); |
|
var h = hash.charCodeAt(7); |
|
|
|
jspb.utils.split64Low = (a + (b << 8) + (c << 16) + (d << 24)) >>> 0; |
|
jspb.utils.split64High = (e + (f << 8) + (g << 16) + (h << 24)) >>> 0; |
|
}; |
|
|
|
|
|
/** |
|
* Joins two 32-bit values into a 64-bit unsigned integer. Precision will be |
|
* lost if the result is greater than 2^52. |
|
* @param {number} bitsLow |
|
* @param {number} bitsHigh |
|
* @return {number} |
|
*/ |
|
jspb.utils.joinUint64 = function(bitsLow, bitsHigh) { |
|
return bitsHigh * jspb.BinaryConstants.TWO_TO_32 + (bitsLow >>> 0); |
|
}; |
|
|
|
|
|
/** |
|
* Joins two 32-bit values into a 64-bit signed integer. Precision will be lost |
|
* if the result is greater than 2^52. |
|
* @param {number} bitsLow |
|
* @param {number} bitsHigh |
|
* @return {number} |
|
*/ |
|
jspb.utils.joinInt64 = function(bitsLow, bitsHigh) { |
|
// If the high bit is set, do a manual two's complement conversion. |
|
var sign = (bitsHigh & 0x80000000); |
|
if (sign) { |
|
bitsLow = (~bitsLow + 1) >>> 0; |
|
bitsHigh = ~bitsHigh >>> 0; |
|
if (bitsLow == 0) { |
|
bitsHigh = (bitsHigh + 1) >>> 0; |
|
} |
|
} |
|
|
|
var result = jspb.utils.joinUint64(bitsLow, bitsHigh); |
|
return sign ? -result : result; |
|
}; |
|
|
|
/** |
|
* Converts split 64-bit values from standard two's complement encoding to |
|
* zig-zag encoding. Invokes the provided function to produce final result. |
|
* |
|
* @param {number} bitsLow |
|
* @param {number} bitsHigh |
|
* @param {function(number, number): T} convert Conversion function to produce |
|
* the result value, takes parameters (lowBits, highBits). |
|
* @return {T} |
|
* @template T |
|
*/ |
|
jspb.utils.toZigzag64 = function(bitsLow, bitsHigh, convert) { |
|
// See |
|
// https://engdoc.corp.google.com/eng/howto/protocolbuffers/developerguide/encoding.shtml?cl=head#types |
|
// 64-bit math is: (n << 1) ^ (n >> 63) |
|
// |
|
// To do this in 32 bits, we can get a 32-bit sign-flipping mask from the |
|
// high word. |
|
// Then we can operate on each word individually, with the addition of the |
|
// "carry" to get the most significant bit from the low word into the high |
|
// word. |
|
var signFlipMask = bitsHigh >> 31; |
|
bitsHigh = (bitsHigh << 1 | bitsLow >>> 31) ^ signFlipMask; |
|
bitsLow = (bitsLow << 1) ^ signFlipMask; |
|
return convert(bitsLow, bitsHigh); |
|
}; |
|
|
|
|
|
/** |
|
* Joins two 32-bit values into a 64-bit unsigned integer and applies zigzag |
|
* decoding. Precision will be lost if the result is greater than 2^52. |
|
* @param {number} bitsLow |
|
* @param {number} bitsHigh |
|
* @return {number} |
|
*/ |
|
jspb.utils.joinZigzag64 = function(bitsLow, bitsHigh) { |
|
return jspb.utils.fromZigzag64(bitsLow, bitsHigh, jspb.utils.joinInt64); |
|
}; |
|
|
|
|
|
/** |
|
* Converts split 64-bit values from zigzag encoding to standard two's |
|
* complement encoding. Invokes the provided function to produce final result. |
|
* |
|
* @param {number} bitsLow |
|
* @param {number} bitsHigh |
|
* @param {function(number, number): T} convert Conversion function to produce |
|
* the result value, takes parameters (lowBits, highBits). |
|
* @return {T} |
|
* @template T |
|
*/ |
|
jspb.utils.fromZigzag64 = function(bitsLow, bitsHigh, convert) { |
|
// 64 bit math is: |
|
// signmask = (zigzag & 1) ? -1 : 0; |
|
// twosComplement = (zigzag >> 1) ^ signmask; |
|
// |
|
// To work with 32 bit, we can operate on both but "carry" the lowest bit |
|
// from the high word by shifting it up 31 bits to be the most significant bit |
|
// of the low word. |
|
var signFlipMask = -(bitsLow & 1); |
|
bitsLow = ((bitsLow >>> 1) | (bitsHigh << 31)) ^ signFlipMask; |
|
bitsHigh = (bitsHigh >>> 1) ^ signFlipMask; |
|
return convert(bitsLow, bitsHigh); |
|
}; |
|
|
|
|
|
/** |
|
* Joins two 32-bit values into a 32-bit IEEE floating point number and |
|
* converts it back into a Javascript number. |
|
* @param {number} bitsLow The low 32 bits of the binary number; |
|
* @param {number} bitsHigh The high 32 bits of the binary number. |
|
* @return {number} |
|
*/ |
|
jspb.utils.joinFloat32 = function(bitsLow, bitsHigh) { |
|
var sign = ((bitsLow >> 31) * 2 + 1); |
|
var exp = (bitsLow >>> 23) & 0xFF; |
|
var mant = bitsLow & 0x7FFFFF; |
|
|
|
if (exp == 0xFF) { |
|
if (mant) { |
|
return NaN; |
|
} else { |
|
return sign * Infinity; |
|
} |
|
} |
|
|
|
if (exp == 0) { |
|
// Denormal. |
|
return sign * Math.pow(2, -149) * mant; |
|
} else { |
|
return sign * Math.pow(2, exp - 150) * |
|
(mant + Math.pow(2, 23)); |
|
} |
|
}; |
|
|
|
|
|
/** |
|
* Joins two 32-bit values into a 64-bit IEEE floating point number and |
|
* converts it back into a Javascript number. |
|
* @param {number} bitsLow The low 32 bits of the binary number; |
|
* @param {number} bitsHigh The high 32 bits of the binary number. |
|
* @return {number} |
|
*/ |
|
jspb.utils.joinFloat64 = function(bitsLow, bitsHigh) { |
|
var sign = ((bitsHigh >> 31) * 2 + 1); |
|
var exp = (bitsHigh >>> 20) & 0x7FF; |
|
var mant = jspb.BinaryConstants.TWO_TO_32 * (bitsHigh & 0xFFFFF) + bitsLow; |
|
|
|
if (exp == 0x7FF) { |
|
if (mant) { |
|
return NaN; |
|
} else { |
|
return sign * Infinity; |
|
} |
|
} |
|
|
|
if (exp == 0) { |
|
// Denormal. |
|
return sign * Math.pow(2, -1074) * mant; |
|
} else { |
|
return sign * Math.pow(2, exp - 1075) * |
|
(mant + jspb.BinaryConstants.TWO_TO_52); |
|
} |
|
}; |
|
|
|
|
|
/** |
|
* Joins two 32-bit values into an 8-character hash string. |
|
* @param {number} bitsLow |
|
* @param {number} bitsHigh |
|
* @return {string} |
|
*/ |
|
jspb.utils.joinHash64 = function(bitsLow, bitsHigh) { |
|
var a = (bitsLow >>> 0) & 0xFF; |
|
var b = (bitsLow >>> 8) & 0xFF; |
|
var c = (bitsLow >>> 16) & 0xFF; |
|
var d = (bitsLow >>> 24) & 0xFF; |
|
var e = (bitsHigh >>> 0) & 0xFF; |
|
var f = (bitsHigh >>> 8) & 0xFF; |
|
var g = (bitsHigh >>> 16) & 0xFF; |
|
var h = (bitsHigh >>> 24) & 0xFF; |
|
|
|
return String.fromCharCode(a, b, c, d, e, f, g, h); |
|
}; |
|
|
|
/** |
|
* Individual digits for number->string conversion. |
|
* @const {!Array<string>} |
|
*/ |
|
jspb.utils.DIGITS = [ |
|
'0', '1', '2', '3', '4', '5', '6', '7', |
|
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f' |
|
]; |
|
|
|
/** @const @private {number} '0' */ |
|
jspb.utils.ZERO_CHAR_CODE_ = 48; |
|
|
|
/** @const @private {number} 'a' */ |
|
jspb.utils.A_CHAR_CODE_ = 97; |
|
|
|
/** |
|
* Losslessly converts a 64-bit unsigned integer in 32:32 split representation |
|
* into a decimal string. |
|
* @param {number} bitsLow The low 32 bits of the binary number; |
|
* @param {number} bitsHigh The high 32 bits of the binary number. |
|
* @return {string} The binary number represented as a string. |
|
*/ |
|
jspb.utils.joinUnsignedDecimalString = function(bitsLow, bitsHigh) { |
|
// Skip the expensive conversion if the number is small enough to use the |
|
// built-in conversions. |
|
if (bitsHigh <= 0x1FFFFF) { |
|
return '' + (jspb.BinaryConstants.TWO_TO_32 * bitsHigh + bitsLow); |
|
} |
|
|
|
// What this code is doing is essentially converting the input number from |
|
// base-2 to base-1e7, which allows us to represent the 64-bit range with |
|
// only 3 (very large) digits. Those digits are then trivial to convert to |
|
// a base-10 string. |
|
|
|
// The magic numbers used here are - |
|
// 2^24 = 16777216 = (1,6777216) in base-1e7. |
|
// 2^48 = 281474976710656 = (2,8147497,6710656) in base-1e7. |
|
|
|
// Split 32:32 representation into 16:24:24 representation so our |
|
// intermediate digits don't overflow. |
|
var low = bitsLow & 0xFFFFFF; |
|
var mid = (((bitsLow >>> 24) | (bitsHigh << 8)) >>> 0) & 0xFFFFFF; |
|
var high = (bitsHigh >> 16) & 0xFFFF; |
|
|
|
// Assemble our three base-1e7 digits, ignoring carries. The maximum |
|
// value in a digit at this step is representable as a 48-bit integer, which |
|
// can be stored in a 64-bit floating point number. |
|
var digitA = low + (mid * 6777216) + (high * 6710656); |
|
var digitB = mid + (high * 8147497); |
|
var digitC = (high * 2); |
|
|
|
// Apply carries from A to B and from B to C. |
|
var base = 10000000; |
|
if (digitA >= base) { |
|
digitB += Math.floor(digitA / base); |
|
digitA %= base; |
|
} |
|
|
|
if (digitB >= base) { |
|
digitC += Math.floor(digitB / base); |
|
digitB %= base; |
|
} |
|
|
|
// Convert base-1e7 digits to base-10, with optional leading zeroes. |
|
function decimalFrom1e7(digit1e7, needLeadingZeros) { |
|
var partial = digit1e7 ? String(digit1e7) : ''; |
|
if (needLeadingZeros) { |
|
return '0000000'.slice(partial.length) + partial; |
|
} |
|
return partial; |
|
} |
|
|
|
return decimalFrom1e7(digitC, /*needLeadingZeros=*/ 0) + |
|
decimalFrom1e7(digitB, /*needLeadingZeros=*/ digitC) + |
|
// If the final 1e7 digit didn't need leading zeros, we would have |
|
// returned via the trivial code path at the top. |
|
decimalFrom1e7(digitA, /*needLeadingZeros=*/ 1); |
|
}; |
|
|
|
|
|
/** |
|
* Losslessly converts a 64-bit signed integer in 32:32 split representation |
|
* into a decimal string. |
|
* @param {number} bitsLow The low 32 bits of the binary number; |
|
* @param {number} bitsHigh The high 32 bits of the binary number. |
|
* @return {string} The binary number represented as a string. |
|
*/ |
|
jspb.utils.joinSignedDecimalString = function(bitsLow, bitsHigh) { |
|
// If we're treating the input as a signed value and the high bit is set, do |
|
// a manual two's complement conversion before the decimal conversion. |
|
var negative = (bitsHigh & 0x80000000); |
|
if (negative) { |
|
bitsLow = (~bitsLow + 1) >>> 0; |
|
var carry = (bitsLow == 0) ? 1 : 0; |
|
bitsHigh = (~bitsHigh + carry) >>> 0; |
|
} |
|
|
|
var result = jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); |
|
return negative ? '-' + result : result; |
|
}; |
|
|
|
|
|
/** |
|
* Convert an 8-character hash string representing either a signed or unsigned |
|
* 64-bit integer into its decimal representation without losing accuracy. |
|
* @param {string} hash The hash string to convert. |
|
* @param {boolean} signed True if we should treat the hash string as encoding |
|
* a signed integer. |
|
* @return {string} |
|
*/ |
|
jspb.utils.hash64ToDecimalString = function(hash, signed) { |
|
jspb.utils.splitHash64(hash); |
|
var bitsLow = jspb.utils.split64Low; |
|
var bitsHigh = jspb.utils.split64High; |
|
return signed ? |
|
jspb.utils.joinSignedDecimalString(bitsLow, bitsHigh) : |
|
jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); |
|
}; |
|
|
|
|
|
/** |
|
* Converts an array of 8-character hash strings into their decimal |
|
* representations. |
|
* @param {!Array<string>} hashes The array of hash strings to convert. |
|
* @param {boolean} signed True if we should treat the hash string as encoding |
|
* a signed integer. |
|
* @return {!Array<string>} |
|
*/ |
|
jspb.utils.hash64ArrayToDecimalStrings = function(hashes, signed) { |
|
var result = new Array(hashes.length); |
|
for (var i = 0; i < hashes.length; i++) { |
|
result[i] = jspb.utils.hash64ToDecimalString(hashes[i], signed); |
|
} |
|
return result; |
|
}; |
|
|
|
|
|
/** |
|
* Converts a signed or unsigned decimal string into its hash string |
|
* representation. |
|
* @param {string} dec |
|
* @return {string} |
|
*/ |
|
jspb.utils.decimalStringToHash64 = function(dec) { |
|
goog.asserts.assert(dec.length > 0); |
|
|
|
// Check for minus sign. |
|
var minus = false; |
|
if (dec[0] === '-') { |
|
minus = true; |
|
dec = dec.slice(1); |
|
} |
|
|
|
// Store result as a byte array. |
|
var resultBytes = [0, 0, 0, 0, 0, 0, 0, 0]; |
|
|
|
// Set result to m*result + c. |
|
function muladd(m, c) { |
|
for (var i = 0; i < 8 && (m !== 1 || c > 0); i++) { |
|
var r = m * resultBytes[i] + c; |
|
resultBytes[i] = r & 0xFF; |
|
c = r >>> 8; |
|
} |
|
} |
|
|
|
// Negate the result bits. |
|
function neg() { |
|
for (var i = 0; i < 8; i++) { |
|
resultBytes[i] = (~resultBytes[i]) & 0xFF; |
|
} |
|
} |
|
|
|
// For each decimal digit, set result to 10*result + digit. |
|
for (var i = 0; i < dec.length; i++) { |
|
muladd(10, dec.charCodeAt(i) - jspb.utils.ZERO_CHAR_CODE_); |
|
} |
|
|
|
// If there's a minus sign, convert into two's complement. |
|
if (minus) { |
|
neg(); |
|
muladd(1, 1); |
|
} |
|
|
|
return goog.crypt.byteArrayToString(resultBytes); |
|
}; |
|
|
|
|
|
/** |
|
* Converts a signed or unsigned decimal string into two 32-bit halves, and |
|
* stores them in the temp variables listed above. |
|
* @param {string} value The decimal string to convert. |
|
*/ |
|
jspb.utils.splitDecimalString = function(value) { |
|
jspb.utils.splitHash64(jspb.utils.decimalStringToHash64(value)); |
|
}; |
|
|
|
/** |
|
* @param {number} nibble A 4-bit integer. |
|
* @return {string} |
|
* @private |
|
*/ |
|
jspb.utils.toHexDigit_ = function(nibble) { |
|
return String.fromCharCode( |
|
nibble < 10 ? jspb.utils.ZERO_CHAR_CODE_ + nibble : |
|
jspb.utils.A_CHAR_CODE_ - 10 + nibble); |
|
}; |
|
|
|
/** |
|
* @param {number} hexCharCode |
|
* @return {number} |
|
* @private |
|
*/ |
|
jspb.utils.fromHexCharCode_ = function(hexCharCode) { |
|
if (hexCharCode >= jspb.utils.A_CHAR_CODE_) { |
|
return hexCharCode - jspb.utils.A_CHAR_CODE_ + 10; |
|
} |
|
return hexCharCode - jspb.utils.ZERO_CHAR_CODE_; |
|
}; |
|
|
|
/** |
|
* Converts an 8-character hash string into its hexadecimal representation. |
|
* @param {string} hash |
|
* @return {string} |
|
*/ |
|
jspb.utils.hash64ToHexString = function(hash) { |
|
var temp = new Array(18); |
|
temp[0] = '0'; |
|
temp[1] = 'x'; |
|
|
|
for (var i = 0; i < 8; i++) { |
|
var c = hash.charCodeAt(7 - i); |
|
temp[i * 2 + 2] = jspb.utils.toHexDigit_(c >> 4); |
|
temp[i * 2 + 3] = jspb.utils.toHexDigit_(c & 0xF); |
|
} |
|
|
|
var result = temp.join(''); |
|
return result; |
|
}; |
|
|
|
|
|
/** |
|
* Converts a '0x<16 digits>' hex string into its hash string representation. |
|
* @param {string} hex |
|
* @return {string} |
|
*/ |
|
jspb.utils.hexStringToHash64 = function(hex) { |
|
hex = hex.toLowerCase(); |
|
goog.asserts.assert(hex.length == 18); |
|
goog.asserts.assert(hex[0] == '0'); |
|
goog.asserts.assert(hex[1] == 'x'); |
|
|
|
var result = ''; |
|
for (var i = 0; i < 8; i++) { |
|
var hi = jspb.utils.fromHexCharCode_(hex.charCodeAt(i * 2 + 2)); |
|
var lo = jspb.utils.fromHexCharCode_(hex.charCodeAt(i * 2 + 3)); |
|
result = String.fromCharCode(hi * 16 + lo) + result; |
|
} |
|
|
|
return result; |
|
}; |
|
|
|
|
|
/** |
|
* Convert an 8-character hash string representing either a signed or unsigned |
|
* 64-bit integer into a Javascript number. Will lose accuracy if the result is |
|
* larger than 2^52. |
|
* @param {string} hash The hash string to convert. |
|
* @param {boolean} signed True if the has should be interpreted as a signed |
|
* number. |
|
* @return {number} |
|
*/ |
|
jspb.utils.hash64ToNumber = function(hash, signed) { |
|
jspb.utils.splitHash64(hash); |
|
var bitsLow = jspb.utils.split64Low; |
|
var bitsHigh = jspb.utils.split64High; |
|
return signed ? jspb.utils.joinInt64(bitsLow, bitsHigh) : |
|
jspb.utils.joinUint64(bitsLow, bitsHigh); |
|
}; |
|
|
|
|
|
/** |
|
* Convert a Javascript number into an 8-character hash string. Will lose |
|
* precision if the value is non-integral or greater than 2^64. |
|
* @param {number} value The integer to convert. |
|
* @return {string} |
|
*/ |
|
jspb.utils.numberToHash64 = function(value) { |
|
jspb.utils.splitInt64(value); |
|
return jspb.utils.joinHash64(jspb.utils.split64Low, |
|
jspb.utils.split64High); |
|
}; |
|
|
|
|
|
/** |
|
* Counts the number of contiguous varints in a buffer. |
|
* @param {!Uint8Array} buffer The buffer to scan. |
|
* @param {number} start The starting point in the buffer to scan. |
|
* @param {number} end The end point in the buffer to scan. |
|
* @return {number} The number of varints in the buffer. |
|
*/ |
|
jspb.utils.countVarints = function(buffer, start, end) { |
|
// Count how many high bits of each byte were set in the buffer. |
|
var count = 0; |
|
for (var i = start; i < end; i++) { |
|
count += buffer[i] >> 7; |
|
} |
|
|
|
// The number of varints in the buffer equals the size of the buffer minus |
|
// the number of non-terminal bytes in the buffer (those with the high bit |
|
// set). |
|
return (end - start) - count; |
|
}; |
|
|
|
|
|
/** |
|
* Counts the number of contiguous varint fields with the given field number in |
|
* the buffer. |
|
* @param {!Uint8Array} buffer The buffer to scan. |
|
* @param {number} start The starting point in the buffer to scan. |
|
* @param {number} end The end point in the buffer to scan. |
|
* @param {number} field The field number to count. |
|
* @return {number} The number of matching fields in the buffer. |
|
*/ |
|
jspb.utils.countVarintFields = function(buffer, start, end, field) { |
|
var count = 0; |
|
var cursor = start; |
|
var tag = field * 8 + jspb.BinaryConstants.WireType.VARINT; |
|
|
|
if (tag < 128) { |
|
// Single-byte field tag, we can use a slightly quicker count. |
|
while (cursor < end) { |
|
// Skip the field tag, or exit if we find a non-matching tag. |
|
if (buffer[cursor++] != tag) return count; |
|
|
|
// Field tag matches, we've found a valid field. |
|
count++; |
|
|
|
// Skip the varint. |
|
while (1) { |
|
var x = buffer[cursor++]; |
|
if ((x & 0x80) == 0) break; |
|
} |
|
} |
|
} else { |
|
while (cursor < end) { |
|
// Skip the field tag, or exit if we find a non-matching tag. |
|
var temp = tag; |
|
while (temp > 128) { |
|
if (buffer[cursor] != ((temp & 0x7F) | 0x80)) return count; |
|
cursor++; |
|
temp >>= 7; |
|
} |
|
if (buffer[cursor++] != temp) return count; |
|
|
|
// Field tag matches, we've found a valid field. |
|
count++; |
|
|
|
// Skip the varint. |
|
while (1) { |
|
var x = buffer[cursor++]; |
|
if ((x & 0x80) == 0) break; |
|
} |
|
} |
|
} |
|
return count; |
|
}; |
|
|
|
|
|
/** |
|
* Counts the number of contiguous fixed32 fields with the given tag in the |
|
* buffer. |
|
* @param {!Uint8Array} buffer The buffer to scan. |
|
* @param {number} start The starting point in the buffer to scan. |
|
* @param {number} end The end point in the buffer to scan. |
|
* @param {number} tag The tag value to count. |
|
* @param {number} stride The number of bytes to skip per field. |
|
* @return {number} The number of fields with a matching tag in the buffer. |
|
* @private |
|
*/ |
|
jspb.utils.countFixedFields_ = |
|
function(buffer, start, end, tag, stride) { |
|
var count = 0; |
|
var cursor = start; |
|
|
|
if (tag < 128) { |
|
// Single-byte field tag, we can use a slightly quicker count. |
|
while (cursor < end) { |
|
// Skip the field tag, or exit if we find a non-matching tag. |
|
if (buffer[cursor++] != tag) return count; |
|
|
|
// Field tag matches, we've found a valid field. |
|
count++; |
|
|
|
// Skip the value. |
|
cursor += stride; |
|
} |
|
} else { |
|
while (cursor < end) { |
|
// Skip the field tag, or exit if we find a non-matching tag. |
|
var temp = tag; |
|
while (temp > 128) { |
|
if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; |
|
temp >>= 7; |
|
} |
|
if (buffer[cursor++] != temp) return count; |
|
|
|
// Field tag matches, we've found a valid field. |
|
count++; |
|
|
|
// Skip the value. |
|
cursor += stride; |
|
} |
|
} |
|
return count; |
|
}; |
|
|
|
|
|
/** |
|
* Counts the number of contiguous fixed32 fields with the given field number |
|
* in the buffer. |
|
* @param {!Uint8Array} buffer The buffer to scan. |
|
* @param {number} start The starting point in the buffer to scan. |
|
* @param {number} end The end point in the buffer to scan. |
|
* @param {number} field The field number to count. |
|
* @return {number} The number of matching fields in the buffer. |
|
*/ |
|
jspb.utils.countFixed32Fields = function(buffer, start, end, field) { |
|
var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED32; |
|
return jspb.utils.countFixedFields_(buffer, start, end, tag, 4); |
|
}; |
|
|
|
|
|
/** |
|
* Counts the number of contiguous fixed64 fields with the given field number |
|
* in the buffer. |
|
* @param {!Uint8Array} buffer The buffer to scan. |
|
* @param {number} start The starting point in the buffer to scan. |
|
* @param {number} end The end point in the buffer to scan. |
|
* @param {number} field The field number to count |
|
* @return {number} The number of matching fields in the buffer. |
|
*/ |
|
jspb.utils.countFixed64Fields = function(buffer, start, end, field) { |
|
var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED64; |
|
return jspb.utils.countFixedFields_(buffer, start, end, tag, 8); |
|
}; |
|
|
|
|
|
/** |
|
* Counts the number of contiguous delimited fields with the given field number |
|
* in the buffer. |
|
* @param {!Uint8Array} buffer The buffer to scan. |
|
* @param {number} start The starting point in the buffer to scan. |
|
* @param {number} end The end point in the buffer to scan. |
|
* @param {number} field The field number to count. |
|
* @return {number} The number of matching fields in the buffer. |
|
*/ |
|
jspb.utils.countDelimitedFields = function(buffer, start, end, field) { |
|
var count = 0; |
|
var cursor = start; |
|
var tag = field * 8 + jspb.BinaryConstants.WireType.DELIMITED; |
|
|
|
while (cursor < end) { |
|
// Skip the field tag, or exit if we find a non-matching tag. |
|
var temp = tag; |
|
while (temp > 128) { |
|
if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; |
|
temp >>= 7; |
|
} |
|
if (buffer[cursor++] != temp) return count; |
|
|
|
// Field tag matches, we've found a valid field. |
|
count++; |
|
|
|
// Decode the length prefix. |
|
var length = 0; |
|
var shift = 1; |
|
while (1) { |
|
temp = buffer[cursor++]; |
|
length += (temp & 0x7f) * shift; |
|
shift *= 128; |
|
if ((temp & 0x80) == 0) break; |
|
} |
|
|
|
// Advance the cursor past the blob. |
|
cursor += length; |
|
} |
|
return count; |
|
}; |
|
|
|
|
|
/** |
|
* String-ify bytes for text format. Should be optimized away in non-debug. |
|
* The returned string uses \xXX escapes for all values and is itself quoted. |
|
* [1, 31] serializes to '"\x01\x1f"'. |
|
* @param {jspb.ByteSource} byteSource The bytes to serialize. |
|
* @return {string} Stringified bytes for text format. |
|
*/ |
|
jspb.utils.debugBytesToTextFormat = function(byteSource) { |
|
var s = '"'; |
|
if (byteSource) { |
|
var bytes = jspb.utils.byteSourceToUint8Array(byteSource); |
|
for (var i = 0; i < bytes.length; i++) { |
|
s += '\\x'; |
|
if (bytes[i] < 16) s += '0'; |
|
s += bytes[i].toString(16); |
|
} |
|
} |
|
return s + '"'; |
|
}; |
|
|
|
|
|
/** |
|
* String-ify a scalar for text format. Should be optimized away in non-debug. |
|
* @param {string|number|boolean} scalar The scalar to stringify. |
|
* @return {string} Stringified scalar for text format. |
|
*/ |
|
jspb.utils.debugScalarToTextFormat = function(scalar) { |
|
if (typeof scalar === 'string') { |
|
return goog.string.quote(scalar); |
|
} else { |
|
return scalar.toString(); |
|
} |
|
}; |
|
|
|
|
|
/** |
|
* Utility function: convert a string with codepoints 0--255 inclusive to a |
|
* Uint8Array. If any codepoints greater than 255 exist in the string, throws an |
|
* exception. |
|
* @param {string} str |
|
* @return {!Uint8Array} |
|
*/ |
|
jspb.utils.stringToByteArray = function(str) { |
|
var arr = new Uint8Array(str.length); |
|
for (var i = 0; i < str.length; i++) { |
|
var codepoint = str.charCodeAt(i); |
|
if (codepoint > 255) { |
|
throw new Error('Conversion error: string contains codepoint ' + |
|
'outside of byte range'); |
|
} |
|
arr[i] = codepoint; |
|
} |
|
return arr; |
|
}; |
|
|
|
|
|
/** |
|
* Converts any type defined in jspb.ByteSource into a Uint8Array. |
|
* @param {!jspb.ByteSource} data |
|
* @return {!Uint8Array} |
|
* @suppress {invalidCasts} |
|
*/ |
|
jspb.utils.byteSourceToUint8Array = function(data) { |
|
if (data.constructor === Uint8Array) { |
|
return /** @type {!Uint8Array} */(data); |
|
} |
|
|
|
if (data.constructor === ArrayBuffer) { |
|
data = /** @type {!ArrayBuffer} */(data); |
|
return /** @type {!Uint8Array} */(new Uint8Array(data)); |
|
} |
|
|
|
if (typeof Buffer != 'undefined' && data.constructor === Buffer) { |
|
return /** @type {!Uint8Array} */ ( |
|
new Uint8Array(/** @type {?} */ (data))); |
|
} |
|
|
|
if (data.constructor === Array) { |
|
data = /** @type {!Array<number>} */(data); |
|
return /** @type {!Uint8Array} */(new Uint8Array(data)); |
|
} |
|
|
|
if (data.constructor === String) { |
|
data = /** @type {string} */(data); |
|
return goog.crypt.base64.decodeStringToUint8Array(data); |
|
} |
|
|
|
goog.asserts.fail('Type not convertible to Uint8Array.'); |
|
return /** @type {!Uint8Array} */(new Uint8Array(0)); |
|
};
|
|
|