Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
601 lines
20 KiB
601 lines
20 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2014 Google Inc. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
#include "protobuf.h" |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Repeated field container type. |
|
// ----------------------------------------------------------------------------- |
|
|
|
const rb_data_type_t RepeatedField_type = { |
|
"Google::Protobuf::RepeatedField", |
|
{ RepeatedField_mark, RepeatedField_free, NULL }, |
|
}; |
|
|
|
VALUE cRepeatedField; |
|
|
|
RepeatedField* ruby_to_RepeatedField(VALUE _self) { |
|
RepeatedField* self; |
|
TypedData_Get_Struct(_self, RepeatedField, &RepeatedField_type, self); |
|
return self; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.each(&block) |
|
* |
|
* Invokes the block once for each element of the repeated field. RepeatedField |
|
* also includes Enumerable; combined with this method, the repeated field thus |
|
* acts like an ordinary Ruby sequence. |
|
*/ |
|
VALUE RepeatedField_each(VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
upb_fieldtype_t field_type = self->field_type; |
|
VALUE field_type_class = self->field_type_class; |
|
int element_size = native_slot_size(field_type); |
|
|
|
size_t off = 0; |
|
for (int i = 0; i < self->size; i++, off += element_size) { |
|
void* memory = (void *) (((uint8_t *)self->elements) + off); |
|
VALUE val = native_slot_get(field_type, field_type_class, memory); |
|
rb_yield(val); |
|
} |
|
return Qnil; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.[](index) => value |
|
* |
|
* Accesses the element at the given index. Throws an exception on out-of-bounds |
|
* errors. |
|
*/ |
|
VALUE RepeatedField_index(VALUE _self, VALUE _index) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
int element_size = native_slot_size(self->field_type); |
|
upb_fieldtype_t field_type = self->field_type; |
|
VALUE field_type_class = self->field_type_class; |
|
|
|
int index = NUM2INT(_index); |
|
if (index < 0 || index >= self->size) { |
|
rb_raise(rb_eRangeError, "Index out of range"); |
|
} |
|
|
|
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size); |
|
return native_slot_get(field_type, field_type_class, memory); |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.[]=(index, value) |
|
* |
|
* Sets the element at the given index. On out-of-bounds assignments, extends |
|
* the array and fills the hole (if any) with default values. |
|
*/ |
|
VALUE RepeatedField_index_set(VALUE _self, VALUE _index, VALUE val) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
upb_fieldtype_t field_type = self->field_type; |
|
VALUE field_type_class = self->field_type_class; |
|
int element_size = native_slot_size(field_type); |
|
|
|
int index = NUM2INT(_index); |
|
if (index < 0 || index >= (INT_MAX - 1)) { |
|
rb_raise(rb_eRangeError, "Index out of range"); |
|
} |
|
if (index >= self->size) { |
|
RepeatedField_reserve(self, index + 1); |
|
upb_fieldtype_t field_type = self->field_type; |
|
int element_size = native_slot_size(field_type); |
|
for (int i = self->size; i <= index; i++) { |
|
void* elem = (void *)(((uint8_t *)self->elements) + i * element_size); |
|
native_slot_init(field_type, elem); |
|
} |
|
self->size = index + 1; |
|
} |
|
|
|
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size); |
|
native_slot_set(field_type, field_type_class, memory, val); |
|
return Qnil; |
|
} |
|
|
|
static int kInitialSize = 8; |
|
|
|
void RepeatedField_reserve(RepeatedField* self, int new_size) { |
|
if (new_size <= self->capacity) { |
|
return; |
|
} |
|
if (self->capacity == 0) { |
|
self->capacity = kInitialSize; |
|
} |
|
while (self->capacity < new_size) { |
|
self->capacity *= 2; |
|
} |
|
void* old_elems = self->elements; |
|
int elem_size = native_slot_size(self->field_type); |
|
self->elements = ALLOC_N(uint8_t, elem_size * self->capacity); |
|
if (old_elems != NULL) { |
|
memcpy(self->elements, old_elems, self->size * elem_size); |
|
xfree(old_elems); |
|
} |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.push(value) |
|
* |
|
* Adds a new element to the repeated field. |
|
*/ |
|
VALUE RepeatedField_push(VALUE _self, VALUE val) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
upb_fieldtype_t field_type = self->field_type; |
|
int element_size = native_slot_size(field_type); |
|
RepeatedField_reserve(self, self->size + 1); |
|
int index = self->size; |
|
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size); |
|
native_slot_set(field_type, self->field_type_class, memory, val); |
|
// native_slot_set may raise an error; bump index only after set. |
|
self->size++; |
|
return _self; |
|
} |
|
|
|
// Used by parsing handlers. |
|
void RepeatedField_push_native(VALUE _self, void* data) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
upb_fieldtype_t field_type = self->field_type; |
|
int element_size = native_slot_size(field_type); |
|
RepeatedField_reserve(self, self->size + 1); |
|
int index = self->size; |
|
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size); |
|
memcpy(memory, data, element_size); |
|
self->size++; |
|
} |
|
|
|
void* RepeatedField_index_native(VALUE _self, int index) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
upb_fieldtype_t field_type = self->field_type; |
|
int element_size = native_slot_size(field_type); |
|
return ((uint8_t *)self->elements) + index * element_size; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.pop => value |
|
* |
|
* Removes the last element and returns it. Throws an exception if the repeated |
|
* field is empty. |
|
*/ |
|
VALUE RepeatedField_pop(VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
upb_fieldtype_t field_type = self->field_type; |
|
VALUE field_type_class = self->field_type_class; |
|
int element_size = native_slot_size(field_type); |
|
if (self->size == 0) { |
|
rb_raise(rb_eRangeError, "Pop from empty repeated field is not allowed."); |
|
} |
|
int index = self->size - 1; |
|
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size); |
|
VALUE ret = native_slot_get(field_type, field_type_class, memory); |
|
self->size--; |
|
return ret; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.insert(*args) |
|
* |
|
* Pushes each arg in turn onto the end of the repeated field. |
|
*/ |
|
VALUE RepeatedField_insert(int argc, VALUE* argv, VALUE _self) { |
|
for (int i = 0; i < argc; i++) { |
|
RepeatedField_push(_self, argv[i]); |
|
} |
|
return Qnil; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.replace(list) |
|
* |
|
* Replaces the contents of the repeated field with the given list of elements. |
|
*/ |
|
VALUE RepeatedField_replace(VALUE _self, VALUE list) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
Check_Type(list, T_ARRAY); |
|
self->size = 0; |
|
for (int i = 0; i < RARRAY_LEN(list); i++) { |
|
RepeatedField_push(_self, rb_ary_entry(list, i)); |
|
} |
|
return Qnil; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.clear |
|
* |
|
* Clears (removes all elements from) this repeated field. |
|
*/ |
|
VALUE RepeatedField_clear(VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
self->size = 0; |
|
return Qnil; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.length |
|
* |
|
* Returns the length of this repeated field. |
|
*/ |
|
VALUE RepeatedField_length(VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
return INT2NUM(self->size); |
|
} |
|
|
|
static VALUE RepeatedField_new_this_type(VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
VALUE new_rptfield = Qnil; |
|
VALUE element_type = fieldtype_to_ruby(self->field_type); |
|
if (self->field_type_class != Qnil) { |
|
new_rptfield = rb_funcall(CLASS_OF(_self), rb_intern("new"), 2, |
|
element_type, self->field_type_class); |
|
} else { |
|
new_rptfield = rb_funcall(CLASS_OF(_self), rb_intern("new"), 1, |
|
element_type); |
|
} |
|
return new_rptfield; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.dup => repeated_field |
|
* |
|
* Duplicates this repeated field with a shallow copy. References to all |
|
* non-primitive element objects (e.g., submessages) are shared. |
|
*/ |
|
VALUE RepeatedField_dup(VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
VALUE new_rptfield = RepeatedField_new_this_type(_self); |
|
RepeatedField* new_rptfield_self = ruby_to_RepeatedField(new_rptfield); |
|
RepeatedField_reserve(new_rptfield_self, self->size); |
|
upb_fieldtype_t field_type = self->field_type; |
|
size_t elem_size = native_slot_size(field_type); |
|
size_t off = 0; |
|
for (int i = 0; i < self->size; i++, off += elem_size) { |
|
void* to_mem = (uint8_t *)new_rptfield_self->elements + off; |
|
void* from_mem = (uint8_t *)self->elements + off; |
|
native_slot_dup(field_type, to_mem, from_mem); |
|
new_rptfield_self->size++; |
|
} |
|
|
|
return new_rptfield; |
|
} |
|
|
|
// Internal only: used by Google::Protobuf.deep_copy. |
|
VALUE RepeatedField_deep_copy(VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
VALUE new_rptfield = RepeatedField_new_this_type(_self); |
|
RepeatedField* new_rptfield_self = ruby_to_RepeatedField(new_rptfield); |
|
RepeatedField_reserve(new_rptfield_self, self->size); |
|
upb_fieldtype_t field_type = self->field_type; |
|
size_t elem_size = native_slot_size(field_type); |
|
size_t off = 0; |
|
for (int i = 0; i < self->size; i++, off += elem_size) { |
|
void* to_mem = (uint8_t *)new_rptfield_self->elements + off; |
|
void* from_mem = (uint8_t *)self->elements + off; |
|
native_slot_deep_copy(field_type, to_mem, from_mem); |
|
new_rptfield_self->size++; |
|
} |
|
|
|
return new_rptfield; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.==(other) => boolean |
|
* |
|
* Compares this repeated field to another. Repeated fields are equal if their |
|
* element types are equal, their lengths are equal, and each element is equal. |
|
* Elements are compared as per normal Ruby semantics, by calling their :== |
|
* methods (or performing a more efficient comparison for primitive types). |
|
* |
|
* Repeated fields with dissimilar element types are never equal, even if value |
|
* comparison (for example, between integers and floats) would have otherwise |
|
* indicated that every element has equal value. |
|
*/ |
|
VALUE RepeatedField_eq(VALUE _self, VALUE _other) { |
|
if (_self == _other) { |
|
return Qtrue; |
|
} |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
|
|
// Inefficient but workable: to support comparison to a generic array, we |
|
// build a temporary RepeatedField of our type. |
|
if (TYPE(_other) == T_ARRAY) { |
|
VALUE new_rptfield = RepeatedField_new_this_type(_self); |
|
for (int i = 0; i < RARRAY_LEN(_other); i++) { |
|
VALUE elem = rb_ary_entry(_other, i); |
|
RepeatedField_push(new_rptfield, elem); |
|
} |
|
_other = new_rptfield; |
|
} |
|
|
|
RepeatedField* other = ruby_to_RepeatedField(_other); |
|
if (self->field_type != other->field_type || |
|
self->field_type_class != other->field_type_class || |
|
self->size != other->size) { |
|
return Qfalse; |
|
} |
|
|
|
upb_fieldtype_t field_type = self->field_type; |
|
size_t elem_size = native_slot_size(field_type); |
|
size_t off = 0; |
|
for (int i = 0; i < self->size; i++, off += elem_size) { |
|
void* self_mem = ((uint8_t *)self->elements) + off; |
|
void* other_mem = ((uint8_t *)other->elements) + off; |
|
if (!native_slot_eq(field_type, self_mem, other_mem)) { |
|
return Qfalse; |
|
} |
|
} |
|
return Qtrue; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.hash => hash_value |
|
* |
|
* Returns a hash value computed from this repeated field's elements. |
|
*/ |
|
VALUE RepeatedField_hash(VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
|
|
VALUE hash = LL2NUM(0); |
|
|
|
upb_fieldtype_t field_type = self->field_type; |
|
VALUE field_type_class = self->field_type_class; |
|
size_t elem_size = native_slot_size(field_type); |
|
size_t off = 0; |
|
for (int i = 0; i < self->size; i++, off += elem_size) { |
|
void* mem = ((uint8_t *)self->elements) + off; |
|
VALUE elem = native_slot_get(field_type, field_type_class, mem); |
|
hash = rb_funcall(hash, rb_intern("<<"), 1, INT2NUM(2)); |
|
hash = rb_funcall(hash, rb_intern("^"), 1, |
|
rb_funcall(elem, rb_intern("hash"), 0)); |
|
} |
|
|
|
return hash; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.inspect => string |
|
* |
|
* Returns a string representing this repeated field's elements. It will be |
|
* formated as "[<element>, <element>, ...]", with each element's string |
|
* representation computed by its own #inspect method. |
|
*/ |
|
VALUE RepeatedField_inspect(VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
|
|
VALUE str = rb_str_new2("["); |
|
|
|
bool first = true; |
|
|
|
upb_fieldtype_t field_type = self->field_type; |
|
VALUE field_type_class = self->field_type_class; |
|
size_t elem_size = native_slot_size(field_type); |
|
size_t off = 0; |
|
for (int i = 0; i < self->size; i++, off += elem_size) { |
|
void* mem = ((uint8_t *)self->elements) + off; |
|
VALUE elem = native_slot_get(field_type, field_type_class, mem); |
|
if (!first) { |
|
str = rb_str_cat2(str, ", "); |
|
} else { |
|
first = false; |
|
} |
|
str = rb_str_append(str, rb_funcall(elem, rb_intern("inspect"), 0)); |
|
} |
|
|
|
str = rb_str_cat2(str, "]"); |
|
return str; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.+(other) => repeated field |
|
* |
|
* Returns a new repeated field that contains the concatenated list of this |
|
* repeated field's elements and other's elements. The other (second) list may |
|
* be either another repeated field or a Ruby array. |
|
*/ |
|
VALUE RepeatedField_plus(VALUE _self, VALUE list) { |
|
VALUE dupped = RepeatedField_dup(_self); |
|
|
|
if (TYPE(list) == T_ARRAY) { |
|
for (int i = 0; i < RARRAY_LEN(list); i++) { |
|
VALUE elem = rb_ary_entry(list, i); |
|
RepeatedField_push(dupped, elem); |
|
} |
|
} else if (RB_TYPE_P(list, T_DATA) && RTYPEDDATA_P(list) && |
|
RTYPEDDATA_TYPE(list) == &RepeatedField_type) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
RepeatedField* list_rptfield = ruby_to_RepeatedField(list); |
|
if (self->field_type != list_rptfield->field_type || |
|
self->field_type_class != list_rptfield->field_type_class) { |
|
rb_raise(rb_eArgError, |
|
"Attempt to append RepeatedField with different element type."); |
|
} |
|
for (int i = 0; i < list_rptfield->size; i++) { |
|
void* mem = RepeatedField_index_native(list, i); |
|
RepeatedField_push_native(dupped, mem); |
|
} |
|
} else { |
|
rb_raise(rb_eArgError, "Unknown type appending to RepeatedField"); |
|
} |
|
|
|
return dupped; |
|
} |
|
|
|
void validate_type_class(upb_fieldtype_t type, VALUE klass) { |
|
if (rb_iv_get(klass, kDescriptorInstanceVar) == Qnil) { |
|
rb_raise(rb_eArgError, |
|
"Type class has no descriptor. Please pass a " |
|
"class or enum as returned by the DescriptorPool."); |
|
} |
|
if (type == UPB_TYPE_MESSAGE) { |
|
VALUE desc = rb_iv_get(klass, kDescriptorInstanceVar); |
|
if (!RB_TYPE_P(desc, T_DATA) || !RTYPEDDATA_P(desc) || |
|
RTYPEDDATA_TYPE(desc) != &_Descriptor_type) { |
|
rb_raise(rb_eArgError, "Descriptor has an incorrect type."); |
|
} |
|
if (rb_get_alloc_func(klass) != &Message_alloc) { |
|
rb_raise(rb_eArgError, |
|
"Message class was not returned by the DescriptorPool."); |
|
} |
|
} else if (type == UPB_TYPE_ENUM) { |
|
VALUE enumdesc = rb_iv_get(klass, kDescriptorInstanceVar); |
|
if (!RB_TYPE_P(enumdesc, T_DATA) || !RTYPEDDATA_P(enumdesc) || |
|
RTYPEDDATA_TYPE(enumdesc) != &_EnumDescriptor_type) { |
|
rb_raise(rb_eArgError, "Descriptor has an incorrect type."); |
|
} |
|
} |
|
} |
|
|
|
void RepeatedField_init_args(int argc, VALUE* argv, |
|
VALUE _self) { |
|
RepeatedField* self = ruby_to_RepeatedField(_self); |
|
VALUE ary = Qnil; |
|
if (argc < 1) { |
|
rb_raise(rb_eArgError, "Expected at least 1 argument."); |
|
} |
|
self->field_type = ruby_to_fieldtype(argv[0]); |
|
|
|
if (self->field_type == UPB_TYPE_MESSAGE || |
|
self->field_type == UPB_TYPE_ENUM) { |
|
if (argc < 2) { |
|
rb_raise(rb_eArgError, "Expected at least 2 arguments for message/enum."); |
|
} |
|
self->field_type_class = argv[1]; |
|
if (argc > 2) { |
|
ary = argv[2]; |
|
} |
|
validate_type_class(self->field_type, self->field_type_class); |
|
} else { |
|
if (argc > 2) { |
|
rb_raise(rb_eArgError, "Too many arguments: expected 1 or 2."); |
|
} |
|
if (argc > 1) { |
|
ary = argv[1]; |
|
} |
|
} |
|
|
|
if (ary != Qnil) { |
|
if (!RB_TYPE_P(ary, T_ARRAY)) { |
|
rb_raise(rb_eArgError, "Expected array as initialize argument"); |
|
} |
|
for (int i = 0; i < RARRAY_LEN(ary); i++) { |
|
RepeatedField_push(_self, rb_ary_entry(ary, i)); |
|
} |
|
} |
|
} |
|
|
|
// Mark, free, alloc, init and class setup functions. |
|
|
|
void RepeatedField_mark(void* _self) { |
|
RepeatedField* self = (RepeatedField*)_self; |
|
rb_gc_mark(self->field_type_class); |
|
upb_fieldtype_t field_type = self->field_type; |
|
int element_size = native_slot_size(field_type); |
|
for (int i = 0; i < self->size; i++) { |
|
void* memory = (((uint8_t *)self->elements) + i * element_size); |
|
native_slot_mark(self->field_type, memory); |
|
} |
|
} |
|
|
|
void RepeatedField_free(void* _self) { |
|
RepeatedField* self = (RepeatedField*)_self; |
|
xfree(self->elements); |
|
xfree(self); |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* RepeatedField.new(type, type_class = nil, initial_elems = []) |
|
* |
|
* Creates a new repeated field. The provided type must be a Ruby symbol, and |
|
* can take on the same values as those accepted by FieldDescriptor#type=. If |
|
* the type is :message or :enum, type_class must be non-nil, and must be the |
|
* Ruby class or module returned by Descriptor#msgclass or |
|
* EnumDescriptor#enummodule, respectively. An initial list of elements may also |
|
* be provided. |
|
*/ |
|
VALUE RepeatedField_alloc(VALUE klass) { |
|
RepeatedField* self = ALLOC(RepeatedField); |
|
self->elements = NULL; |
|
self->size = 0; |
|
self->capacity = 0; |
|
self->field_type = -1; |
|
self->field_type_class = Qnil; |
|
VALUE ret = TypedData_Wrap_Struct(klass, &RepeatedField_type, self); |
|
return ret; |
|
} |
|
|
|
VALUE RepeatedField_init(int argc, VALUE* argv, VALUE self) { |
|
RepeatedField_init_args(argc, argv, self); |
|
return Qnil; |
|
} |
|
|
|
void RepeatedField_register(VALUE module) { |
|
VALUE klass = rb_define_class_under( |
|
module, "RepeatedField", rb_cObject); |
|
rb_define_alloc_func(klass, RepeatedField_alloc); |
|
cRepeatedField = klass; |
|
rb_gc_register_address(&cRepeatedField); |
|
|
|
rb_define_method(klass, "initialize", |
|
RepeatedField_init, -1); |
|
rb_define_method(klass, "each", RepeatedField_each, 0); |
|
rb_define_method(klass, "[]", RepeatedField_index, 1); |
|
rb_define_method(klass, "[]=", RepeatedField_index_set, 2); |
|
rb_define_method(klass, "push", RepeatedField_push, 1); |
|
rb_define_method(klass, "<<", RepeatedField_push, 1); |
|
rb_define_method(klass, "pop", RepeatedField_pop, 0); |
|
rb_define_method(klass, "insert", RepeatedField_insert, -1); |
|
rb_define_method(klass, "replace", RepeatedField_replace, 1); |
|
rb_define_method(klass, "clear", RepeatedField_clear, 0); |
|
rb_define_method(klass, "length", RepeatedField_length, 0); |
|
rb_define_method(klass, "dup", RepeatedField_dup, 0); |
|
// Also define #clone so that we don't inherit Object#clone. |
|
rb_define_method(klass, "clone", RepeatedField_dup, 0); |
|
rb_define_method(klass, "==", RepeatedField_eq, 1); |
|
rb_define_method(klass, "hash", RepeatedField_hash, 0); |
|
rb_define_method(klass, "inspect", RepeatedField_inspect, 0); |
|
rb_define_method(klass, "+", RepeatedField_plus, 1); |
|
rb_include_module(klass, rb_mEnumerable); |
|
}
|
|
|