Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1294 lines
44 KiB
1294 lines
44 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2014 Google Inc. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
#include "protobuf.h" |
|
|
|
// This function is equivalent to rb_str_cat(), but unlike the real |
|
// rb_str_cat(), it doesn't leak memory in some versions of Ruby. |
|
// For more information, see: |
|
// https://bugs.ruby-lang.org/issues/11328 |
|
VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) { |
|
char *p; |
|
size_t oldlen = RSTRING_LEN(rb_str); |
|
rb_str_modify_expand(rb_str, len); |
|
p = RSTRING_PTR(rb_str); |
|
memcpy(p + oldlen, str, len); |
|
rb_str_set_len(rb_str, oldlen + len); |
|
return rb_str; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Parsing. |
|
// ----------------------------------------------------------------------------- |
|
|
|
#define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs) |
|
|
|
// Creates a handlerdata that simply contains the offset for this field. |
|
static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) { |
|
size_t* hd_ofs = ALLOC(size_t); |
|
*hd_ofs = ofs; |
|
upb_handlers_addcleanup(h, hd_ofs, xfree); |
|
return hd_ofs; |
|
} |
|
|
|
typedef struct { |
|
size_t ofs; |
|
const upb_msgdef *md; |
|
} submsg_handlerdata_t; |
|
|
|
// Creates a handlerdata that contains offset and submessage type information. |
|
static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs, |
|
const upb_fielddef* f) { |
|
submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t); |
|
hd->ofs = ofs; |
|
hd->md = upb_fielddef_msgsubdef(f); |
|
upb_handlers_addcleanup(h, hd, xfree); |
|
return hd; |
|
} |
|
|
|
typedef struct { |
|
size_t ofs; // union data slot |
|
size_t case_ofs; // oneof_case field |
|
uint32_t oneof_case_num; // oneof-case number to place in oneof_case field |
|
const upb_msgdef *md; // msgdef, for oneof submessage handler |
|
} oneof_handlerdata_t; |
|
|
|
static const void *newoneofhandlerdata(upb_handlers *h, |
|
uint32_t ofs, |
|
uint32_t case_ofs, |
|
const upb_fielddef *f) { |
|
oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t); |
|
hd->ofs = ofs; |
|
hd->case_ofs = case_ofs; |
|
// We reuse the field tag number as a oneof union discriminant tag. Note that |
|
// we don't expose these numbers to the user, so the only requirement is that |
|
// we have some unique ID for each union case/possibility. The field tag |
|
// numbers are already present and are easy to use so there's no reason to |
|
// create a separate ID space. In addition, using the field tag number here |
|
// lets us easily look up the field in the oneof accessor. |
|
hd->oneof_case_num = upb_fielddef_number(f); |
|
if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) { |
|
hd->md = upb_fielddef_msgsubdef(f); |
|
} else { |
|
hd->md = NULL; |
|
} |
|
upb_handlers_addcleanup(h, hd, xfree); |
|
return hd; |
|
} |
|
|
|
// A handler that starts a repeated field. Gets the Repeated*Field instance for |
|
// this field (such an instance always exists even in an empty message). |
|
static void *startseq_handler(void* closure, const void* hd) { |
|
MessageHeader* msg = closure; |
|
const size_t *ofs = hd; |
|
return (void*)DEREF(msg, *ofs, VALUE); |
|
} |
|
|
|
// Handlers that append primitive values to a repeated field. |
|
#define DEFINE_APPEND_HANDLER(type, ctype) \ |
|
static bool append##type##_handler(void *closure, const void *hd, \ |
|
ctype val) { \ |
|
VALUE ary = (VALUE)closure; \ |
|
RepeatedField_push_native(ary, &val); \ |
|
return true; \ |
|
} |
|
|
|
DEFINE_APPEND_HANDLER(bool, bool) |
|
DEFINE_APPEND_HANDLER(int32, int32_t) |
|
DEFINE_APPEND_HANDLER(uint32, uint32_t) |
|
DEFINE_APPEND_HANDLER(float, float) |
|
DEFINE_APPEND_HANDLER(int64, int64_t) |
|
DEFINE_APPEND_HANDLER(uint64, uint64_t) |
|
DEFINE_APPEND_HANDLER(double, double) |
|
|
|
// Appends a string to a repeated field. |
|
static void* appendstr_handler(void *closure, |
|
const void *hd, |
|
size_t size_hint) { |
|
VALUE ary = (VALUE)closure; |
|
VALUE str = rb_str_new2(""); |
|
rb_enc_associate(str, kRubyStringUtf8Encoding); |
|
RepeatedField_push_native(ary, &str); |
|
return (void*)str; |
|
} |
|
|
|
// Appends a 'bytes' string to a repeated field. |
|
static void* appendbytes_handler(void *closure, |
|
const void *hd, |
|
size_t size_hint) { |
|
VALUE ary = (VALUE)closure; |
|
VALUE str = rb_str_new2(""); |
|
rb_enc_associate(str, kRubyString8bitEncoding); |
|
RepeatedField_push_native(ary, &str); |
|
return (void*)str; |
|
} |
|
|
|
// Sets a non-repeated string field in a message. |
|
static void* str_handler(void *closure, |
|
const void *hd, |
|
size_t size_hint) { |
|
MessageHeader* msg = closure; |
|
const size_t *ofs = hd; |
|
VALUE str = rb_str_new2(""); |
|
rb_enc_associate(str, kRubyStringUtf8Encoding); |
|
DEREF(msg, *ofs, VALUE) = str; |
|
return (void*)str; |
|
} |
|
|
|
// Sets a non-repeated 'bytes' field in a message. |
|
static void* bytes_handler(void *closure, |
|
const void *hd, |
|
size_t size_hint) { |
|
MessageHeader* msg = closure; |
|
const size_t *ofs = hd; |
|
VALUE str = rb_str_new2(""); |
|
rb_enc_associate(str, kRubyString8bitEncoding); |
|
DEREF(msg, *ofs, VALUE) = str; |
|
return (void*)str; |
|
} |
|
|
|
static size_t stringdata_handler(void* closure, const void* hd, |
|
const char* str, size_t len, |
|
const upb_bufhandle* handle) { |
|
VALUE rb_str = (VALUE)closure; |
|
noleak_rb_str_cat(rb_str, str, len); |
|
return len; |
|
} |
|
|
|
static bool stringdata_end_handler(void* closure, const void* hd) { |
|
MessageHeader* msg = closure; |
|
const size_t *ofs = hd; |
|
VALUE rb_str = DEREF(msg, *ofs, VALUE); |
|
rb_obj_freeze(rb_str); |
|
return true; |
|
} |
|
|
|
static bool appendstring_end_handler(void* closure, const void* hd) { |
|
VALUE ary = (VALUE)closure; |
|
int size = RepeatedField_size(ary); |
|
VALUE* last = RepeatedField_index_native(ary, size - 1); |
|
VALUE rb_str = *last; |
|
rb_obj_freeze(rb_str); |
|
return true; |
|
} |
|
|
|
// Appends a submessage to a repeated field (a regular Ruby array for now). |
|
static void *appendsubmsg_handler(void *closure, const void *hd) { |
|
VALUE ary = (VALUE)closure; |
|
const submsg_handlerdata_t *submsgdata = hd; |
|
VALUE subdesc = |
|
get_def_obj((void*)submsgdata->md); |
|
VALUE subklass = Descriptor_msgclass(subdesc); |
|
MessageHeader* submsg; |
|
|
|
VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass); |
|
RepeatedField_push(ary, submsg_rb); |
|
|
|
TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); |
|
return submsg; |
|
} |
|
|
|
// Sets a non-repeated submessage field in a message. |
|
static void *submsg_handler(void *closure, const void *hd) { |
|
MessageHeader* msg = closure; |
|
const submsg_handlerdata_t* submsgdata = hd; |
|
VALUE subdesc = |
|
get_def_obj((void*)submsgdata->md); |
|
VALUE subklass = Descriptor_msgclass(subdesc); |
|
VALUE submsg_rb; |
|
MessageHeader* submsg; |
|
|
|
if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) { |
|
DEREF(msg, submsgdata->ofs, VALUE) = |
|
rb_class_new_instance(0, NULL, subklass); |
|
} |
|
|
|
submsg_rb = DEREF(msg, submsgdata->ofs, VALUE); |
|
TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); |
|
return submsg; |
|
} |
|
|
|
// Handler data for startmap/endmap handlers. |
|
typedef struct { |
|
size_t ofs; |
|
upb_fieldtype_t key_field_type; |
|
upb_fieldtype_t value_field_type; |
|
|
|
// We know that we can hold this reference because the handlerdata has the |
|
// same lifetime as the upb_handlers struct, and the upb_handlers struct holds |
|
// a reference to the upb_msgdef, which in turn has references to its subdefs. |
|
const upb_def* value_field_subdef; |
|
} map_handlerdata_t; |
|
|
|
// Temporary frame for map parsing: at the beginning of a map entry message, a |
|
// submsg handler allocates a frame to hold (i) a reference to the Map object |
|
// into which this message will be inserted and (ii) storage slots to |
|
// temporarily hold the key and value for this map entry until the end of the |
|
// submessage. When the submessage ends, another handler is called to insert the |
|
// value into the map. |
|
typedef struct { |
|
VALUE map; |
|
const map_handlerdata_t* handlerdata; |
|
char key_storage[NATIVE_SLOT_MAX_SIZE]; |
|
char value_storage[NATIVE_SLOT_MAX_SIZE]; |
|
} map_parse_frame_t; |
|
|
|
static void MapParseFrame_mark(void* _self) { |
|
map_parse_frame_t* frame = _self; |
|
|
|
// This shouldn't strictly be necessary since this should be rooted by the |
|
// message itself, but it can't hurt. |
|
rb_gc_mark(frame->map); |
|
|
|
native_slot_mark(frame->handlerdata->key_field_type, &frame->key_storage); |
|
native_slot_mark(frame->handlerdata->value_field_type, &frame->value_storage); |
|
} |
|
|
|
void MapParseFrame_free(void* self) { |
|
xfree(self); |
|
} |
|
|
|
rb_data_type_t MapParseFrame_type = { |
|
"MapParseFrame", |
|
{ MapParseFrame_mark, MapParseFrame_free, NULL }, |
|
}; |
|
|
|
static map_parse_frame_t* map_push_frame(VALUE map, |
|
const map_handlerdata_t* handlerdata) { |
|
map_parse_frame_t* frame = ALLOC(map_parse_frame_t); |
|
frame->handlerdata = handlerdata; |
|
frame->map = map; |
|
native_slot_init(handlerdata->key_field_type, &frame->key_storage); |
|
native_slot_init(handlerdata->value_field_type, &frame->value_storage); |
|
|
|
Map_set_frame(map, |
|
TypedData_Wrap_Struct(rb_cObject, &MapParseFrame_type, frame)); |
|
|
|
return frame; |
|
} |
|
|
|
// Handler to begin a map entry: allocates a temporary frame. This is the |
|
// 'startsubmsg' handler on the msgdef that contains the map field. |
|
static void *startmapentry_handler(void *closure, const void *hd) { |
|
MessageHeader* msg = closure; |
|
const map_handlerdata_t* mapdata = hd; |
|
VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE); |
|
|
|
return map_push_frame(map_rb, mapdata); |
|
} |
|
|
|
// Handler to end a map entry: inserts the value defined during the message into |
|
// the map. This is the 'endmsg' handler on the map entry msgdef. |
|
static bool endmap_handler(void *closure, const void *hd, upb_status* s) { |
|
map_parse_frame_t* frame = closure; |
|
const map_handlerdata_t* mapdata = hd; |
|
|
|
VALUE key = native_slot_get( |
|
mapdata->key_field_type, Qnil, |
|
&frame->key_storage); |
|
|
|
VALUE value_field_typeclass = Qnil; |
|
VALUE value; |
|
|
|
if (mapdata->value_field_type == UPB_TYPE_MESSAGE || |
|
mapdata->value_field_type == UPB_TYPE_ENUM) { |
|
value_field_typeclass = get_def_obj(mapdata->value_field_subdef); |
|
} |
|
|
|
value = native_slot_get( |
|
mapdata->value_field_type, value_field_typeclass, |
|
&frame->value_storage); |
|
|
|
Map_index_set(frame->map, key, value); |
|
Map_set_frame(frame->map, Qnil); |
|
|
|
return true; |
|
} |
|
|
|
// Allocates a new map_handlerdata_t given the map entry message definition. If |
|
// the offset of the field within the parent message is also given, that is |
|
// added to the handler data as well. Note that this is called *twice* per map |
|
// field: once in the parent message handler setup when setting the startsubmsg |
|
// handler and once in the map entry message handler setup when setting the |
|
// key/value and endmsg handlers. The reason is that there is no easy way to |
|
// pass the handlerdata down to the sub-message handler setup. |
|
static map_handlerdata_t* new_map_handlerdata( |
|
size_t ofs, |
|
const upb_msgdef* mapentry_def, |
|
Descriptor* desc) { |
|
const upb_fielddef* key_field; |
|
const upb_fielddef* value_field; |
|
map_handlerdata_t* hd = ALLOC(map_handlerdata_t); |
|
hd->ofs = ofs; |
|
key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD); |
|
assert(key_field != NULL); |
|
hd->key_field_type = upb_fielddef_type(key_field); |
|
value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD); |
|
assert(value_field != NULL); |
|
hd->value_field_type = upb_fielddef_type(value_field); |
|
hd->value_field_subdef = upb_fielddef_subdef(value_field); |
|
|
|
return hd; |
|
} |
|
|
|
// Handlers that set primitive values in oneofs. |
|
#define DEFINE_ONEOF_HANDLER(type, ctype) \ |
|
static bool oneof##type##_handler(void *closure, const void *hd, \ |
|
ctype val) { \ |
|
const oneof_handlerdata_t *oneofdata = hd; \ |
|
DEREF(closure, oneofdata->case_ofs, uint32_t) = \ |
|
oneofdata->oneof_case_num; \ |
|
DEREF(closure, oneofdata->ofs, ctype) = val; \ |
|
return true; \ |
|
} |
|
|
|
DEFINE_ONEOF_HANDLER(bool, bool) |
|
DEFINE_ONEOF_HANDLER(int32, int32_t) |
|
DEFINE_ONEOF_HANDLER(uint32, uint32_t) |
|
DEFINE_ONEOF_HANDLER(float, float) |
|
DEFINE_ONEOF_HANDLER(int64, int64_t) |
|
DEFINE_ONEOF_HANDLER(uint64, uint64_t) |
|
DEFINE_ONEOF_HANDLER(double, double) |
|
|
|
#undef DEFINE_ONEOF_HANDLER |
|
|
|
// Handlers for strings in a oneof. |
|
static void *oneofstr_handler(void *closure, |
|
const void *hd, |
|
size_t size_hint) { |
|
MessageHeader* msg = closure; |
|
const oneof_handlerdata_t *oneofdata = hd; |
|
VALUE str = rb_str_new2(""); |
|
rb_enc_associate(str, kRubyStringUtf8Encoding); |
|
DEREF(msg, oneofdata->case_ofs, uint32_t) = |
|
oneofdata->oneof_case_num; |
|
DEREF(msg, oneofdata->ofs, VALUE) = str; |
|
return (void*)str; |
|
} |
|
|
|
static void *oneofbytes_handler(void *closure, |
|
const void *hd, |
|
size_t size_hint) { |
|
MessageHeader* msg = closure; |
|
const oneof_handlerdata_t *oneofdata = hd; |
|
VALUE str = rb_str_new2(""); |
|
rb_enc_associate(str, kRubyString8bitEncoding); |
|
DEREF(msg, oneofdata->case_ofs, uint32_t) = |
|
oneofdata->oneof_case_num; |
|
DEREF(msg, oneofdata->ofs, VALUE) = str; |
|
return (void*)str; |
|
} |
|
|
|
static bool oneofstring_end_handler(void* closure, const void* hd) { |
|
MessageHeader* msg = closure; |
|
const oneof_handlerdata_t *oneofdata = hd; |
|
rb_obj_freeze(DEREF(msg, oneofdata->ofs, VALUE)); |
|
return true; |
|
} |
|
|
|
// Handler for a submessage field in a oneof. |
|
static void *oneofsubmsg_handler(void *closure, |
|
const void *hd) { |
|
MessageHeader* msg = closure; |
|
const oneof_handlerdata_t *oneofdata = hd; |
|
uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t); |
|
|
|
VALUE subdesc = |
|
get_def_obj((void*)oneofdata->md); |
|
VALUE subklass = Descriptor_msgclass(subdesc); |
|
VALUE submsg_rb; |
|
MessageHeader* submsg; |
|
|
|
if (oldcase != oneofdata->oneof_case_num || |
|
DEREF(msg, oneofdata->ofs, VALUE) == Qnil) { |
|
DEREF(msg, oneofdata->ofs, VALUE) = |
|
rb_class_new_instance(0, NULL, subklass); |
|
} |
|
// Set the oneof case *after* allocating the new class instance -- otherwise, |
|
// if the Ruby GC is invoked as part of a call into the VM, it might invoke |
|
// our mark routines, and our mark routines might see the case value |
|
// indicating a VALUE is present and expect a valid VALUE. See comment in |
|
// layout_set() for more detail: basically, the change to the value and the |
|
// case must be atomic w.r.t. the Ruby VM. |
|
DEREF(msg, oneofdata->case_ofs, uint32_t) = |
|
oneofdata->oneof_case_num; |
|
|
|
submsg_rb = DEREF(msg, oneofdata->ofs, VALUE); |
|
TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); |
|
return submsg; |
|
} |
|
|
|
// Set up handlers for a repeated field. |
|
static void add_handlers_for_repeated_field(upb_handlers *h, |
|
const upb_fielddef *f, |
|
size_t offset) { |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); |
|
upb_handlers_setstartseq(h, f, startseq_handler, &attr); |
|
upb_handlerattr_uninit(&attr); |
|
|
|
switch (upb_fielddef_type(f)) { |
|
|
|
#define SET_HANDLER(utype, ltype) \ |
|
case utype: \ |
|
upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ |
|
break; |
|
|
|
SET_HANDLER(UPB_TYPE_BOOL, bool); |
|
SET_HANDLER(UPB_TYPE_INT32, int32); |
|
SET_HANDLER(UPB_TYPE_UINT32, uint32); |
|
SET_HANDLER(UPB_TYPE_ENUM, int32); |
|
SET_HANDLER(UPB_TYPE_FLOAT, float); |
|
SET_HANDLER(UPB_TYPE_INT64, int64); |
|
SET_HANDLER(UPB_TYPE_UINT64, uint64); |
|
SET_HANDLER(UPB_TYPE_DOUBLE, double); |
|
|
|
#undef SET_HANDLER |
|
|
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: { |
|
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; |
|
upb_handlers_setstartstr(h, f, is_bytes ? |
|
appendbytes_handler : appendstr_handler, |
|
NULL); |
|
upb_handlers_setstring(h, f, stringdata_handler, NULL); |
|
upb_handlers_setendstr(h, f, appendstring_end_handler, NULL); |
|
break; |
|
} |
|
case UPB_TYPE_MESSAGE: { |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f)); |
|
upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); |
|
upb_handlerattr_uninit(&attr); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// Set up handlers for a singular field. |
|
static void add_handlers_for_singular_field(upb_handlers *h, |
|
const upb_fielddef *f, |
|
size_t offset) { |
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_BOOL: |
|
case UPB_TYPE_INT32: |
|
case UPB_TYPE_UINT32: |
|
case UPB_TYPE_ENUM: |
|
case UPB_TYPE_FLOAT: |
|
case UPB_TYPE_INT64: |
|
case UPB_TYPE_UINT64: |
|
case UPB_TYPE_DOUBLE: |
|
upb_msg_setscalarhandler(h, f, offset, -1); |
|
break; |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: { |
|
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); |
|
upb_handlers_setstartstr(h, f, |
|
is_bytes ? bytes_handler : str_handler, |
|
&attr); |
|
upb_handlers_setstring(h, f, stringdata_handler, &attr); |
|
upb_handlers_setendstr(h, f, stringdata_end_handler, &attr); |
|
upb_handlerattr_uninit(&attr); |
|
break; |
|
} |
|
case UPB_TYPE_MESSAGE: { |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f)); |
|
upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); |
|
upb_handlerattr_uninit(&attr); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// Adds handlers to a map field. |
|
static void add_handlers_for_mapfield(upb_handlers* h, |
|
const upb_fielddef* fielddef, |
|
size_t offset, |
|
Descriptor* desc) { |
|
const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef); |
|
map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc); |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
|
|
upb_handlers_addcleanup(h, hd, xfree); |
|
upb_handlerattr_sethandlerdata(&attr, hd); |
|
upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr); |
|
upb_handlerattr_uninit(&attr); |
|
} |
|
|
|
// Adds handlers to a map-entry msgdef. |
|
static void add_handlers_for_mapentry(const upb_msgdef* msgdef, |
|
upb_handlers* h, |
|
Descriptor* desc) { |
|
const upb_fielddef* key_field = map_entry_key(msgdef); |
|
const upb_fielddef* value_field = map_entry_value(msgdef); |
|
map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc); |
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
|
|
upb_handlers_addcleanup(h, hd, xfree); |
|
upb_handlerattr_sethandlerdata(&attr, hd); |
|
upb_handlers_setendmsg(h, endmap_handler, &attr); |
|
|
|
add_handlers_for_singular_field( |
|
h, key_field, |
|
offsetof(map_parse_frame_t, key_storage)); |
|
add_handlers_for_singular_field( |
|
h, value_field, |
|
offsetof(map_parse_frame_t, value_storage)); |
|
} |
|
|
|
// Set up handlers for a oneof field. |
|
static void add_handlers_for_oneof_field(upb_handlers *h, |
|
const upb_fielddef *f, |
|
size_t offset, |
|
size_t oneof_case_offset) { |
|
|
|
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; |
|
upb_handlerattr_sethandlerdata( |
|
&attr, newoneofhandlerdata(h, offset, oneof_case_offset, f)); |
|
|
|
switch (upb_fielddef_type(f)) { |
|
|
|
#define SET_HANDLER(utype, ltype) \ |
|
case utype: \ |
|
upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \ |
|
break; |
|
|
|
SET_HANDLER(UPB_TYPE_BOOL, bool); |
|
SET_HANDLER(UPB_TYPE_INT32, int32); |
|
SET_HANDLER(UPB_TYPE_UINT32, uint32); |
|
SET_HANDLER(UPB_TYPE_ENUM, int32); |
|
SET_HANDLER(UPB_TYPE_FLOAT, float); |
|
SET_HANDLER(UPB_TYPE_INT64, int64); |
|
SET_HANDLER(UPB_TYPE_UINT64, uint64); |
|
SET_HANDLER(UPB_TYPE_DOUBLE, double); |
|
|
|
#undef SET_HANDLER |
|
|
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: { |
|
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; |
|
upb_handlers_setstartstr(h, f, is_bytes ? |
|
oneofbytes_handler : oneofstr_handler, |
|
&attr); |
|
upb_handlers_setstring(h, f, stringdata_handler, NULL); |
|
upb_handlers_setendstr(h, f, oneofstring_end_handler, &attr); |
|
break; |
|
} |
|
case UPB_TYPE_MESSAGE: { |
|
upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr); |
|
break; |
|
} |
|
} |
|
|
|
upb_handlerattr_uninit(&attr); |
|
} |
|
|
|
|
|
static void add_handlers_for_message(const void *closure, upb_handlers *h) { |
|
const upb_msgdef* msgdef = upb_handlers_msgdef(h); |
|
Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef)); |
|
upb_msg_field_iter i; |
|
|
|
// If this is a mapentry message type, set up a special set of handlers and |
|
// bail out of the normal (user-defined) message type handling. |
|
if (upb_msgdef_mapentry(msgdef)) { |
|
add_handlers_for_mapentry(msgdef, h, desc); |
|
return; |
|
} |
|
|
|
// Ensure layout exists. We may be invoked to create handlers for a given |
|
// message if we are included as a submsg of another message type before our |
|
// class is actually built, so to work around this, we just create the layout |
|
// (and handlers, in the class-building function) on-demand. |
|
if (desc->layout == NULL) { |
|
desc->layout = create_layout(desc->msgdef); |
|
} |
|
|
|
for (upb_msg_field_begin(&i, desc->msgdef); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
const upb_fielddef *f = upb_msg_iter_field(&i); |
|
size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset + |
|
sizeof(MessageHeader); |
|
|
|
if (upb_fielddef_containingoneof(f)) { |
|
size_t oneof_case_offset = |
|
desc->layout->fields[upb_fielddef_index(f)].case_offset + |
|
sizeof(MessageHeader); |
|
add_handlers_for_oneof_field(h, f, offset, oneof_case_offset); |
|
} else if (is_map_field(f)) { |
|
add_handlers_for_mapfield(h, f, offset, desc); |
|
} else if (upb_fielddef_isseq(f)) { |
|
add_handlers_for_repeated_field(h, f, offset); |
|
} else { |
|
add_handlers_for_singular_field(h, f, offset); |
|
} |
|
} |
|
} |
|
|
|
// Creates upb handlers for populating a message. |
|
static const upb_handlers *new_fill_handlers(Descriptor* desc, |
|
const void* owner) { |
|
// TODO(cfallin, haberman): once upb gets a caching/memoization layer for |
|
// handlers, reuse subdef handlers so that e.g. if we already parse |
|
// B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to |
|
// parse A-with-field-of-type-B-with-field-of-type-C. |
|
return upb_handlers_newfrozen(desc->msgdef, owner, |
|
add_handlers_for_message, NULL); |
|
} |
|
|
|
// Constructs the handlers for filling a message's data into an in-memory |
|
// object. |
|
const upb_handlers* get_fill_handlers(Descriptor* desc) { |
|
if (!desc->fill_handlers) { |
|
desc->fill_handlers = |
|
new_fill_handlers(desc, &desc->fill_handlers); |
|
} |
|
return desc->fill_handlers; |
|
} |
|
|
|
// Constructs the upb decoder method for parsing messages of this type. |
|
// This is called from the message class creation code. |
|
const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc, |
|
const void* owner) { |
|
const upb_handlers* handlers = get_fill_handlers(desc); |
|
upb_pbdecodermethodopts opts; |
|
upb_pbdecodermethodopts_init(&opts, handlers); |
|
|
|
return upb_pbdecodermethod_new(&opts, owner); |
|
} |
|
|
|
static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) { |
|
if (desc->fill_method == NULL) { |
|
desc->fill_method = new_fillmsg_decodermethod( |
|
desc, &desc->fill_method); |
|
} |
|
return desc->fill_method; |
|
} |
|
|
|
static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) { |
|
if (desc->json_fill_method == NULL) { |
|
desc->json_fill_method = |
|
upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method); |
|
} |
|
return desc->json_fill_method; |
|
} |
|
|
|
|
|
// Stack-allocated context during an encode/decode operation. Contains the upb |
|
// environment and its stack-based allocator, an initial buffer for allocations |
|
// to avoid malloc() when possible, and a template for Ruby exception messages |
|
// if any error occurs. |
|
#define STACK_ENV_STACKBYTES 4096 |
|
typedef struct { |
|
upb_env env; |
|
const char* ruby_error_template; |
|
char allocbuf[STACK_ENV_STACKBYTES]; |
|
} stackenv; |
|
|
|
static void stackenv_init(stackenv* se, const char* errmsg); |
|
static void stackenv_uninit(stackenv* se); |
|
|
|
// Callback invoked by upb if any error occurs during parsing or serialization. |
|
static bool env_error_func(void* ud, const upb_status* status) { |
|
stackenv* se = ud; |
|
// Free the env -- rb_raise will longjmp up the stack past the encode/decode |
|
// function so it would not otherwise have been freed. |
|
stackenv_uninit(se); |
|
|
|
// TODO(haberman): have a way to verify that this is actually a parse error, |
|
// instead of just throwing "parse error" unconditionally. |
|
rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status)); |
|
// Never reached: rb_raise() always longjmp()s up the stack, past all of our |
|
// code, back to Ruby. |
|
return false; |
|
} |
|
|
|
static void stackenv_init(stackenv* se, const char* errmsg) { |
|
se->ruby_error_template = errmsg; |
|
upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL); |
|
upb_env_seterrorfunc(&se->env, env_error_func, se); |
|
} |
|
|
|
static void stackenv_uninit(stackenv* se) { |
|
upb_env_uninit(&se->env); |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* MessageClass.decode(data) => message |
|
* |
|
* Decodes the given data (as a string containing bytes in protocol buffers wire |
|
* format) under the interpretration given by this message class's definition |
|
* and returns a message object with the corresponding field values. |
|
*/ |
|
VALUE Message_decode(VALUE klass, VALUE data) { |
|
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
|
Descriptor* desc = ruby_to_Descriptor(descriptor); |
|
VALUE msgklass = Descriptor_msgclass(descriptor); |
|
VALUE msg_rb; |
|
MessageHeader* msg; |
|
|
|
if (TYPE(data) != T_STRING) { |
|
rb_raise(rb_eArgError, "Expected string for binary protobuf data."); |
|
} |
|
|
|
msg_rb = rb_class_new_instance(0, NULL, msgklass); |
|
TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); |
|
|
|
{ |
|
const upb_pbdecodermethod* method = msgdef_decodermethod(desc); |
|
const upb_handlers* h = upb_pbdecodermethod_desthandlers(method); |
|
stackenv se; |
|
upb_sink sink; |
|
upb_pbdecoder* decoder; |
|
stackenv_init(&se, "Error occurred during parsing: %s"); |
|
|
|
upb_sink_reset(&sink, h, msg); |
|
decoder = upb_pbdecoder_create(&se.env, method, &sink); |
|
upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), |
|
upb_pbdecoder_input(decoder)); |
|
|
|
stackenv_uninit(&se); |
|
} |
|
|
|
return msg_rb; |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* MessageClass.decode_json(data) => message |
|
* |
|
* Decodes the given data (as a string containing bytes in protocol buffers wire |
|
* format) under the interpretration given by this message class's definition |
|
* and returns a message object with the corresponding field values. |
|
*/ |
|
VALUE Message_decode_json(VALUE klass, VALUE data) { |
|
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
|
Descriptor* desc = ruby_to_Descriptor(descriptor); |
|
VALUE msgklass = Descriptor_msgclass(descriptor); |
|
VALUE msg_rb; |
|
MessageHeader* msg; |
|
|
|
if (TYPE(data) != T_STRING) { |
|
rb_raise(rb_eArgError, "Expected string for JSON data."); |
|
} |
|
// TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to |
|
// convert, because string handlers pass data directly to message string |
|
// fields. |
|
|
|
msg_rb = rb_class_new_instance(0, NULL, msgklass); |
|
TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); |
|
|
|
{ |
|
const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc); |
|
stackenv se; |
|
upb_sink sink; |
|
upb_json_parser* parser; |
|
stackenv_init(&se, "Error occurred during parsing: %s"); |
|
|
|
upb_sink_reset(&sink, get_fill_handlers(desc), msg); |
|
parser = upb_json_parser_create(&se.env, method, &sink); |
|
upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), |
|
upb_json_parser_input(parser)); |
|
|
|
stackenv_uninit(&se); |
|
} |
|
|
|
return msg_rb; |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Serializing. |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// The code below also comes from upb's prototype Ruby binding, developed by |
|
// haberman@. |
|
|
|
/* stringsink *****************************************************************/ |
|
|
|
// This should probably be factored into a common upb component. |
|
|
|
typedef struct { |
|
upb_byteshandler handler; |
|
upb_bytessink sink; |
|
char *ptr; |
|
size_t len, size; |
|
} stringsink; |
|
|
|
static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { |
|
stringsink *sink = _sink; |
|
sink->len = 0; |
|
return sink; |
|
} |
|
|
|
static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, |
|
size_t len, const upb_bufhandle *handle) { |
|
stringsink *sink = _sink; |
|
size_t new_size = sink->size; |
|
|
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
|
|
while (sink->len + len > new_size) { |
|
new_size *= 2; |
|
} |
|
|
|
if (new_size != sink->size) { |
|
sink->ptr = realloc(sink->ptr, new_size); |
|
sink->size = new_size; |
|
} |
|
|
|
memcpy(sink->ptr + sink->len, ptr, len); |
|
sink->len += len; |
|
|
|
return len; |
|
} |
|
|
|
void stringsink_init(stringsink *sink) { |
|
upb_byteshandler_init(&sink->handler); |
|
upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); |
|
upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); |
|
|
|
upb_bytessink_reset(&sink->sink, &sink->handler, sink); |
|
|
|
sink->size = 32; |
|
sink->ptr = malloc(sink->size); |
|
sink->len = 0; |
|
} |
|
|
|
void stringsink_uninit(stringsink *sink) { |
|
free(sink->ptr); |
|
} |
|
|
|
/* msgvisitor *****************************************************************/ |
|
|
|
// TODO: If/when we support proto2 semantics in addition to the current proto3 |
|
// semantics, which means that we have true field presence, we will want to |
|
// modify msgvisitor so that it emits all present fields rather than all |
|
// non-default-value fields. |
|
|
|
static void putmsg(VALUE msg, const Descriptor* desc, |
|
upb_sink *sink, int depth, bool emit_defaults); |
|
|
|
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { |
|
upb_selector_t ret; |
|
bool ok = upb_handlers_getselector(f, type, &ret); |
|
UPB_ASSERT(ok); |
|
return ret; |
|
} |
|
|
|
static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) { |
|
upb_sink subsink; |
|
|
|
if (str == Qnil) return; |
|
|
|
assert(BUILTIN_TYPE(str) == RUBY_T_STRING); |
|
|
|
// We should be guaranteed that the string has the correct encoding because |
|
// we ensured this at assignment time and then froze the string. |
|
if (upb_fielddef_type(f) == UPB_TYPE_STRING) { |
|
assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyStringUtf8Encoding); |
|
} else { |
|
assert(rb_enc_from_index(ENCODING_GET(str)) == kRubyString8bitEncoding); |
|
} |
|
|
|
upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str), |
|
&subsink); |
|
upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str), |
|
RSTRING_LEN(str), NULL); |
|
upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); |
|
} |
|
|
|
static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink, |
|
int depth, bool emit_defaults) { |
|
upb_sink subsink; |
|
VALUE descriptor; |
|
Descriptor* subdesc; |
|
|
|
if (submsg == Qnil) return; |
|
|
|
descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned); |
|
subdesc = ruby_to_Descriptor(descriptor); |
|
|
|
upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); |
|
putmsg(submsg, subdesc, &subsink, depth + 1, emit_defaults); |
|
upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); |
|
} |
|
|
|
static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink, |
|
int depth, bool emit_defaults) { |
|
upb_sink subsink; |
|
upb_fieldtype_t type = upb_fielddef_type(f); |
|
upb_selector_t sel = 0; |
|
int size; |
|
|
|
if (ary == Qnil) return; |
|
|
|
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); |
|
|
|
if (upb_fielddef_isprimitive(f)) { |
|
sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
|
} |
|
|
|
size = NUM2INT(RepeatedField_length(ary)); |
|
for (int i = 0; i < size; i++) { |
|
void* memory = RepeatedField_index_native(ary, i); |
|
switch (type) { |
|
#define T(upbtypeconst, upbtype, ctype) \ |
|
case upbtypeconst: \ |
|
upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \ |
|
break; |
|
|
|
T(UPB_TYPE_FLOAT, float, float) |
|
T(UPB_TYPE_DOUBLE, double, double) |
|
T(UPB_TYPE_BOOL, bool, int8_t) |
|
case UPB_TYPE_ENUM: |
|
T(UPB_TYPE_INT32, int32, int32_t) |
|
T(UPB_TYPE_UINT32, uint32, uint32_t) |
|
T(UPB_TYPE_INT64, int64, int64_t) |
|
T(UPB_TYPE_UINT64, uint64, uint64_t) |
|
|
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
putstr(*((VALUE *)memory), f, &subsink); |
|
break; |
|
case UPB_TYPE_MESSAGE: |
|
putsubmsg(*((VALUE *)memory), f, &subsink, depth, emit_defaults); |
|
break; |
|
|
|
#undef T |
|
|
|
} |
|
} |
|
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); |
|
} |
|
|
|
static void put_ruby_value(VALUE value, |
|
const upb_fielddef *f, |
|
VALUE type_class, |
|
int depth, |
|
upb_sink *sink, |
|
bool emit_defaults) { |
|
upb_selector_t sel = 0; |
|
if (upb_fielddef_isprimitive(f)) { |
|
sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
|
} |
|
|
|
switch (upb_fielddef_type(f)) { |
|
case UPB_TYPE_INT32: |
|
upb_sink_putint32(sink, sel, NUM2INT(value)); |
|
break; |
|
case UPB_TYPE_INT64: |
|
upb_sink_putint64(sink, sel, NUM2LL(value)); |
|
break; |
|
case UPB_TYPE_UINT32: |
|
upb_sink_putuint32(sink, sel, NUM2UINT(value)); |
|
break; |
|
case UPB_TYPE_UINT64: |
|
upb_sink_putuint64(sink, sel, NUM2ULL(value)); |
|
break; |
|
case UPB_TYPE_FLOAT: |
|
upb_sink_putfloat(sink, sel, NUM2DBL(value)); |
|
break; |
|
case UPB_TYPE_DOUBLE: |
|
upb_sink_putdouble(sink, sel, NUM2DBL(value)); |
|
break; |
|
case UPB_TYPE_ENUM: { |
|
if (TYPE(value) == T_SYMBOL) { |
|
value = rb_funcall(type_class, rb_intern("resolve"), 1, value); |
|
} |
|
upb_sink_putint32(sink, sel, NUM2INT(value)); |
|
break; |
|
} |
|
case UPB_TYPE_BOOL: |
|
upb_sink_putbool(sink, sel, value == Qtrue); |
|
break; |
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
putstr(value, f, sink); |
|
break; |
|
case UPB_TYPE_MESSAGE: |
|
putsubmsg(value, f, sink, depth, emit_defaults); |
|
} |
|
} |
|
|
|
static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink, |
|
int depth, bool emit_defaults) { |
|
Map* self; |
|
upb_sink subsink; |
|
const upb_fielddef* key_field; |
|
const upb_fielddef* value_field; |
|
Map_iter it; |
|
|
|
if (map == Qnil) return; |
|
self = ruby_to_Map(map); |
|
|
|
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); |
|
|
|
assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE); |
|
key_field = map_field_key(f); |
|
value_field = map_field_value(f); |
|
|
|
for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) { |
|
VALUE key = Map_iter_key(&it); |
|
VALUE value = Map_iter_value(&it); |
|
upb_status status; |
|
|
|
upb_sink entry_sink; |
|
upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG), |
|
&entry_sink); |
|
upb_sink_startmsg(&entry_sink); |
|
|
|
put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink, emit_defaults); |
|
put_ruby_value(value, value_field, self->value_type_class, depth + 1, |
|
&entry_sink, emit_defaults); |
|
|
|
upb_sink_endmsg(&entry_sink, &status); |
|
upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG)); |
|
} |
|
|
|
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); |
|
} |
|
|
|
static void putmsg(VALUE msg_rb, const Descriptor* desc, |
|
upb_sink *sink, int depth, bool emit_defaults) { |
|
MessageHeader* msg; |
|
upb_msg_field_iter i; |
|
upb_status status; |
|
|
|
upb_sink_startmsg(sink); |
|
|
|
// Protect against cycles (possible because users may freely reassign message |
|
// and repeated fields) by imposing a maximum recursion depth. |
|
if (depth > ENCODE_MAX_NESTING) { |
|
rb_raise(rb_eRuntimeError, |
|
"Maximum recursion depth exceeded during encoding."); |
|
} |
|
|
|
TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); |
|
|
|
for (upb_msg_field_begin(&i, desc->msgdef); |
|
!upb_msg_field_done(&i); |
|
upb_msg_field_next(&i)) { |
|
upb_fielddef *f = upb_msg_iter_field(&i); |
|
bool is_matching_oneof = false; |
|
uint32_t offset = |
|
desc->layout->fields[upb_fielddef_index(f)].offset + |
|
sizeof(MessageHeader); |
|
|
|
if (upb_fielddef_containingoneof(f)) { |
|
uint32_t oneof_case_offset = |
|
desc->layout->fields[upb_fielddef_index(f)].case_offset + |
|
sizeof(MessageHeader); |
|
// For a oneof, check that this field is actually present -- skip all the |
|
// below if not. |
|
if (DEREF(msg, oneof_case_offset, uint32_t) != |
|
upb_fielddef_number(f)) { |
|
continue; |
|
} |
|
// Otherwise, fall through to the appropriate singular-field handler |
|
// below. |
|
is_matching_oneof = true; |
|
} |
|
|
|
if (is_map_field(f)) { |
|
VALUE map = DEREF(msg, offset, VALUE); |
|
if (map != Qnil || emit_defaults) { |
|
putmap(map, f, sink, depth, emit_defaults); |
|
} |
|
} else if (upb_fielddef_isseq(f)) { |
|
VALUE ary = DEREF(msg, offset, VALUE); |
|
if (ary != Qnil) { |
|
putary(ary, f, sink, depth, emit_defaults); |
|
} |
|
} else if (upb_fielddef_isstring(f)) { |
|
VALUE str = DEREF(msg, offset, VALUE); |
|
if (is_matching_oneof || emit_defaults || RSTRING_LEN(str) > 0) { |
|
putstr(str, f, sink); |
|
} |
|
} else if (upb_fielddef_issubmsg(f)) { |
|
putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth, emit_defaults); |
|
} else { |
|
upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); |
|
|
|
#define T(upbtypeconst, upbtype, ctype, default_value) \ |
|
case upbtypeconst: { \ |
|
ctype value = DEREF(msg, offset, ctype); \ |
|
if (is_matching_oneof || emit_defaults || value != default_value) { \ |
|
upb_sink_put##upbtype(sink, sel, value); \ |
|
} \ |
|
} \ |
|
break; |
|
|
|
switch (upb_fielddef_type(f)) { |
|
T(UPB_TYPE_FLOAT, float, float, 0.0) |
|
T(UPB_TYPE_DOUBLE, double, double, 0.0) |
|
T(UPB_TYPE_BOOL, bool, uint8_t, 0) |
|
case UPB_TYPE_ENUM: |
|
T(UPB_TYPE_INT32, int32, int32_t, 0) |
|
T(UPB_TYPE_UINT32, uint32, uint32_t, 0) |
|
T(UPB_TYPE_INT64, int64, int64_t, 0) |
|
T(UPB_TYPE_UINT64, uint64, uint64_t, 0) |
|
|
|
case UPB_TYPE_STRING: |
|
case UPB_TYPE_BYTES: |
|
case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error."); |
|
} |
|
|
|
#undef T |
|
|
|
} |
|
} |
|
|
|
upb_sink_endmsg(sink, &status); |
|
} |
|
|
|
static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) { |
|
if (desc->pb_serialize_handlers == NULL) { |
|
desc->pb_serialize_handlers = |
|
upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers); |
|
} |
|
return desc->pb_serialize_handlers; |
|
} |
|
|
|
static const upb_handlers* msgdef_json_serialize_handlers( |
|
Descriptor* desc, bool preserve_proto_fieldnames) { |
|
if (preserve_proto_fieldnames) { |
|
if (desc->json_serialize_handlers == NULL) { |
|
desc->json_serialize_handlers = |
|
upb_json_printer_newhandlers( |
|
desc->msgdef, true, &desc->json_serialize_handlers); |
|
} |
|
return desc->json_serialize_handlers; |
|
} else { |
|
if (desc->json_serialize_handlers_preserve == NULL) { |
|
desc->json_serialize_handlers_preserve = |
|
upb_json_printer_newhandlers( |
|
desc->msgdef, false, &desc->json_serialize_handlers_preserve); |
|
} |
|
return desc->json_serialize_handlers_preserve; |
|
} |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* MessageClass.encode(msg) => bytes |
|
* |
|
* Encodes the given message object to its serialized form in protocol buffers |
|
* wire format. |
|
*/ |
|
VALUE Message_encode(VALUE klass, VALUE msg_rb) { |
|
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
|
Descriptor* desc = ruby_to_Descriptor(descriptor); |
|
|
|
stringsink sink; |
|
stringsink_init(&sink); |
|
|
|
{ |
|
const upb_handlers* serialize_handlers = |
|
msgdef_pb_serialize_handlers(desc); |
|
|
|
stackenv se; |
|
upb_pb_encoder* encoder; |
|
VALUE ret; |
|
|
|
stackenv_init(&se, "Error occurred during encoding: %s"); |
|
encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink); |
|
|
|
putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0, false); |
|
|
|
ret = rb_str_new(sink.ptr, sink.len); |
|
|
|
stackenv_uninit(&se); |
|
stringsink_uninit(&sink); |
|
|
|
return ret; |
|
} |
|
} |
|
|
|
/* |
|
* call-seq: |
|
* MessageClass.encode_json(msg) => json_string |
|
* |
|
* Encodes the given message object into its serialized JSON representation. |
|
*/ |
|
VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) { |
|
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
|
Descriptor* desc = ruby_to_Descriptor(descriptor); |
|
VALUE msg_rb; |
|
VALUE preserve_proto_fieldnames = Qfalse; |
|
VALUE emit_defaults = Qfalse; |
|
stringsink sink; |
|
|
|
if (argc < 1 || argc > 2) { |
|
rb_raise(rb_eArgError, "Expected 1 or 2 arguments."); |
|
} |
|
|
|
msg_rb = argv[0]; |
|
|
|
if (argc == 2) { |
|
VALUE hash_args = argv[1]; |
|
if (TYPE(hash_args) != T_HASH) { |
|
rb_raise(rb_eArgError, "Expected hash arguments."); |
|
} |
|
preserve_proto_fieldnames = rb_hash_lookup2( |
|
hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse); |
|
|
|
emit_defaults = rb_hash_lookup2( |
|
hash_args, ID2SYM(rb_intern("emit_defaults")), Qfalse); |
|
} |
|
|
|
stringsink_init(&sink); |
|
|
|
{ |
|
const upb_handlers* serialize_handlers = |
|
msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames)); |
|
upb_json_printer* printer; |
|
stackenv se; |
|
VALUE ret; |
|
|
|
stackenv_init(&se, "Error occurred during encoding: %s"); |
|
printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink); |
|
|
|
putmsg(msg_rb, desc, upb_json_printer_input(printer), 0, RTEST(emit_defaults)); |
|
|
|
ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding()); |
|
|
|
stackenv_uninit(&se); |
|
stringsink_uninit(&sink); |
|
|
|
return ret; |
|
} |
|
} |
|
|
|
|