Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

666 lines
26 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef __GOOGLE_PROTOBUF_RUBY_PROTOBUF_H__
#define __GOOGLE_PROTOBUF_RUBY_PROTOBUF_H__
#include <ruby/ruby.h>
#include <ruby/vm.h>
#include <ruby/encoding.h>
#include "upb.h"
// Forward decls.
struct DescriptorPool;
struct Descriptor;
struct FileDescriptor;
struct FieldDescriptor;
struct EnumDescriptor;
struct MessageLayout;
struct MessageField;
struct MessageHeader;
struct MessageBuilderContext;
struct EnumBuilderContext;
struct FileBuilderContext;
struct Builder;
typedef struct DescriptorPool DescriptorPool;
typedef struct Descriptor Descriptor;
typedef struct FileDescriptor FileDescriptor;
typedef struct FieldDescriptor FieldDescriptor;
typedef struct OneofDescriptor OneofDescriptor;
typedef struct EnumDescriptor EnumDescriptor;
typedef struct MessageLayout MessageLayout;
typedef struct MessageField MessageField;
typedef struct MessageOneof MessageOneof;
typedef struct MessageHeader MessageHeader;
typedef struct MessageBuilderContext MessageBuilderContext;
typedef struct OneofBuilderContext OneofBuilderContext;
typedef struct EnumBuilderContext EnumBuilderContext;
typedef struct FileBuilderContext FileBuilderContext;
typedef struct Builder Builder;
/*
It can be a bit confusing how the C structs defined below and the Ruby
objects interact and hold references to each other. First, a few principles:
- Ruby's "TypedData" abstraction lets a Ruby VALUE hold a pointer to a C
struct (or arbitrary memory chunk), own it, and free it when collected.
Thus, each struct below will have a corresponding Ruby object
wrapping/owning it.
- To get back from an underlying upb {msg,enum}def to the Ruby object, we
keep a global hashmap, accessed by get_def_obj/add_def_obj below.
The in-memory structure is then something like:
Ruby | upb
|
DescriptorPool ------------|-----------> upb_symtab____________________
| | (message types) \
| v \
Descriptor ---------------|-----------> upb_msgdef (enum types)|
|--> msgclass | | ^ |
| (dynamically built) | | | (submsg fields) |
|--> MessageLayout | | | /
|--------------------------|> decoder method| | /
\--------------------------|> serialize | | /
| handlers v | /
FieldDescriptor -----------|-----------> upb_fielddef /
| | /
| v (enum fields) /
EnumDescriptor ------------|-----------> upb_enumdef <----------'
|
|
^ | \___/
`---------------|-----------------' (get_def_obj map)
*/
// -----------------------------------------------------------------------------
// Ruby class structure definitions.
// -----------------------------------------------------------------------------
struct DescriptorPool {
VALUE def_to_descriptor; // Hash table of def* -> Ruby descriptor.
upb_symtab* symtab;
upb_handlercache* fill_handler_cache;
upb_handlercache* pb_serialize_handler_cache;
upb_handlercache* json_serialize_handler_cache;
upb_handlercache* json_serialize_handler_preserve_cache;
upb_pbcodecache* fill_method_cache;
upb_json_codecache* json_fill_method_cache;
};
struct Descriptor {
const upb_msgdef* msgdef;
MessageLayout* layout;
VALUE klass;
VALUE descriptor_pool;
};
struct FileDescriptor {
const upb_filedef* filedef;
VALUE descriptor_pool; // Owns the upb_filedef.
};
struct FieldDescriptor {
const upb_fielddef* fielddef;
VALUE descriptor_pool; // Owns the upb_fielddef.
};
struct OneofDescriptor {
const upb_oneofdef* oneofdef;
VALUE descriptor_pool; // Owns the upb_oneofdef.
};
struct EnumDescriptor {
const upb_enumdef* enumdef;
VALUE module; // begins as nil
VALUE descriptor_pool; // Owns the upb_enumdef.
};
struct MessageBuilderContext {
google_protobuf_DescriptorProto* msg_proto;
VALUE file_builder;
};
struct OneofBuilderContext {
int oneof_index;
VALUE message_builder;
};
struct EnumBuilderContext {
google_protobuf_EnumDescriptorProto* enum_proto;
VALUE file_builder;
};
struct FileBuilderContext {
upb_arena *arena;
google_protobuf_FileDescriptorProto* file_proto;
VALUE descriptor_pool;
};
struct Builder {
VALUE descriptor_pool;
VALUE default_file_builder;
};
extern VALUE cDescriptorPool;
extern VALUE cDescriptor;
extern VALUE cFileDescriptor;
extern VALUE cFieldDescriptor;
extern VALUE cEnumDescriptor;
extern VALUE cMessageBuilderContext;
extern VALUE cOneofBuilderContext;
extern VALUE cEnumBuilderContext;
extern VALUE cFileBuilderContext;
extern VALUE cBuilder;
extern VALUE cError;
extern VALUE cParseError;
extern VALUE cTypeError;
// We forward-declare all of the Ruby method implementations here because we
// sometimes call the methods directly across .c files, rather than going
// through Ruby's method dispatching (e.g. during message parse). It's cleaner
// to keep the list of object methods together than to split them between
// static-in-file definitions and header declarations.
void DescriptorPool_mark(void* _self);
void DescriptorPool_free(void* _self);
VALUE DescriptorPool_alloc(VALUE klass);
void DescriptorPool_register(VALUE module);
DescriptorPool* ruby_to_DescriptorPool(VALUE value);
VALUE DescriptorPool_build(int argc, VALUE* argv, VALUE _self);
VALUE DescriptorPool_lookup(VALUE _self, VALUE name);
VALUE DescriptorPool_generated_pool(VALUE _self);
extern VALUE generated_pool;
void Descriptor_mark(void* _self);
void Descriptor_free(void* _self);
VALUE Descriptor_alloc(VALUE klass);
void Descriptor_register(VALUE module);
Descriptor* ruby_to_Descriptor(VALUE value);
VALUE Descriptor_initialize(VALUE _self, VALUE cookie, VALUE descriptor_pool,
VALUE ptr);
VALUE Descriptor_name(VALUE _self);
VALUE Descriptor_each(VALUE _self);
VALUE Descriptor_lookup(VALUE _self, VALUE name);
VALUE Descriptor_each_oneof(VALUE _self);
VALUE Descriptor_lookup_oneof(VALUE _self, VALUE name);
VALUE Descriptor_msgclass(VALUE _self);
VALUE Descriptor_file_descriptor(VALUE _self);
extern const rb_data_type_t _Descriptor_type;
void FileDescriptor_mark(void* _self);
void FileDescriptor_free(void* _self);
VALUE FileDescriptor_alloc(VALUE klass);
void FileDescriptor_register(VALUE module);
FileDescriptor* ruby_to_FileDescriptor(VALUE value);
VALUE FileDescriptor_initialize(VALUE _self, VALUE cookie,
VALUE descriptor_pool, VALUE ptr);
VALUE FileDescriptor_name(VALUE _self);
VALUE FileDescriptor_syntax(VALUE _self);
void FieldDescriptor_mark(void* _self);
void FieldDescriptor_free(void* _self);
VALUE FieldDescriptor_alloc(VALUE klass);
void FieldDescriptor_register(VALUE module);
FieldDescriptor* ruby_to_FieldDescriptor(VALUE value);
VALUE FieldDescriptor_initialize(VALUE _self, VALUE cookie,
VALUE descriptor_pool, VALUE ptr);
VALUE FieldDescriptor_name(VALUE _self);
VALUE FieldDescriptor_type(VALUE _self);
VALUE FieldDescriptor_default(VALUE _self);
VALUE FieldDescriptor_label(VALUE _self);
VALUE FieldDescriptor_number(VALUE _self);
VALUE FieldDescriptor_submsg_name(VALUE _self);
VALUE FieldDescriptor_subtype(VALUE _self);
VALUE FieldDescriptor_has(VALUE _self, VALUE msg_rb);
VALUE FieldDescriptor_clear(VALUE _self, VALUE msg_rb);
VALUE FieldDescriptor_get(VALUE _self, VALUE msg_rb);
VALUE FieldDescriptor_set(VALUE _self, VALUE msg_rb, VALUE value);
upb_fieldtype_t ruby_to_fieldtype(VALUE type);
VALUE fieldtype_to_ruby(upb_fieldtype_t type);
void OneofDescriptor_mark(void* _self);
void OneofDescriptor_free(void* _self);
VALUE OneofDescriptor_alloc(VALUE klass);
void OneofDescriptor_register(VALUE module);
OneofDescriptor* ruby_to_OneofDescriptor(VALUE value);
VALUE OneofDescriptor_initialize(VALUE _self, VALUE cookie,
VALUE descriptor_pool, VALUE ptr);
VALUE OneofDescriptor_name(VALUE _self);
VALUE OneofDescriptor_each(VALUE _self, VALUE field);
void EnumDescriptor_mark(void* _self);
void EnumDescriptor_free(void* _self);
VALUE EnumDescriptor_alloc(VALUE klass);
VALUE EnumDescriptor_initialize(VALUE _self, VALUE cookie,
VALUE descriptor_pool, VALUE ptr);
void EnumDescriptor_register(VALUE module);
EnumDescriptor* ruby_to_EnumDescriptor(VALUE value);
VALUE EnumDescriptor_file_descriptor(VALUE _self);
VALUE EnumDescriptor_name(VALUE _self);
VALUE EnumDescriptor_lookup_name(VALUE _self, VALUE name);
VALUE EnumDescriptor_lookup_value(VALUE _self, VALUE number);
VALUE EnumDescriptor_each(VALUE _self);
VALUE EnumDescriptor_enummodule(VALUE _self);
extern const rb_data_type_t _EnumDescriptor_type;
void MessageBuilderContext_mark(void* _self);
void MessageBuilderContext_free(void* _self);
VALUE MessageBuilderContext_alloc(VALUE klass);
void MessageBuilderContext_register(VALUE module);
MessageBuilderContext* ruby_to_MessageBuilderContext(VALUE value);
VALUE MessageBuilderContext_initialize(VALUE _self,
VALUE _file_builder,
VALUE name);
VALUE MessageBuilderContext_optional(int argc, VALUE* argv, VALUE _self);
VALUE MessageBuilderContext_required(int argc, VALUE* argv, VALUE _self);
VALUE MessageBuilderContext_repeated(int argc, VALUE* argv, VALUE _self);
VALUE MessageBuilderContext_map(int argc, VALUE* argv, VALUE _self);
VALUE MessageBuilderContext_oneof(VALUE _self, VALUE name);
void OneofBuilderContext_mark(void* _self);
void OneofBuilderContext_free(void* _self);
VALUE OneofBuilderContext_alloc(VALUE klass);
void OneofBuilderContext_register(VALUE module);
OneofBuilderContext* ruby_to_OneofBuilderContext(VALUE value);
VALUE OneofBuilderContext_initialize(VALUE _self,
VALUE descriptor,
VALUE builder);
VALUE OneofBuilderContext_optional(int argc, VALUE* argv, VALUE _self);
void EnumBuilderContext_mark(void* _self);
void EnumBuilderContext_free(void* _self);
VALUE EnumBuilderContext_alloc(VALUE klass);
void EnumBuilderContext_register(VALUE module);
EnumBuilderContext* ruby_to_EnumBuilderContext(VALUE value);
VALUE EnumBuilderContext_initialize(VALUE _self, VALUE _file_builder,
VALUE name);
VALUE EnumBuilderContext_value(VALUE _self, VALUE name, VALUE number);
void FileBuilderContext_mark(void* _self);
void FileBuilderContext_free(void* _self);
VALUE FileBuilderContext_alloc(VALUE klass);
void FileBuilderContext_register(VALUE module);
FileBuilderContext* ruby_to_FileBuilderContext(VALUE _self);
upb_strview FileBuilderContext_strdup(VALUE _self, VALUE rb_str);
upb_strview FileBuilderContext_strdup_name(VALUE _self, VALUE rb_str);
upb_strview FileBuilderContext_strdup_sym(VALUE _self, VALUE rb_sym);
VALUE FileBuilderContext_initialize(VALUE _self, VALUE descriptor_pool,
VALUE name, VALUE options);
VALUE FileBuilderContext_add_message(VALUE _self, VALUE name);
VALUE FileBuilderContext_add_enum(VALUE _self, VALUE name);
VALUE FileBuilderContext_pending_descriptors(VALUE _self);
void Builder_mark(void* _self);
void Builder_free(void* _self);
VALUE Builder_alloc(VALUE klass);
void Builder_register(VALUE module);
Builder* ruby_to_Builder(VALUE value);
VALUE Builder_build(VALUE _self);
VALUE Builder_initialize(VALUE _self, VALUE descriptor_pool);
VALUE Builder_add_file(int argc, VALUE *argv, VALUE _self);
VALUE Builder_add_message(VALUE _self, VALUE name);
VALUE Builder_add_enum(VALUE _self, VALUE name);
VALUE Builder_finalize_to_pool(VALUE _self, VALUE pool_rb);
// -----------------------------------------------------------------------------
// Native slot storage abstraction.
// -----------------------------------------------------------------------------
#define NATIVE_SLOT_MAX_SIZE sizeof(uint64_t)
size_t native_slot_size(upb_fieldtype_t type);
void native_slot_set(const char* name,
upb_fieldtype_t type,
VALUE type_class,
void* memory,
VALUE value);
// Atomically (with respect to Ruby VM calls) either update the value and set a
// oneof case, or do neither. If |case_memory| is null, then no case value is
// set.
void native_slot_set_value_and_case(const char* name,
upb_fieldtype_t type,
VALUE type_class,
void* memory,
VALUE value,
uint32_t* case_memory,
uint32_t case_number);
VALUE native_slot_get(upb_fieldtype_t type,
VALUE type_class,
const void* memory);
void native_slot_init(upb_fieldtype_t type, void* memory);
void native_slot_mark(upb_fieldtype_t type, void* memory);
void native_slot_dup(upb_fieldtype_t type, void* to, void* from);
void native_slot_deep_copy(upb_fieldtype_t type, VALUE type_class, void* to,
void* from);
bool native_slot_eq(upb_fieldtype_t type, VALUE type_class, void* mem1,
void* mem2);
VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value);
void native_slot_check_int_range_precision(const char* name, upb_fieldtype_t type, VALUE value);
uint32_t slot_read_oneof_case(MessageLayout* layout, const void* storage,
const upb_oneofdef* oneof);
bool is_value_field(const upb_fielddef* f);
extern rb_encoding* kRubyStringUtf8Encoding;
extern rb_encoding* kRubyStringASCIIEncoding;
extern rb_encoding* kRubyString8bitEncoding;
VALUE field_type_class(const MessageLayout* layout, const upb_fielddef* field);
#define MAP_KEY_FIELD 1
#define MAP_VALUE_FIELD 2
// Oneof case slot value to indicate that no oneof case is set. The value `0` is
// safe because field numbers are used as case identifiers, and no field can
// have a number of 0.
#define ONEOF_CASE_NONE 0
// These operate on a map field (i.e., a repeated field of submessages whose
// submessage type is a map-entry msgdef).
bool is_map_field(const upb_fielddef* field);
const upb_fielddef* map_field_key(const upb_fielddef* field);
const upb_fielddef* map_field_value(const upb_fielddef* field);
// These operate on a map-entry msgdef.
const upb_fielddef* map_entry_key(const upb_msgdef* msgdef);
const upb_fielddef* map_entry_value(const upb_msgdef* msgdef);
// -----------------------------------------------------------------------------
// Repeated field container type.
// -----------------------------------------------------------------------------
typedef struct {
upb_fieldtype_t field_type;
VALUE field_type_class;
void* elements;
int size;
int capacity;
} RepeatedField;
void RepeatedField_mark(void* self);
void RepeatedField_free(void* self);
VALUE RepeatedField_alloc(VALUE klass);
VALUE RepeatedField_init(int argc, VALUE* argv, VALUE self);
void RepeatedField_register(VALUE module);
extern const rb_data_type_t RepeatedField_type;
extern VALUE cRepeatedField;
RepeatedField* ruby_to_RepeatedField(VALUE value);
VALUE RepeatedField_new_this_type(VALUE _self);
VALUE RepeatedField_each(VALUE _self);
VALUE RepeatedField_index(int argc, VALUE* argv, VALUE _self);
void* RepeatedField_index_native(VALUE _self, int index);
int RepeatedField_size(VALUE _self);
VALUE RepeatedField_index_set(VALUE _self, VALUE _index, VALUE val);
void RepeatedField_reserve(RepeatedField* self, int new_size);
VALUE RepeatedField_push(VALUE _self, VALUE val);
void RepeatedField_push_native(VALUE _self, void* data);
VALUE RepeatedField_pop_one(VALUE _self);
VALUE RepeatedField_insert(int argc, VALUE* argv, VALUE _self);
VALUE RepeatedField_replace(VALUE _self, VALUE list);
VALUE RepeatedField_clear(VALUE _self);
VALUE RepeatedField_length(VALUE _self);
VALUE RepeatedField_dup(VALUE _self);
VALUE RepeatedField_deep_copy(VALUE _self);
VALUE RepeatedField_to_ary(VALUE _self);
VALUE RepeatedField_eq(VALUE _self, VALUE _other);
VALUE RepeatedField_hash(VALUE _self);
VALUE RepeatedField_inspect(VALUE _self);
VALUE RepeatedField_plus(VALUE _self, VALUE list);
// Defined in repeated_field.c; also used by Map.
void validate_type_class(upb_fieldtype_t type, VALUE klass);
// -----------------------------------------------------------------------------
// Map container type.
// -----------------------------------------------------------------------------
typedef struct {
upb_fieldtype_t key_type;
upb_fieldtype_t value_type;
VALUE value_type_class;
VALUE parse_frame;
upb_strtable table;
} Map;
void Map_mark(void* self);
void Map_free(void* self);
VALUE Map_alloc(VALUE klass);
VALUE Map_init(int argc, VALUE* argv, VALUE self);
void Map_register(VALUE module);
VALUE Map_set_frame(VALUE self, VALUE val);
extern const rb_data_type_t Map_type;
extern VALUE cMap;
Map* ruby_to_Map(VALUE value);
VALUE Map_new_this_type(VALUE _self);
VALUE Map_each(VALUE _self);
VALUE Map_keys(VALUE _self);
VALUE Map_values(VALUE _self);
VALUE Map_index(VALUE _self, VALUE key);
VALUE Map_index_set(VALUE _self, VALUE key, VALUE value);
VALUE Map_has_key(VALUE _self, VALUE key);
VALUE Map_delete(VALUE _self, VALUE key);
VALUE Map_clear(VALUE _self);
VALUE Map_length(VALUE _self);
VALUE Map_dup(VALUE _self);
VALUE Map_deep_copy(VALUE _self);
VALUE Map_eq(VALUE _self, VALUE _other);
VALUE Map_hash(VALUE _self);
VALUE Map_to_h(VALUE _self);
VALUE Map_inspect(VALUE _self);
VALUE Map_merge(VALUE _self, VALUE hashmap);
VALUE Map_merge_into_self(VALUE _self, VALUE hashmap);
typedef struct {
Map* self;
upb_strtable_iter it;
} Map_iter;
void Map_begin(VALUE _self, Map_iter* iter);
void Map_next(Map_iter* iter);
bool Map_done(Map_iter* iter);
VALUE Map_iter_key(Map_iter* iter);
VALUE Map_iter_value(Map_iter* iter);
// -----------------------------------------------------------------------------
// Message layout / storage.
// -----------------------------------------------------------------------------
#define MESSAGE_FIELD_NO_HASBIT ((uint32_t)-1)
struct MessageField {
uint32_t offset;
uint32_t hasbit;
};
struct MessageOneof {
uint32_t offset;
uint32_t case_offset;
};
// MessageLayout is owned by the enclosing Descriptor, which must outlive us.
struct MessageLayout {
const Descriptor* desc;
const upb_msgdef* msgdef;
void* empty_template; // Can memcpy() onto a layout to clear it.
MessageField* fields;
MessageOneof* oneofs;
uint32_t size;
uint32_t value_offset;
int value_count;
int repeated_count;
int map_count;
};
#define ONEOF_CASE_MASK 0x80000000
void create_layout(Descriptor* desc);
void free_layout(MessageLayout* layout);
bool field_contains_hasbit(MessageLayout* layout,
const upb_fielddef* field);
VALUE layout_get_default(const upb_fielddef* field);
VALUE layout_get(MessageLayout* layout,
const void* storage,
const upb_fielddef* field);
void layout_set(MessageLayout* layout,
void* storage,
const upb_fielddef* field,
VALUE val);
VALUE layout_has(MessageLayout* layout,
const void* storage,
const upb_fielddef* field);
void layout_clear(MessageLayout* layout,
const void* storage,
const upb_fielddef* field);
void layout_init(MessageLayout* layout, void* storage);
void layout_mark(MessageLayout* layout, void* storage);
void layout_dup(MessageLayout* layout, void* to, void* from);
void layout_deep_copy(MessageLayout* layout, void* to, void* from);
VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2);
VALUE layout_hash(MessageLayout* layout, void* storage);
VALUE layout_inspect(MessageLayout* layout, void* storage);
bool is_wrapper_type_field(const upb_fielddef* field);
VALUE ruby_wrapper_type(VALUE type_class, VALUE value);
// -----------------------------------------------------------------------------
// Message class creation.
// -----------------------------------------------------------------------------
// This should probably be factored into a common upb component.
typedef struct {
upb_byteshandler handler;
upb_bytessink sink;
char *ptr;
size_t len, size;
} stringsink;
void stringsink_uninit(stringsink *sink);
struct MessageHeader {
Descriptor* descriptor; // kept alive by self.class.descriptor reference.
stringsink* unknown_fields; // store unknown fields in decoding.
// Data comes after this.
};
extern rb_data_type_t Message_type;
VALUE build_class_from_descriptor(VALUE descriptor);
void* Message_data(void* msg);
void Message_mark(void* self);
void Message_free(void* self);
VALUE Message_alloc(VALUE klass);
VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self);
VALUE Message_initialize(int argc, VALUE* argv, VALUE _self);
VALUE Message_dup(VALUE _self);
VALUE Message_deep_copy(VALUE _self);
VALUE Message_eq(VALUE _self, VALUE _other);
VALUE Message_hash(VALUE _self);
VALUE Message_inspect(VALUE _self);
VALUE Message_to_h(VALUE _self);
VALUE Message_index(VALUE _self, VALUE field_name);
VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value);
VALUE Message_descriptor(VALUE klass);
VALUE Message_decode(VALUE klass, VALUE data);
VALUE Message_encode(VALUE klass, VALUE msg_rb);
VALUE Message_decode_json(int argc, VALUE* argv, VALUE klass);
VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass);
VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb);
VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj);
VALUE build_module_from_enumdesc(VALUE _enumdesc);
VALUE enum_lookup(VALUE self, VALUE number);
VALUE enum_resolve(VALUE self, VALUE sym);
VALUE enum_descriptor(VALUE self);
const upb_pbdecodermethod *new_fillmsg_decodermethod(
Descriptor* descriptor, const void *owner);
void add_handlers_for_message(const void *closure, upb_handlers *h);
// Maximum depth allowed during encoding, to avoid stack overflows due to
// cycles.
#define ENCODE_MAX_NESTING 63
// -----------------------------------------------------------------------------
// A cache of frozen string objects to use as field defaults.
// -----------------------------------------------------------------------------
VALUE get_frozen_string(const char* data, size_t size, bool binary);
// -----------------------------------------------------------------------------
// Global map from upb {msg,enum}defs to wrapper Descriptor/EnumDescriptor
// instances.
// -----------------------------------------------------------------------------
VALUE get_msgdef_obj(VALUE descriptor_pool, const upb_msgdef* def);
VALUE get_enumdef_obj(VALUE descriptor_pool, const upb_enumdef* def);
VALUE get_fielddef_obj(VALUE descriptor_pool, const upb_fielddef* def);
VALUE get_filedef_obj(VALUE descriptor_pool, const upb_filedef* def);
VALUE get_oneofdef_obj(VALUE descriptor_pool, const upb_oneofdef* def);
// -----------------------------------------------------------------------------
// Utilities.
// -----------------------------------------------------------------------------
void check_upb_status(const upb_status* status, const char* msg);
#define CHECK_UPB(code, msg) do { \
upb_status status = UPB_STATUS_INIT; \
code; \
check_upb_status(&status, msg); \
} while (0)
extern ID descriptor_instancevar_interned;
// A distinct object that is not accessible from Ruby. We use this as a
// constructor argument to enforce that certain objects cannot be created from
// Ruby.
extern VALUE c_only_cookie;
#ifdef NDEBUG
#define UPB_ASSERT(expr) do {} while (false && (expr))
#else
#define UPB_ASSERT(expr) assert(expr)
#endif
#define UPB_UNUSED(var) (void)var
#endif // __GOOGLE_PROTOBUF_RUBY_PROTOBUF_H__