Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

923 lines
31 KiB

/*
** Inline definitions for handlers.h, which are particularly long and a bit
** tricky.
*/
#ifndef UPB_HANDLERS_INL_H_
#define UPB_HANDLERS_INL_H_
#include <limits.h>
#include <stddef.h>
#include "upb/handlers.h"
#include "upb/port_def.inc"
#ifdef __cplusplus
/* Type detection and typedefs for integer types.
* For platforms where there are multiple 32-bit or 64-bit types, we need to be
* able to enumerate them so we can properly create overloads for all variants.
*
* If any platform existed where there were three integer types with the same
* size, this would have to become more complicated. For example, short, int,
* and long could all be 32-bits. Even more diabolically, short, int, long,
* and long long could all be 64 bits and still be standard-compliant.
* However, few platforms are this strange, and it's unlikely that upb will be
* used on the strangest ones. */
/* Can't count on stdint.h limits like INT32_MAX, because in C++ these are
* only defined when __STDC_LIMIT_MACROS are defined before the *first* include
* of stdint.h. We can't guarantee that someone else didn't include these first
* without defining __STDC_LIMIT_MACROS. */
#define UPB_INT32_MAX 0x7fffffffLL
#define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
#define UPB_INT64_MAX 0x7fffffffffffffffLL
#define UPB_INT64_MIN (-UPB_INT64_MAX - 1)
#if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
#define UPB_INT_IS_32BITS 1
#endif
#if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
#define UPB_LONG_IS_32BITS 1
#endif
#if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
#define UPB_LONG_IS_64BITS 1
#endif
#if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
#define UPB_LLONG_IS_64BITS 1
#endif
/* We use macros instead of typedefs so we can undefine them later and avoid
* leaking them outside this header file. */
#if UPB_INT_IS_32BITS
#define UPB_INT32_T int
#define UPB_UINT32_T unsigned int
#if UPB_LONG_IS_32BITS
#define UPB_TWO_32BIT_TYPES 1
#define UPB_INT32ALT_T long
#define UPB_UINT32ALT_T unsigned long
#endif /* UPB_LONG_IS_32BITS */
#elif UPB_LONG_IS_32BITS /* && !UPB_INT_IS_32BITS */
#define UPB_INT32_T long
#define UPB_UINT32_T unsigned long
#endif /* UPB_INT_IS_32BITS */
#if UPB_LONG_IS_64BITS
#define UPB_INT64_T long
#define UPB_UINT64_T unsigned long
#if UPB_LLONG_IS_64BITS
#define UPB_TWO_64BIT_TYPES 1
#define UPB_INT64ALT_T long long
#define UPB_UINT64ALT_T unsigned long long
#endif /* UPB_LLONG_IS_64BITS */
#elif UPB_LLONG_IS_64BITS /* && !UPB_LONG_IS_64BITS */
#define UPB_INT64_T long long
#define UPB_UINT64_T unsigned long long
#endif /* UPB_LONG_IS_64BITS */
#undef UPB_INT32_MAX
#undef UPB_INT32_MIN
#undef UPB_INT64_MAX
#undef UPB_INT64_MIN
#undef UPB_INT_IS_32BITS
#undef UPB_LONG_IS_32BITS
#undef UPB_LONG_IS_64BITS
#undef UPB_LLONG_IS_64BITS
namespace upb {
typedef void CleanupFunc(void *ptr);
/* Template to remove "const" from "const T*" and just return "T*".
*
* We define a nonsense default because otherwise it will fail to instantiate as
* a function parameter type even in cases where we don't expect any caller to
* actually match the overload. */
class CouldntRemoveConst {};
template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
template <class T> struct remove_constptr<const T *> { typedef T *type; };
/* Template that we use below to remove a template specialization from
* consideration if it matches a specific type. */
template <class T, class U> struct disable_if_same { typedef void Type; };
template <class T> struct disable_if_same<T, T> {};
template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); }
template <class T1, class T2>
struct FirstUnlessVoidOrBool {
typedef T1 value;
};
template <class T2>
struct FirstUnlessVoidOrBool<void, T2> {
typedef T2 value;
};
template <class T2>
struct FirstUnlessVoidOrBool<bool, T2> {
typedef T2 value;
};
template<class T, class U>
struct is_same {
static bool value;
};
template<class T>
struct is_same<T, T> {
static bool value;
};
template<class T, class U>
bool is_same<T, U>::value = false;
template<class T>
bool is_same<T, T>::value = true;
/* FuncInfo *******************************************************************/
/* Info about the user's original, pre-wrapped function. */
template <class C, class R = void>
struct FuncInfo {
/* The type of the closure that the function takes (its first param). */
typedef C Closure;
/* The return type. */
typedef R Return;
};
/* Func ***********************************************************************/
/* Func1, Func2, Func3: Template classes representing a function and its
* signature.
*
* Since the function is a template parameter, calling the function can be
* inlined at compile-time and does not require a function pointer at runtime.
* These functions are not bound to a handler data so have no data or cleanup
* handler. */
struct UnboundFunc {
CleanupFunc *GetCleanup() { return nullptr; }
void *GetData() { return nullptr; }
};
template <class R, class P1, R F(P1), class I>
struct Func1 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1) { return F(p1); }
};
template <class R, class P1, class P2, R F(P1, P2), class I>
struct Func2 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2) { return F(p1, p2); }
};
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
struct Func3 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
};
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
class I>
struct Func4 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
};
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5), class I>
struct Func5 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return F(p1, p2, p3, p4, p5);
}
};
/* BoundFunc ******************************************************************/
/* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
* shall be bound to the function's second parameter.
*
* Note that the second parameter is a const pointer, but our stored bound value
* is non-const so we can free it when the handlers are destroyed. */
template <class T>
struct BoundFunc {
typedef typename remove_constptr<T>::type MutableP2;
explicit BoundFunc(MutableP2 data_) : data(data_) {}
CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
MutableP2 GetData() { return data; }
MutableP2 data;
};
template <class R, class P1, class P2, R F(P1, P2), class I>
struct BoundFunc2 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
};
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
struct BoundFunc3 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
};
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
class I>
struct BoundFunc4 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
};
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5), class I>
struct BoundFunc5 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
};
/* FuncSig ********************************************************************/
/* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
* *signature*, but without a specific function attached.
*
* These classes contain member functions that can be invoked with a
* specific function to return a Func/BoundFunc class. */
template <class R, class P1>
struct FuncSig1 {
template <R F(P1)>
Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
return Func1<R, P1, F, FuncInfo<P1, R> >();
}
};
template <class R, class P1, class P2>
struct FuncSig2 {
template <R F(P1, P2)>
Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2)>
BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
}
};
template <class R, class P1, class P2, class P3>
struct FuncSig3 {
template <R F(P1, P2, P3)>
Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2, P3)>
BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
}
};
template <class R, class P1, class P2, class P3, class P4>
struct FuncSig4 {
template <R F(P1, P2, P3, P4)>
Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2, P3, P4)>
BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
}
};
template <class R, class P1, class P2, class P3, class P4, class P5>
struct FuncSig5 {
template <R F(P1, P2, P3, P4, P5)>
Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2, P3, P4, P5)>
BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
}
};
/* Overloaded template function that can construct the appropriate FuncSig*
* class given a function pointer by deducing the template parameters. */
template <class R, class P1>
inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return FuncSig1<R, P1>();
}
template <class R, class P1, class P2>
inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return FuncSig2<R, P1, P2>();
}
template <class R, class P1, class P2, class P3>
inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return FuncSig3<R, P1, P2, P3>();
}
template <class R, class P1, class P2, class P3, class P4>
inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return FuncSig4<R, P1, P2, P3, P4>();
}
template <class R, class P1, class P2, class P3, class P4, class P5>
inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return FuncSig5<R, P1, P2, P3, P4, P5>();
}
/* MethodSig ******************************************************************/
/* CallMethod*: a function template that calls a given method. */
template <class R, class C, R (C::*F)()>
R CallMethod0(C *obj) {
return ((*obj).*F)();
}
template <class R, class C, class P1, R (C::*F)(P1)>
R CallMethod1(C *obj, P1 arg1) {
return ((*obj).*F)(arg1);
}
template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
R CallMethod2(C *obj, P1 arg1, P2 arg2) {
return ((*obj).*F)(arg1, arg2);
}
template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
return ((*obj).*F)(arg1, arg2, arg3);
}
template <class R, class C, class P1, class P2, class P3, class P4,
R (C::*F)(P1, P2, P3, P4)>
R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
return ((*obj).*F)(arg1, arg2, arg3, arg4);
}
/* MethodSig: like FuncSig, but for member functions.
*
* GetFunc() returns a normal FuncN object, so after calling GetFunc() no
* more logic is required to special-case methods. */
template <class R, class C>
struct MethodSig0 {
template <R (C::*F)()>
Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
}
};
template <class R, class C, class P1>
struct MethodSig1 {
template <R (C::*F)(P1)>
Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
}
template <R (C::*F)(P1)>
BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
typename remove_constptr<P1>::type param1) {
return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
param1);
}
};
template <class R, class C, class P1, class P2>
struct MethodSig2 {
template <R (C::*F)(P1, P2)>
Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
GetFunc() {
return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
FuncInfo<C *, R> >();
}
template <R (C::*F)(P1, P2)>
BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
GetFunc(typename remove_constptr<P1>::type param1) {
return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
FuncInfo<C *, R> >(param1);
}
};
template <class R, class C, class P1, class P2, class P3>
struct MethodSig3 {
template <R (C::*F)(P1, P2, P3)>
Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
GetFunc() {
return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
FuncInfo<C *, R> >();
}
template <R (C::*F)(P1, P2, P3)>
BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
FuncInfo<C *, R> >
GetFunc(typename remove_constptr<P1>::type param1) {
return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
FuncInfo<C *, R> >(param1);
}
};
template <class R, class C, class P1, class P2, class P3, class P4>
struct MethodSig4 {
template <R (C::*F)(P1, P2, P3, P4)>
Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
FuncInfo<C *, R> >
GetFunc() {
return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
FuncInfo<C *, R> >();
}
template <R (C::*F)(P1, P2, P3, P4)>
BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
FuncInfo<C *, R> >
GetFunc(typename remove_constptr<P1>::type param1) {
return BoundFunc5<R, C *, P1, P2, P3, P4,
CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
param1);
}
};
template <class R, class C>
inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return MethodSig0<R, C>();
}
template <class R, class C, class P1>
inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return MethodSig1<R, C, P1>();
}
template <class R, class C, class P1, class P2>
inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return MethodSig2<R, C, P1, P2>();
}
template <class R, class C, class P1, class P2, class P3>
inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return MethodSig3<R, C, P1, P2, P3>();
}
template <class R, class C, class P1, class P2, class P3, class P4>
inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
UPB_UNUSED(f); /* Only used for template parameter deduction. */
return MethodSig4<R, C, P1, P2, P3, P4>();
}
/* MaybeWrapReturn ************************************************************/
/* Template class that attempts to wrap the return value of the function so it
* matches the expected type. There are two main adjustments it may make:
*
* 1. If the function returns void, make it return the expected type and with
* a value that always indicates success.
* 2. If the function returns bool, make it return the expected type with a
* value that indicates success or failure.
*
* The "expected type" for return is:
* 1. void* for start handlers. If the closure parameter has a different type
* we will cast it to void* for the return in the success case.
* 2. size_t for string buffer handlers.
* 3. bool for everything else. */
/* Template parameters are FuncN type and desired return type. */
template <class F, class R, class Enable = void>
struct MaybeWrapReturn;
/* If the return type matches, return the given function unwrapped. */
template <class F>
struct MaybeWrapReturn<F, typename F::Return> {
typedef F Func;
};
/* Function wrapper that munges the return value from void to (bool)true. */
template <class P1, class P2, void F(P1, P2)>
bool ReturnTrue2(P1 p1, P2 p2) {
F(p1, p2);
return true;
}
template <class P1, class P2, class P3, void F(P1, P2, P3)>
bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
F(p1, p2, p3);
return true;
}
/* Function wrapper that munges the return value from void to (void*)arg1 */
template <class P1, class P2, void F(P1, P2)>
void *ReturnClosure2(P1 p1, P2 p2) {
F(p1, p2);
return p1;
}
template <class P1, class P2, class P3, void F(P1, P2, P3)>
void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
F(p1, p2, p3);
return p1;
}
/* Function wrapper that munges the return value from R to void*. */
template <class R, class P1, class P2, R F(P1, P2)>
void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
return F(p1, p2);
}
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
return F(p1, p2, p3);
}
/* Function wrapper that munges the return value from bool to void*. */
template <class P1, class P2, bool F(P1, P2)>
void *ReturnClosureOrBreak2(P1 p1, P2 p2) {
return F(p1, p2) ? p1 : UPB_BREAK;
}
template <class P1, class P2, class P3, bool F(P1, P2, P3)>
void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) {
return F(p1, p2, p3) ? p1 : UPB_BREAK;
}
/* For the string callback, which takes five params, returns the size param. */
template <class P1, class P2,
void F(P1, P2, const char *, size_t, const upb_bufhandle *)>
size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
const upb_bufhandle *p5) {
F(p1, p2, p3, p4, p5);
return p4;
}
/* For the string callback, which takes five params, returns the size param or
* zero. */
template <class P1, class P2,
bool F(P1, P2, const char *, size_t, const upb_bufhandle *)>
size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4,
const upb_bufhandle *p5) {
return F(p1, p2, p3, p4, p5) ? p4 : 0;
}
/* If we have a function returning void but want a function returning bool, wrap
* it in a function that returns true. */
template <class P1, class P2, void F(P1, P2), class I>
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
};
template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
};
/* If our function returns void but we want one returning void*, wrap it in a
* function that returns the first argument. */
template <class P1, class P2, void F(P1, P2), class I>
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
};
template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
};
/* If our function returns R* but we want one returning void*, wrap it in a
* function that casts to void*. */
template <class R, class P1, class P2, R *F(P1, P2), class I>
struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
typename disable_if_same<R *, void *>::Type> {
typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
};
template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
typename disable_if_same<R *, void *>::Type> {
typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
Func;
};
/* If our function returns bool but we want one returning void*, wrap it in a
* function that returns either the first param or UPB_BREAK. */
template <class P1, class P2, bool F(P1, P2), class I>
struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> {
typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func;
};
template <class P1, class P2, class P3, bool F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> {
typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I>
Func;
};
/* If our function returns void but we want one returning size_t, wrap it in a
* function that returns the size argument. */
template <class P1, class P2,
void F(P1, P2, const char *, size_t, const upb_bufhandle *), class I>
struct MaybeWrapReturn<
Func5<void, P1, P2, const char *, size_t, const upb_bufhandle *, F, I>,
size_t> {
typedef Func5<size_t, P1, P2, const char *, size_t, const upb_bufhandle *,
ReturnStringLen<P1, P2, F>, I> Func;
};
/* If our function returns bool but we want one returning size_t, wrap it in a
* function that returns either 0 or the buf size. */
template <class P1, class P2,
bool F(P1, P2, const char *, size_t, const upb_bufhandle *), class I>
struct MaybeWrapReturn<
Func5<bool, P1, P2, const char *, size_t, const upb_bufhandle *, F, I>,
size_t> {
typedef Func5<size_t, P1, P2, const char *, size_t, const upb_bufhandle *,
ReturnNOr0<P1, P2, F>, I> Func;
};
/* ConvertParams **************************************************************/
/* Template class that converts the function parameters if necessary, and
* ignores the HandlerData parameter if appropriate.
*
* Template parameter is the are FuncN function type. */
template <class F, class T>
struct ConvertParams;
/* Function that discards the handler data parameter. */
template <class R, class P1, R F(P1)>
R IgnoreHandlerData2(void *p1, const void *hd) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1));
}
template <class R, class P1, class P2Wrapper, class P2Wrapped,
R F(P1, P2Wrapped)>
R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1), p2);
}
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1), p2, p3);
}
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1), p2, p3, p4);
}
template <class R, class P1, R F(P1, const char*, size_t)>
R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
size_t p3, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
return F(static_cast<P1>(p1), p2, p3);
}
/* Function that casts the handler data parameter. */
template <class R, class P1, class P2, R F(P1, P2)>
R CastHandlerData2(void *c, const void *hd) {
return F(static_cast<P1>(c), static_cast<P2>(hd));
}
template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
R F(P1, P2, P3Wrapped)>
R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
}
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5)>
R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
}
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
size_t p4, const upb_bufhandle *handle) {
UPB_UNUSED(handle);
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
}
/* For unbound functions, ignore the handler data. */
template <class R, class P1, R F(P1), class I, class T>
struct ConvertParams<Func1<R, P1, F, I>, T> {
typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
};
template <class R, class P1, class P2, R F(P1, P2), class I,
class R2, class P1_2, class P2_2, class P3_2>
struct ConvertParams<Func2<R, P1, P2, F, I>,
R2 (*)(P1_2, P2_2, P3_2)> {
typedef Func3<R, void *, const void *, P3_2,
IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func;
};
/* For StringBuffer only; this ignores both the handler data and the
* upb_bufhandle. */
template <class R, class P1, R F(P1, const char *, size_t), class I, class T>
struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> {
typedef Func5<R, void *, const void *, const char *, size_t,
const upb_bufhandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
I> Func;
};
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
class I, class T>
struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> {
typedef Func5<R, void *, const void *, P2, P3, P4,
IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
};
/* For bound functions, cast the handler data. */
template <class R, class P1, class P2, R F(P1, P2), class I, class T>
struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> {
typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
Func;
};
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I,
class R2, class P1_2, class P2_2, class P3_2>
struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>,
R2 (*)(P1_2, P2_2, P3_2)> {
typedef Func3<R, void *, const void *, P3_2,
CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func;
};
/* For StringBuffer only; this ignores the upb_bufhandle. */
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
class I, class T>
struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> {
typedef Func5<R, void *, const void *, const char *, size_t,
const upb_bufhandle *,
CastHandlerDataIgnoreHandle<R, P1, P2, F>, I>
Func;
};
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5), class I, class T>
struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> {
typedef Func5<R, void *, const void *, P3, P4, P5,
CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
};
/* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
* variant C type. */
#define TYPE_METHODS(utype, ltype, ctype, vtype) \
template <> \
struct CanonicalType<vtype> { \
typedef ctype Type; \
}; \
template <> \
inline bool HandlersPtr::SetValueHandler<vtype>( \
FieldDefPtr f, const HandlersPtr::utype##Handler &handler) { \
handler.AddCleanup(ptr()); \
return upb_handlers_set##ltype(ptr(), f.ptr(), handler.handler(), \
&handler.attr()); \
}
TYPE_METHODS(Double, double, double, double)
TYPE_METHODS(Float, float, float, float)
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T)
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T)
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64_T)
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32_T)
TYPE_METHODS(Bool, bool, bool, bool)
#ifdef UPB_TWO_32BIT_TYPES
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32ALT_T)
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T)
#endif
#ifdef UPB_TWO_64BIT_TYPES
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64ALT_T)
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T)
#endif
#undef TYPE_METHODS
template <> struct CanonicalType<Status*> {
typedef Status* Type;
};
template <class F> struct ReturnOf;
template <class R, class P1, class P2>
struct ReturnOf<R (*)(P1, P2)> {
typedef R Return;
};
template <class R, class P1, class P2, class P3>
struct ReturnOf<R (*)(P1, P2, P3)> {
typedef R Return;
};
template <class R, class P1, class P2, class P3, class P4>
struct ReturnOf<R (*)(P1, P2, P3, P4)> {
typedef R Return;
};
template <class R, class P1, class P2, class P3, class P4, class P5>
struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
typedef R Return;
};
template <class T>
template <class F>
inline Handler<T>::Handler(F func)
: registered_(false),
cleanup_data_(func.GetData()),
cleanup_func_(func.GetCleanup()) {
attr_.handler_data = func.GetData();
typedef typename ReturnOf<T>::Return Return;
typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc;
typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
ReturnWrappedFunc;
handler_ = ReturnWrappedFunc().Call;
/* Set attributes based on what templates can statically tell us about the
* user's function. */
/* If the original function returns void, then we know that we wrapped it to
* always return ok. */
bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
attr_.alwaysok = always_ok;
/* Closure parameter and return type. */
attr_.closure_type = UniquePtrForType<typename F::FuncInfo::Closure>();
/* We use the closure type (from the first parameter) if the return type is
* void or bool, since these are the two cases we wrap to return the closure's
* type anyway.
*
* This is all nonsense for non START* handlers, but it doesn't matter because
* in that case the value will be ignored. */
typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return,
typename F::FuncInfo::Closure>::value
EffectiveReturn;
attr_.return_closure_type = UniquePtrForType<EffectiveReturn>();
}
template <class T>
inline void Handler<T>::AddCleanup(upb_handlers* h) const {
UPB_ASSERT(!registered_);
registered_ = true;
if (cleanup_func_) {
bool ok = upb_handlers_addcleanup(h, cleanup_data_, cleanup_func_);
UPB_ASSERT(ok);
}
}
} /* namespace upb */
#endif /* __cplusplus */
#undef UPB_TWO_32BIT_TYPES
#undef UPB_TWO_64BIT_TYPES
#undef UPB_INT32_T
#undef UPB_UINT32_T
#undef UPB_INT32ALT_T
#undef UPB_UINT32ALT_T
#undef UPB_INT64_T
#undef UPB_UINT64_T
#undef UPB_INT64ALT_T
#undef UPB_UINT64ALT_T
#include "upb/port_undef.inc"
#endif /* UPB_HANDLERS_INL_H_ */