Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

602 lines
17 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Implementation is heavily inspired by Lua's ltable.c.
*/
#include "upb/table.h"
#include <stdlib.h>
#include <string.h>
#define UPB_MAXARRSIZE 16 // 64k.
static const double MAX_LOAD = 0.85;
// The minimum percentage of an array part that we will allow. This is a
// speed/memory-usage tradeoff (though it's not straightforward because of
// cache effects). The lower this is, the more memory we'll use.
static const double MIN_DENSITY = 0.1;
int upb_log2(uint64_t v) {
#ifdef __GNUC__
int ret = 31 - __builtin_clz(v);
#else
int ret = 0;
while (v >>= 1) ret++;
#endif
return UPB_MIN(UPB_MAXARRSIZE, ret);
}
char *upb_strdup(const char *s) {
size_t n = strlen(s) + 1;
char *p = malloc(n);
if (p) memcpy(p, s, n);
return p;
}
static upb_tabkey upb_strkey(const char *str) {
upb_tabkey k;
k.str = (char*)str;
return k;
}
typedef const upb_tabent *upb_hashfunc_t(const upb_table *t, upb_tabkey key);
typedef bool upb_eqlfunc_t(upb_tabkey k1, upb_tabkey k2);
/* Base table (shared code) ***************************************************/
static bool upb_table_isfull(upb_table *t) {
return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD;
}
static bool upb_table_init(upb_table *t, upb_ctype_t type, uint8_t size_lg2) {
t->count = 0;
t->type = type;
t->size_lg2 = size_lg2;
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0;
size_t bytes = upb_table_size(t) * sizeof(upb_tabent);
if (bytes > 0) {
t->entries = malloc(bytes);
if (!t->entries) return false;
memset((void*)t->entries, 0, bytes);
} else {
t->entries = NULL;
}
return true;
}
static void upb_table_uninit(upb_table *t) { free((void*)t->entries); }
static upb_tabent *upb_table_emptyent(upb_table *t) {
upb_tabent *e = (upb_tabent*)t->entries + upb_table_size(t);
while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); }
}
static const upb_value *upb_table_lookup(const upb_table *t, upb_tabkey key,
upb_hashfunc_t *hash,
upb_eqlfunc_t *eql) {
if (t->size_lg2 == 0) return NULL;
const upb_tabent *e = hash(t, key);
if (upb_tabent_isempty(e)) return NULL;
while (1) {
if (eql(e->key, key)) return &e->val;
if ((e = e->next) == NULL) return NULL;
}
}
// The given key must not already exist in the table.
static void upb_table_insert(upb_table *t, upb_tabkey key, upb_value val,
upb_hashfunc_t *hash, upb_eqlfunc_t *eql) {
assert(upb_table_lookup(t, key, hash, eql) == NULL);
assert(val.type == t->type);
t->count++;
upb_tabent *mainpos_e = (upb_tabent*)hash(t, key);
upb_tabent *our_e = mainpos_e;
if (upb_tabent_isempty(mainpos_e)) {
// Our main position is empty; use it.
our_e->next = NULL;
} else {
// Collision.
upb_tabent *new_e = upb_table_emptyent(t);
// Head of collider's chain.
upb_tabent *chain = (upb_tabent*)hash(t, mainpos_e->key);
if (chain == mainpos_e) {
// Existing ent is in its main posisiton (it has the same hash as us, and
// is the head of our chain). Insert to new ent and append to this chain.
new_e->next = mainpos_e->next;
mainpos_e->next = new_e;
our_e = new_e;
} else {
// Existing ent is not in its main position (it is a node in some other
// chain). This implies that no existing ent in the table has our hash.
// Evict it (updating its chain) and use its ent for head of our chain.
*new_e = *mainpos_e; // copies next.
while (chain->next != mainpos_e) {
chain = (upb_tabent*)chain->next;
assert(chain);
}
chain->next = new_e;
our_e = mainpos_e;
our_e->next = NULL;
}
}
our_e->key = key;
our_e->val = val;
assert(upb_table_lookup(t, key, hash, eql) == &our_e->val);
}
static bool upb_table_remove(upb_table *t, upb_tabkey key, upb_value *val,
upb_tabkey *removed,
upb_hashfunc_t *hash, upb_eqlfunc_t *eql) {
upb_tabent *chain = (upb_tabent*)hash(t, key);
if (upb_tabent_isempty(chain)) return false;
if (eql(chain->key, key)) {
// Element to remove is at the head of its chain.
t->count--;
if (val) *val = chain->val;
if (chain->next) {
upb_tabent *move = (upb_tabent*)chain->next;
*chain = *move;
*removed = move->key;
move->key.num = 0; // Make the slot empty.
} else {
*removed = chain->key;
chain->key.num = 0; // Make the slot empty.
}
return true;
} else {
// Element to remove is either in a non-head position or not in the table.
while (chain->next && !eql(chain->next->key, key))
chain = (upb_tabent*)chain->next;
if (chain->next) {
// Found element to remove.
if (val) *val = chain->next->val;
upb_tabent *remove = (upb_tabent*)chain->next;
*removed = remove->key;
remove->key.num = 0;
chain->next = remove->next;
t->count--;
return true;
} else {
return false;
}
}
}
static const upb_tabent *upb_table_next(const upb_table *t,
const upb_tabent *e) {
const upb_tabent *end = t->entries + upb_table_size(t);
do { if (++e == end) return NULL; } while(e->key.num == 0);
return e;
}
// TODO: is calculating t->entries - 1 undefined behavior? If so find a better
// solution.
static const upb_tabent *upb_table_begin(const upb_table *t) {
return upb_table_next(t, t->entries - 1);
}
/* upb_strtable ***************************************************************/
// A simple "subclass" of upb_table that only adds a hash function for strings.
static const upb_tabent *upb_strhash(const upb_table *t, upb_tabkey key) {
// Could avoid the strlen() by using a hash function that terminates on NULL.
return t->entries + (MurmurHash2(key.str, strlen(key.str), 0) & t->mask);
}
static bool upb_streql(upb_tabkey k1, upb_tabkey k2) {
return strcmp(k1.str, k2.str) == 0;
}
bool upb_strtable_init(upb_strtable *t, upb_ctype_t type) {
return upb_table_init(&t->t, type, 2);
}
void upb_strtable_uninit(upb_strtable *t) {
for (size_t i = 0; i < upb_table_size(&t->t); i++)
free((void*)t->t.entries[i].key.str);
upb_table_uninit(&t->t);
}
bool upb_strtable_insert(upb_strtable *t, const char *k, upb_value v) {
if (upb_table_isfull(&t->t)) {
// Need to resize. New table of double the size, add old elements to it.
upb_strtable new_table;
if (!upb_table_init(&new_table.t, t->t.type, t->t.size_lg2 + 1))
return false;
upb_strtable_iter i;
upb_strtable_begin(&i, t);
for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) {
upb_strtable_insert(
&new_table, upb_strtable_iter_key(&i), upb_strtable_iter_value(&i));
}
upb_strtable_uninit(t);
*t = new_table;
}
if ((k = upb_strdup(k)) == NULL) return false;
upb_table_insert(&t->t, upb_strkey(k), v, &upb_strhash, &upb_streql);
return true;
}
const upb_value *upb_strtable_lookup(const upb_strtable *t, const char *key) {
return upb_table_lookup(&t->t, upb_strkey(key), &upb_strhash, &upb_streql);
}
bool upb_strtable_remove(upb_strtable *t, const char *key, upb_value *val) {
upb_tabkey removed;
bool found = upb_table_remove(
&t->t, upb_strkey(key), val, &removed, &upb_strhash, &upb_streql);
if (found) free((void*)removed.str);
return found;
}
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) {
i->t = t;
i->e = upb_table_begin(&t->t);
}
void upb_strtable_next(upb_strtable_iter *i) {
i->e = upb_table_next(&i->t->t, i->e);
}
/* upb_inttable ***************************************************************/
// For inttables we use a hybrid structure where small keys are kept in an
// array and large keys are put in the hash table.
static bool upb_inteql(upb_tabkey k1, upb_tabkey k2) {
return k1.num == k2.num;
}
size_t upb_inttable_count(const upb_inttable *t) {
return t->t.count + t->array_count;
}
bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t type,
size_t asize, int hsize_lg2) {
if (!upb_table_init(&t->t, type, hsize_lg2)) return false;
// Always make the array part at least 1 long, so that we know key 0
// won't be in the hash part, which simplifies things.
t->array_size = UPB_MAX(1, asize);
t->array_count = 0;
size_t array_bytes = t->array_size * sizeof(upb_value);
t->array = malloc(array_bytes);
if (!t->array) {
upb_table_uninit(&t->t);
return false;
}
memset((void*)t->array, 0xff, array_bytes);
return true;
}
bool upb_inttable_init(upb_inttable *t, upb_ctype_t type) {
return upb_inttable_sizedinit(t, type, 0, 4);
}
void upb_inttable_uninit(upb_inttable *t) {
upb_table_uninit(&t->t);
free((void*)t->array);
}
static void upb_inttable_check(upb_inttable *t) {
UPB_UNUSED(t);
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG)
// This check is very expensive (makes inserts/deletes O(N)).
size_t count = 0;
upb_inttable_iter i;
upb_inttable_begin(&i, t);
for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) {
const upb_value *v = upb_inttable_lookup(t, upb_inttable_iter_key(&i));
assert(v);
}
assert(count == upb_inttable_count(t));
#endif
}
bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) {
assert(upb_arrhas(val));
if (key < t->array_size) {
assert(!upb_arrhas(t->array[key]));
t->array_count++;
((upb_value*)t->array)[key] = val;
} else {
if (upb_table_isfull(&t->t)) {
// Need to resize the hash part, but we re-use the array part.
upb_table new_table;
if (!upb_table_init(&new_table, t->t.type, t->t.size_lg2 + 1))
return false;
const upb_tabent *e;
for (e = upb_table_begin(&t->t); e; e = upb_table_next(&t->t, e))
upb_table_insert(&new_table, e->key, e->val, &upb_inthash, &upb_inteql);
assert(t->t.count == new_table.count);
upb_table_uninit(&t->t);
t->t = new_table;
}
upb_table_insert(&t->t, upb_intkey(key), val, &upb_inthash, &upb_inteql);
}
upb_inttable_check(t);
return true;
}
const upb_value *upb_inttable_lookup(const upb_inttable *t, uintptr_t key) {
if (key < t->array_size) {
const upb_value *v = &t->array[key];
return upb_arrhas(*v) ? v : NULL;
}
return upb_table_lookup(&t->t, upb_intkey(key), &upb_inthash, &upb_inteql);
}
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) {
bool success;
if (key < t->array_size) {
if (upb_arrhas(t->array[key])) {
t->array_count--;
if (val) *val = t->array[key];
((upb_value*)t->array)[key] = upb_value_uint64(-1);
success = true;
} else {
success = false;
}
} else {
upb_tabkey removed;
success = upb_table_remove(
&t->t, upb_intkey(key), val, &removed, &upb_inthash, &upb_inteql);
}
upb_inttable_check(t);
return success;
}
bool upb_inttable_push(upb_inttable *t, upb_value val) {
return upb_inttable_insert(t, upb_inttable_count(t), val);
}
upb_value upb_inttable_pop(upb_inttable *t) {
upb_value val;
bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val);
UPB_ASSERT_VAR(ok, ok);
return val;
}
bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) {
return upb_inttable_insert(t, (uintptr_t)key, val);
}
const upb_value *upb_inttable_lookupptr(const upb_inttable *t,
const void *key) {
return upb_inttable_lookup(t, (uintptr_t)key);
}
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) {
return upb_inttable_remove(t, (uintptr_t)key, val);
}
void upb_inttable_compact(upb_inttable *t) {
// Find the largest power of two that satisfies the MIN_DENSITY definition.
int counts[UPB_MAXARRSIZE + 1] = {0};
upb_inttable_iter i;
for (upb_inttable_begin(&i, t); !upb_inttable_done(&i); upb_inttable_next(&i))
counts[upb_log2(upb_inttable_iter_key(&i))]++;
// Int part must always be at least 1 entry large to catch lookups of key 0.
// Key 0 must always be in the array part because "0" in the hash part
// denotes an empty entry.
int count = UPB_MAX(upb_inttable_count(t), 1);
int size;
for (size = UPB_MAXARRSIZE; size > 1; size--) {
count -= counts[size];
if (count >= (1 << size) * MIN_DENSITY) break;
}
// Insert all elements into new, perfectly-sized table.
upb_inttable new_table;
int hashsize = (upb_inttable_count(t) - count + 1) / MAX_LOAD;
upb_inttable_sizedinit(&new_table, t->t.type, size, upb_log2(hashsize));
for (upb_inttable_begin(&i, t); !upb_inttable_done(&i); upb_inttable_next(&i))
upb_inttable_insert(
&new_table, upb_inttable_iter_key(&i), upb_inttable_iter_value(&i));
upb_inttable_uninit(t);
*t = new_table;
}
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) {
i->t = t;
i->arrkey = -1;
i->array_part = true;
upb_inttable_next(i);
}
void upb_inttable_next(upb_inttable_iter *iter) {
const upb_inttable *t = iter->t;
if (iter->array_part) {
for (size_t i = iter->arrkey; ++i < t->array_size; )
if (upb_arrhas(t->array[i])) {
iter->ptr.val = &t->array[i];
iter->arrkey = i;
return;
}
iter->array_part = false;
iter->ptr.ent = t->t.entries - 1;
}
iter->ptr.ent = upb_table_next(&t->t, iter->ptr.ent);
}
#ifdef UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHash2, by Austin Appleby (released as public domain).
// Reformatted and C99-ified by Joshua Haberman.
// Note - This code makes a few assumptions about how your machine behaves -
// 1. We can read a 4-byte value from any address without crashing
// 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
// And it has a few limitations -
// 1. It will not work incrementally.
// 2. It will not produce the same results on little-endian and big-endian
// machines.
uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) {
// 'm' and 'r' are mixing constants generated offline.
// They're not really 'magic', they just happen to work well.
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
// Initialize the hash to a 'random' value
uint32_t h = seed ^ len;
// Mix 4 bytes at a time into the hash
const uint8_t * data = (const uint8_t *)key;
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
// Handle the last few bytes of the input array
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
// Do a few final mixes of the hash to ensure the last few
// bytes are well-incorporated.
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
#else // !UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHashAligned2, by Austin Appleby
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
// on certain platforms.
// Performance will be lower than MurmurHash2
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) {
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
const uint8_t * data = (const uint8_t *)key;
uint32_t h = seed ^ len;
uint8_t align = (uintptr_t)data & 3;
if(align && (len >= 4)) {
// Pre-load the temp registers
uint32_t t = 0, d = 0;
switch(align) {
case 1: t |= data[2] << 16;
case 2: t |= data[1] << 8;
case 3: t |= data[0];
}
t <<= (8 * align);
data += 4-align;
len -= 4-align;
int32_t sl = 8 * (4-align);
int32_t sr = 8 * align;
// Mix
while(len >= 4) {
d = *(uint32_t *)data;
t = (t >> sr) | (d << sl);
uint32_t k = t;
MIX(h,k,m);
t = d;
data += 4;
len -= 4;
}
// Handle leftover data in temp registers
d = 0;
if(len >= align) {
switch(align) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
}
uint32_t k = (t >> sr) | (d << sl);
MIX(h,k,m);
data += align;
len -= align;
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
} else {
switch(len) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
case 0: h ^= (t >> sr) | (d << sl); h *= m;
}
}
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
} else {
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
MIX(h,k,m);
data += 4;
len -= 4;
}
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
}
#undef MIX
#endif // UPB_UNALIGNED_READS_OK