Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1106 lines
37 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Inline definitions for handlers.h, which are particularly long and a bit
* tricky.
*/
#ifndef UPB_HANDLERS_INL_H_
#define UPB_HANDLERS_INL_H_
#include <limits.h>
// Type detection and typedefs for integer types.
// For platforms where there are multiple 32-bit or 64-bit types, we need to be
// able to enumerate them so we can properly create overloads for all variants.
//
// If any platform existed where there were three integer types with the same
// size, this would have to become more complicated. For example, short, int,
// and long could all be 32-bits. Even more diabolically, short, int, long,
// and long long could all be 64 bits and still be standard-compliant.
// However, few platforms are this strange, and it's unlikely that upb will be
// used on the strangest ones.
// Can't count on stdint.h limits like INT32_MAX, because in C++ these are
// only defined when __STDC_LIMIT_MACROS are defined before the *first* include
// of stdint.h. We can't guarantee that someone else didn't include these first
// without defining __STDC_LIMIT_MACROS.
#define UPB_INT32_MAX 0x7fffffffLL
#define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
#define UPB_INT64_MAX 0x7fffffffffffffffLL
#define UPB_INT64_MIN (-UPB_INT64_MAX - 1)
#if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
#define UPB_INT_IS_32BITS 1
#endif
#if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
#define UPB_LONG_IS_32BITS 1
#endif
#if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
#define UPB_LONG_IS_64BITS 1
#endif
#if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
#define UPB_LLONG_IS_64BITS 1
#endif
// We use macros instead of typedefs so we can undefine them later and avoid
// leaking them outside this header file.
#if UPB_INT_IS_32BITS
#define UPB_INT32_T int
#define UPB_UINT32_T unsigned int
#if UPB_LONG_IS_32BITS
#define UPB_TWO_32BIT_TYPES 1
#define UPB_INT32ALT_T long
#define UPB_UINT32ALT_T unsigned long
#endif // UPB_LONG_IS_32BITS
#elif UPB_LONG_IS_32BITS // && !UPB_INT_IS_32BITS
#define UPB_INT32_T long
#define UPB_UINT32_T unsigned long
#endif // UPB_INT_IS_32BITS
#if UPB_LONG_IS_64BITS
#define UPB_INT64_T long
#define UPB_UINT64_T unsigned long
#if UPB_LLONG_IS_64BITS
#define UPB_TWO_64BIT_TYPES 1
#define UPB_INT64ALT_T long long
#define UPB_UINT64ALT_T unsigned long long
#endif // UPB_LLONG_IS_64BITS
#elif UPB_LLONG_IS_64BITS // && !UPB_LONG_IS_64BITS
#define UPB_INT64_T long long
#define UPB_UINT64_T unsigned long long
#endif // UPB_LONG_IS_64BITS
#undef UPB_INT32_MAX
#undef UPB_INT32_MIN
#undef UPB_INT64_MAX
#undef UPB_INT64_MIN
#undef UPB_INT_IS_32BITS
#undef UPB_LONG_IS_32BITS
#undef UPB_LONG_IS_64BITS
#undef UPB_LLONG_IS_64BITS
// C inline methods.
// upb_bufhandle
UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) {
h->obj_ = NULL;
h->objtype_ = NULL;
h->buf_ = NULL;
h->objofs_ = 0;
}
UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) {
UPB_UNUSED(h);
}
UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
const void *type) {
h->obj_ = obj;
h->objtype_ = type;
}
UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
size_t ofs) {
h->buf_ = buf;
h->objofs_ = ofs;
}
UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) {
return h->obj_;
}
UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) {
return h->objtype_;
}
UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) {
return h->buf_;
}
#ifdef __cplusplus
namespace upb {
template<>
class Pointer<Handlers> {
public:
explicit Pointer(Handlers* ptr) : ptr_(ptr) {}
operator Handlers*() { return ptr_; }
operator RefCounted*() { return UPB_UPCAST(ptr_); }
private:
Handlers* ptr_;
};
template<>
class Pointer<const Handlers> {
public:
explicit Pointer(const Handlers* ptr) : ptr_(ptr) {}
operator const Handlers*() { return ptr_; }
operator const RefCounted*() { return UPB_UPCAST(ptr_); }
private:
const Handlers* ptr_;
};
typedef void CleanupFunc(void *ptr);
// Template to remove "const" from "const T*" and just return "T*".
//
// We define a nonsense default because otherwise it will fail to instantiate as
// a function parameter type even in cases where we don't expect any caller to
// actually match the overload.
class CouldntRemoveConst {};
template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
template <class T> struct remove_constptr<const T *> { typedef T *type; };
// Template that we use below to remove a template specialization from
// consideration if it matches a specific type.
template <class T, class U> struct disable_if_same { typedef void Type; };
template <class T> struct disable_if_same<T, T> {};
template <class T> void DeletePointer(void *p) { delete static_cast<T *>(p); }
template <class T1, class T2>
struct FirstUnlessVoid {
typedef T1 value;
};
template <class T2>
struct FirstUnlessVoid<void, T2> {
typedef T2 value;
};
template<class T, class U>
struct is_same {
static bool value;
};
template<class T>
struct is_same<T, T> {
static bool value;
};
template<class T, class U>
bool is_same<T, U>::value = false;
template<class T>
bool is_same<T, T>::value = true;
// FuncInfo ////////////////////////////////////////////////////////////////////
// Info about the user's original, pre-wrapped function.
template <class C, class R = void>
struct FuncInfo {
// The type of the closure that the function takes (its first param).
typedef C Closure;
// The return type.
typedef R Return;
};
// Func ////////////////////////////////////////////////////////////////////////
// Func1, Func2, Func3: Template classes representing a function and its
// signature.
//
// Since the function is a template parameter, calling the function can be
// inlined at compile-time and does not require a function pointer at runtime.
// These functions are not bound to a handler data so have no data or cleanup
// handler.
struct UnboundFunc {
CleanupFunc *GetCleanup() { return NULL; }
void *GetData() { return NULL; }
};
template <class R, class P1, R F(P1), class I>
struct Func1 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1) { return F(p1); }
};
template <class R, class P1, class P2, R F(P1, P2), class I>
struct Func2 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2) { return F(p1, p2); }
};
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
struct Func3 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
};
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
class I>
struct Func4 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
};
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5), class I>
struct Func5 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return F(p1, p2, p3, p4, p5);
}
};
// BoundFunc ///////////////////////////////////////////////////////////////////
// BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
// shall be bound to the function's second parameter.
//
// Note that the second parameter is a const pointer, but our stored bound value
// is non-const so we can free it when the handlers are destroyed.
template <class T>
struct BoundFunc {
typedef typename remove_constptr<T>::type MutableP2;
explicit BoundFunc(MutableP2 data_) : data(data_) {}
CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
MutableP2 GetData() { return data; }
MutableP2 data;
};
template <class R, class P1, class P2, R F(P1, P2), class I>
struct BoundFunc2 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
};
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
struct BoundFunc3 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
};
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
class I>
struct BoundFunc4 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
};
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5), class I>
struct BoundFunc5 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
};
// FuncSig /////////////////////////////////////////////////////////////////////
// FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
// *signature*, but without a specific function attached.
//
// These classes contain member functions that can be invoked with a
// specific function to return a Func/BoundFunc class.
template <class R, class P1>
struct FuncSig1 {
template <R F(P1)>
Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
return Func1<R, P1, F, FuncInfo<P1, R> >();
}
};
template <class R, class P1, class P2>
struct FuncSig2 {
template <R F(P1, P2)>
Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2)>
BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
}
};
template <class R, class P1, class P2, class P3>
struct FuncSig3 {
template <R F(P1, P2, P3)>
Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2, P3)>
BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
}
};
template <class R, class P1, class P2, class P3, class P4>
struct FuncSig4 {
template <R F(P1, P2, P3, P4)>
Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2, P3, P4)>
BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
}
};
template <class R, class P1, class P2, class P3, class P4, class P5>
struct FuncSig5 {
template <R F(P1, P2, P3, P4, P5)>
Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2, P3, P4, P5)>
BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
}
};
// Overloaded template function that can construct the appropriate FuncSig*
// class given a function pointer by deducing the template parameters.
template <class R, class P1>
inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig1<R, P1>();
}
template <class R, class P1, class P2>
inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig2<R, P1, P2>();
}
template <class R, class P1, class P2, class P3>
inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig3<R, P1, P2, P3>();
}
template <class R, class P1, class P2, class P3, class P4>
inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig4<R, P1, P2, P3, P4>();
}
template <class R, class P1, class P2, class P3, class P4, class P5>
inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig5<R, P1, P2, P3, P4, P5>();
}
// MethodSig ///////////////////////////////////////////////////////////////////
// CallMethod*: a function template that calls a given method.
template <class R, class C, R (C::*F)()>
R CallMethod0(C *obj) {
return ((*obj).*F)();
}
template <class R, class C, class P1, R (C::*F)(P1)>
R CallMethod1(C *obj, P1 arg1) {
return ((*obj).*F)(arg1);
}
template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
R CallMethod2(C *obj, P1 arg1, P2 arg2) {
return ((*obj).*F)(arg1, arg2);
}
template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
return ((*obj).*F)(arg1, arg2, arg3);
}
template <class R, class C, class P1, class P2, class P3, class P4,
R (C::*F)(P1, P2, P3, P4)>
R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
return ((*obj).*F)(arg1, arg2, arg3, arg4);
}
// MethodSig: like FuncSig, but for member functions.
//
// GetFunc() returns a normal FuncN object, so after calling GetFunc() no
// more logic is required to special-case methods.
template <class R, class C>
struct MethodSig0 {
template <R (C::*F)()>
Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
}
};
template <class R, class C, class P1>
struct MethodSig1 {
template <R (C::*F)(P1)>
Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
}
template <R (C::*F)(P1)>
BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
typename remove_constptr<P1>::type param1) {
return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
param1);
}
};
template <class R, class C, class P1, class P2>
struct MethodSig2 {
template <R (C::*F)(P1, P2)>
Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
GetFunc() {
return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
FuncInfo<C *, R> >();
}
template <R (C::*F)(P1, P2)>
BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
GetFunc(typename remove_constptr<P1>::type param1) {
return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
FuncInfo<C *, R> >(param1);
}
};
template <class R, class C, class P1, class P2, class P3>
struct MethodSig3 {
template <R (C::*F)(P1, P2, P3)>
Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
GetFunc() {
return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
FuncInfo<C *, R> >();
}
template <R (C::*F)(P1, P2, P3)>
BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
FuncInfo<C *, R> >
GetFunc(typename remove_constptr<P1>::type param1) {
return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
FuncInfo<C *, R> >(param1);
}
};
template <class R, class C, class P1, class P2, class P3, class P4>
struct MethodSig4 {
template <R (C::*F)(P1, P2, P3, P4)>
Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
FuncInfo<C *, R> >
GetFunc() {
return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
FuncInfo<C *, R> >();
}
template <R (C::*F)(P1, P2, P3, P4)>
BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
FuncInfo<C *, R> >
GetFunc(typename remove_constptr<P1>::type param1) {
return BoundFunc5<R, C *, P1, P2, P3, P4,
CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
param1);
}
};
template <class R, class C>
inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig0<R, C>();
}
template <class R, class C, class P1>
inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig1<R, C, P1>();
}
template <class R, class C, class P1, class P2>
inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig2<R, C, P1, P2>();
}
template <class R, class C, class P1, class P2, class P3>
inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig3<R, C, P1, P2, P3>();
}
template <class R, class C, class P1, class P2, class P3, class P4>
inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig4<R, C, P1, P2, P3, P4>();
}
// MaybeWrapReturn /////////////////////////////////////////////////////////////
// Template class that attempts to wrap the return value of the function so it
// matches the expected type. There are two main adjustments it may make:
//
// 1. If the function returns void, make it return the expected type and with
// a value that always indicates success.
// 2. If the function is expected to return void* but doesn't, wrap it so it
// does (either by returning the closure param if the wrapped function
// returns void or by casting a different pointer type to void* for
// return).
// Template parameters are FuncN type and desired return type.
template <class F, class R, class Enable = void>
struct MaybeWrapReturn;
// If the return type matches, return the given function unwrapped.
template <class F>
struct MaybeWrapReturn<F, typename F::Return> {
typedef F Func;
};
// Function wrapper that munges the return value from void to (bool)true.
template <class P1, class P2, void F(P1, P2)>
bool ReturnTrue2(P1 p1, P2 p2) {
F(p1, p2);
return true;
}
template <class P1, class P2, class P3, void F(P1, P2, P3)>
bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
F(p1, p2, p3);
return true;
}
// Function wrapper that munges the return value from void to (void*)arg1
template <class P1, class P2, void F(P1, P2)>
void *ReturnClosure2(P1 p1, P2 p2) {
F(p1, p2);
return p1;
}
template <class P1, class P2, class P3, void F(P1, P2, P3)>
void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
F(p1, p2, p3);
return p1;
}
// Function wrapper that munges the return value from R to void*.
template <class R, class P1, class P2, R F(P1, P2)>
void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
return F(p1, p2);
}
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
return F(p1, p2, p3);
}
// For the string callback, which takes five params, returns the size param.
template <class P1, class P2,
void F(P1, P2, const char *, size_t, const BufferHandle *)>
size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
const BufferHandle *p5) {
F(p1, p2, p3, p4, p5);
return p4;
}
// If we have a function returning void but want a function returning bool, wrap
// it in a function that returns true.
template <class P1, class P2, void F(P1, P2), class I>
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
};
template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
};
// If our function returns void but we want one returning void*, wrap it in a
// function that returns the first argument.
template <class P1, class P2, void F(P1, P2), class I>
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
};
template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
};
// If our function returns void but we want one returning size_t, wrap it in a
// function that returns the size argument.
template <class P1, class P2,
void F(P1, P2, const char *, size_t, const BufferHandle *), class I>
struct MaybeWrapReturn<
Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
size_t> {
typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
ReturnStringLen<P1, P2, F>, I> Func;
};
// If our function returns R* but we want one returning void*, wrap it in a
// function that casts to void*.
template <class R, class P1, class P2, R *F(P1, P2), class I>
struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
typename disable_if_same<R *, void *>::Type> {
typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
};
template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
typename disable_if_same<R *, void *>::Type> {
typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
Func;
};
// ConvertParams ///////////////////////////////////////////////////////////////
// Template class that converts the function parameters if necessary, and
// ignores the HandlerData parameter if appropriate.
//
// Template parameter is the are FuncN function type.
template <class F>
struct ConvertParams;
// Function that discards the handler data parameter.
template <class R, class P1, R F(P1)>
R IgnoreHandlerData2(void *p1, const void *hd) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1));
}
template <class R, class P1, class P2Wrapper, class P2Wrapped,
R F(P1, P2Wrapped)>
R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1), p2);
}
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1), p2, p3);
}
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1), p2, p3, p4);
}
template <class R, class P1, R F(P1, const char*, size_t)>
R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
size_t p3, const BufferHandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
return F(static_cast<P1>(p1), p2, p3);
}
// Function that casts the handler data parameter.
template <class R, class P1, class P2, R F(P1, P2)>
R CastHandlerData2(void *c, const void *hd) {
return F(static_cast<P1>(c), static_cast<P2>(hd));
}
template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
R F(P1, P2, P3Wrapped)>
R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
}
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5)>
R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
}
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
size_t p4, const BufferHandle *handle) {
UPB_UNUSED(handle);
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
}
// For unbound functions, ignore the handler data.
template <class R, class P1, R F(P1), class I>
struct ConvertParams<Func1<R, P1, F, I> > {
typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
};
template <class R, class P1, class P2, R F(P1, P2), class I>
struct ConvertParams<Func2<R, P1, P2, F, I> > {
typedef typename CanonicalType<P2>::Type CanonicalP2;
typedef Func3<R, void *, const void *, CanonicalP2,
IgnoreHandlerData3<R, P1, CanonicalP2, P2, F>, I> Func;
};
// For StringBuffer only; this ignores both the handler data and the
// BufferHandle.
template <class R, class P1, R F(P1, const char *, size_t), class I>
struct ConvertParams<Func3<R, P1, const char *, size_t, F, I> > {
typedef Func5<R, void *, const void *, const char *, size_t,
const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
I> Func;
};
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), class I>
struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I> > {
typedef Func5<R, void *, const void *, P2, P3, P4,
IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
};
// For bound functions, cast the handler data.
template <class R, class P1, class P2, R F(P1, P2), class I>
struct ConvertParams<BoundFunc2<R, P1, P2, F, I> > {
typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
Func;
};
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I> > {
typedef typename CanonicalType<P3>::Type CanonicalP3;
typedef Func3<R, void *, const void *, CanonicalP3,
CastHandlerData3<R, P1, P2, CanonicalP3, P3, F>, I> Func;
};
// For StringBuffer only; this ignores the BufferHandle.
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
class I>
struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I> > {
typedef Func5<R, void *, const void *, const char *, size_t,
const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>,
I> Func;
};
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5), class I>
struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I> > {
typedef Func5<R, void *, const void *, P3, P4, P5,
CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
};
// utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
// variant C type.
#define TYPE_METHODS(utype, ltype, ctype, vtype) \
template <> struct CanonicalType<vtype> { \
typedef ctype Type; \
}; \
template <> \
inline bool Handlers::SetValueHandler<vtype>( \
const FieldDef *f, \
const Handlers::utype ## Handler& handler) { \
assert(!handler.registered_); \
handler.registered_ = true; \
return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \
} \
TYPE_METHODS(Double, double, double, double);
TYPE_METHODS(Float, float, float, float);
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T);
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T);
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64_T);
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32_T);
TYPE_METHODS(Bool, bool, bool, bool);
#ifdef UPB_TWO_32BIT_TYPES
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32ALT_T);
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T);
#endif
#ifdef UPB_TWO_64BIT_TYPES
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64ALT_T);
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T);
#endif
#undef TYPE_METHODS
template <> struct CanonicalType<Status*> {
typedef Status* Type;
};
// Type methods that are only one-per-canonical-type and not one-per-cvariant.
#define TYPE_METHODS(utype, ctype) \
inline bool Handlers::Set##utype##Handler(const FieldDef *f, \
const utype##Handler &h) { \
return SetValueHandler<ctype>(f, h); \
} \
TYPE_METHODS(Double, double);
TYPE_METHODS(Float, float);
TYPE_METHODS(UInt64, uint64_t);
TYPE_METHODS(UInt32, uint32_t);
TYPE_METHODS(Int64, int64_t);
TYPE_METHODS(Int32, int32_t);
TYPE_METHODS(Bool, bool);
#undef TYPE_METHODS
template <class F> struct ReturnOf;
template <class R, class P1, class P2>
struct ReturnOf<R (*)(P1, P2)> {
typedef R Return;
};
template <class R, class P1, class P2, class P3>
struct ReturnOf<R (*)(P1, P2, P3)> {
typedef R Return;
};
template <class R, class P1, class P2, class P3, class P4>
struct ReturnOf<R (*)(P1, P2, P3, P4)> {
typedef R Return;
};
template <class R, class P1, class P2, class P3, class P4, class P5>
struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
typedef R Return;
};
template<class T> const void *UniquePtrForType() {
static const char ch = 0;
return &ch;
}
template <class T>
template <class F>
inline Handler<T>::Handler(F func)
: registered_(false) {
upb_handlerattr_sethandlerdata(&attr_, func.GetData(), func.GetCleanup());
typedef typename ReturnOf<T>::Return Return;
typedef typename ConvertParams<F>::Func ConvertedParamsFunc;
typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
ReturnWrappedFunc;
handler_ = ReturnWrappedFunc().Call;
// Set attributes based on what templates can statically tell us about the
// user's function.
// If the original function returns void, then we know that we wrapped it to
// always return ok.
bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
attr_.SetAlwaysOk(always_ok);
// Closure parameter and return type.
attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>());
// We use the closure type (from the first parameter) if the return type is
// void. This is all nonsense for non START* handlers, but it doesn't matter
// because in that case the value will be ignored.
typedef typename FirstUnlessVoid<typename F::FuncInfo::Return,
typename F::FuncInfo::Closure>::value
EffectiveReturn;
attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>());
}
template <class T>
inline Handler<T>::~Handler() {
assert(registered_);
}
inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); }
inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); }
inline bool HandlerAttributes::SetHandlerData(void *hd,
upb_handlerfree *cleanup) {
return upb_handlerattr_sethandlerdata(this, hd, cleanup);
}
inline const void* HandlerAttributes::handler_data() const {
return upb_handlerattr_handlerdata(this);
}
inline bool HandlerAttributes::SetClosureType(const void *type) {
return upb_handlerattr_setclosuretype(this, type);
}
inline const void* HandlerAttributes::closure_type() const {
return upb_handlerattr_closuretype(this);
}
inline bool HandlerAttributes::SetReturnClosureType(const void *type) {
return upb_handlerattr_setreturnclosuretype(this, type);
}
inline const void* HandlerAttributes::return_closure_type() const {
return upb_handlerattr_returnclosuretype(this);
}
inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) {
return upb_handlerattr_setalwaysok(this, always_ok);
}
inline bool HandlerAttributes::always_ok() const {
return upb_handlerattr_alwaysok(this);
}
inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); }
inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); }
inline const char* BufferHandle::buffer() const {
return upb_bufhandle_buf(this);
}
inline size_t BufferHandle::object_offset() const {
return upb_bufhandle_objofs(this);
}
inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) {
upb_bufhandle_setbuf(this, buf, ofs);
}
template <class T>
void BufferHandle::SetAttachedObject(const T* obj) {
upb_bufhandle_setobj(this, obj, UniquePtrForType<T>());
}
template <class T>
const T* BufferHandle::GetAttachedObject() const {
return upb_bufhandle_objtype(this) == UniquePtrForType<T>()
? static_cast<const T *>(upb_bufhandle_obj(this))
: NULL;
}
inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) {
upb_handlers *h = upb_handlers_new(m, &h);
return reffed_ptr<Handlers>(h, &h);
}
inline reffed_ptr<const Handlers> Handlers::NewFrozen(
const MessageDef *m, upb_handlers_callback *callback,
void *closure) {
const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure);
return reffed_ptr<const Handlers>(h, &h);
}
inline bool Handlers::IsFrozen() const { return upb_handlers_isfrozen(this); }
inline void Handlers::Ref(const void *owner) const {
upb_handlers_ref(this, owner);
}
inline void Handlers::Unref(const void *owner) const {
upb_handlers_unref(this, owner);
}
inline void Handlers::DonateRef(const void *from, const void *to) const {
upb_handlers_donateref(this, from, to);
}
inline void Handlers::CheckRef(const void *owner) const {
upb_handlers_checkref(this, owner);
}
inline const Status* Handlers::status() {
return upb_handlers_status(this);
}
inline void Handlers::ClearError() {
return upb_handlers_clearerr(this);
}
inline bool Handlers::Freeze(Status *s) {
upb::Handlers* h = this;
return upb_handlers_freeze(&h, 1, s);
}
inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) {
return upb_handlers_freeze(handlers, n, s);
}
inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) {
return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status);
}
inline const MessageDef *Handlers::message_def() const {
return upb_handlers_msgdef(this);
}
inline bool Handlers::SetStartMessageHandler(
const Handlers::StartMessageHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndMessageHandler(
const Handlers::EndMessageHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStartStringHandler(const FieldDef *f,
const StartStringHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndStringHandler(const FieldDef *f,
const EndFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStringHandler(const FieldDef *f,
const StringHandler& handler) {
assert(!handler.registered_);
handler.registered_ = true;
return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStartSequenceHandler(
const FieldDef *f, const StartFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStartSubMessageHandler(
const FieldDef *f, const StartFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f,
const EndFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndSequenceHandler(const FieldDef *f,
const EndFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) {
return upb_handlers_setsubhandlers(this, f, sub);
}
inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const {
return upb_handlers_getsubhandlers(this, f);
}
inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const {
return upb_handlers_getsubhandlers_sel(this, sel);
}
inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type,
Handlers::Selector *s) {
return upb_handlers_getselector(f, type, s);
}
inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) {
return upb_handlers_getendselector(start);
}
inline Handlers::GenericFunction *Handlers::GetHandler(
Handlers::Selector selector) {
return upb_handlers_gethandler(this, selector);
}
inline const void *Handlers::GetHandlerData(Handlers::Selector selector) {
return upb_handlers_gethandlerdata(this, selector);
}
inline BytesHandler::BytesHandler() {
upb_byteshandler_init(this);
}
inline BytesHandler::~BytesHandler() {
upb_byteshandler_uninit(this);
}
} // namespace upb
#endif // __cplusplus
#undef UPB_TWO_32BIT_TYPES
#undef UPB_TWO_64BIT_TYPES
#undef UPB_INT32_T
#undef UPB_UINT32_T
#undef UPB_INT32ALT_T
#undef UPB_UINT32ALT_T
#undef UPB_INT64_T
#undef UPB_UINT64_T
#undef UPB_INT64ALT_T
#undef UPB_UINT64ALT_T
#endif // UPB_HANDLERS_INL_H_