Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

367 lines
10 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Joshua Haberman. See LICENSE for details.
*/
#include "upb_table.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
static const upb_inttable_key_t EMPTYENT = 0;
static const double MAX_LOAD = 0.85;
static uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed);
static uint32_t max(uint32_t a, uint32_t b) { return a > b ? a : b; }
/* We use 1-based indexes into the table so that 0 can be "NULL". */
static struct upb_inttable_entry *intent(struct upb_inttable *t, uint32_t i) {
return UPB_INDEX(t->t.entries, i-1, t->t.entry_size);
}
static struct upb_strtable_entry *strent(struct upb_strtable *t, uint32_t i) {
return UPB_INDEX(t->t.entries, i-1, t->t.entry_size);
}
void upb_table_init(struct upb_table *t, uint32_t size, uint16_t entry_size)
{
t->count = 0;
t->entry_size = entry_size;
t->size_lg2 = 1;
while(size >>= 1) t->size_lg2++;
t->size_lg2 = max(t->size_lg2, 4); /* Min size of 16. */
size_t bytes = upb_table_size(t) * t->entry_size;
t->entries = malloc(bytes);
memset(t->entries, 0, bytes); /* Both tables consider 0's an empty entry. */
}
void upb_inttable_init(struct upb_inttable *t, uint32_t size, uint16_t entsize)
{
upb_table_init(&t->t, size, entsize);
}
void upb_strtable_init(struct upb_strtable *t, uint32_t size, uint16_t entsize)
{
upb_table_init(&t->t, size, entsize);
}
void upb_table_free(struct upb_table *t) { free(t->entries); }
void upb_inttable_free(struct upb_inttable *t) { upb_table_free(&t->t); }
void upb_strtable_free(struct upb_strtable *t) { upb_table_free(&t->t); }
static uint32_t strtable_bucket(struct upb_strtable *t, struct upb_string *key)
{
uint32_t hash = MurmurHash2(key->data, key->byte_len, 0);
return (hash & (upb_strtable_size(t)-1)) + 1;
}
void *upb_strtable_lookup(struct upb_strtable *t, struct upb_string *key)
{
uint32_t bucket = strtable_bucket(t, key);
struct upb_strtable_entry *e;
do {
e = strent(t, bucket);
if(upb_string_eql(&e->key, key)) return e;
} while((bucket = e->next) != UPB_END_OF_CHAIN);
return NULL;
}
static uint32_t empty_intbucket(struct upb_inttable *table)
{
/* TODO: does it matter that this is biased towards the front of the table? */
for(uint32_t i = 1; i <= upb_inttable_size(table); i++) {
struct upb_inttable_entry *e = intent(table, i);
if(e->key == EMPTYENT) return i;
}
assert(false);
return 0;
}
static void intinsert(struct upb_inttable *t, struct upb_inttable_entry *e)
{
uint32_t bucket = upb_inttable_bucket(t, e->key);
struct upb_inttable_entry *table_e = intent(t, bucket);
if(table_e->key != EMPTYENT) { /* Collision. */
if(bucket == upb_inttable_bucket(t, table_e->key)) {
/* Existing element is in its main posisiton. Find an empty slot to
* place our new element and append it to this key's chain. */
uint32_t empty_bucket = empty_intbucket(t);
while (table_e->next != UPB_END_OF_CHAIN)
table_e = intent(t, table_e->next-1);
table_e->next = empty_bucket;
table_e = intent(t, empty_bucket);
} else {
/* Existing element is not in its main position. Move it to an empty
* slot and put our element in its main position. */
uint32_t empty_bucket = empty_intbucket(t);
uint32_t evictee_bucket = upb_inttable_bucket(t, table_e->key);
memcpy(intent(t, empty_bucket), table_e, t->t.entry_size); /* copies next */
struct upb_inttable_entry *evictee_e = intent(t, evictee_bucket);
while(1) {
assert(evictee_e->key != UPB_EMPTY_ENTRY);
assert(evictee_e->next != END_OF_CHAIN);
if(evictee_e->next == bucket) {
evictee_e->next = empty_bucket;
break;
}
}
/* table_e remains set to our mainpos. */
}
}
memcpy(table_e, e, t->t.entry_size);
table_e->next = UPB_END_OF_CHAIN;
}
void upb_inttable_insert(struct upb_inttable *t, struct upb_inttable_entry *e)
{
if((double)++t->t.count / upb_inttable_size(t) > MAX_LOAD) {
/* Need to resize. New table of double the size, add old elements to it. */
struct upb_inttable new_table;
upb_inttable_init(&new_table, upb_inttable_size(t)*2, t->t.entry_size);
for(uint32_t i = 1; i <= upb_inttable_size(t)/2; i++) {
struct upb_inttable_entry *old_e = intent(t, i);
if(old_e->key != EMPTYENT) intinsert(&new_table, old_e);
}
upb_inttable_free(t);
*t = new_table;
}
intinsert(t->t.entries, e);
}
static uint32_t empty_strbucket(struct upb_strtable *table)
{
/* TODO: does it matter that this is biased towards the front of the table? */
for(uint32_t i = 1; i <= upb_strtable_size(table); i++) {
struct upb_strtable_entry *e = strent(table, i);
if(e->key.byte_len == 0) return i;
}
assert(false);
return 0;
}
static void strinsert(struct upb_strtable *t, struct upb_strtable_entry *e)
{
uint32_t bucket = strtable_bucket(t, &e->key);
struct upb_strtable_entry *table_e = strent(t, bucket);
if(table_e->key.byte_len != 0) { /* Collision. */
if(bucket == strtable_bucket(t, &table_e->key)) {
/* Existing element is in its main posisiton. Find an empty slot to
* place our new element and append it to this key's chain. */
uint32_t empty_bucket = empty_strbucket(t);
while (table_e->next != UPB_END_OF_CHAIN)
table_e = strent(t, table_e->next-1);
table_e->next = empty_bucket;
table_e = strent(t, empty_bucket);
} else {
/* Existing element is not in its main position. Move it to an empty
* slot and put our element in its main position. */
uint32_t empty_bucket = empty_strbucket(t);
uint32_t evictee_bucket = strtable_bucket(t, &table_e->key);
memcpy(strent(t, empty_bucket), table_e, t->t.entry_size); /* copies next */
struct upb_strtable_entry *evictee_e = strent(t, evictee_bucket);
while(1) {
assert(evictee_e->key != UPB_EMPTY_ENTRY);
assert(evictee_e->next != END_OF_CHAIN);
if(evictee_e->next == bucket) {
evictee_e->next = empty_bucket;
break;
}
}
/* table_e remains set to our mainpos. */
}
}
memcpy(table_e, e, t->t.entry_size);
table_e->next = UPB_END_OF_CHAIN;
}
void upb_strtable_insert(struct upb_strtable *t, struct upb_strtable_entry *e)
{
if((double)++t->t.count / upb_strtable_size(t) > MAX_LOAD) {
/* Need to resize. New table of double the size, add old elements to it. */
struct upb_strtable new_table;
upb_strtable_init(&new_table, upb_strtable_size(t)*2, t->t.entry_size);
for(uint32_t i = 1; i <= upb_strtable_size(t)/2; i++) {
struct upb_strtable_entry *old_e = strent(t, i);
if(old_e->key.byte_len != 0) strinsert(&new_table, old_e);
}
upb_strtable_free(t);
*t = new_table;
}
strinsert(t->t.entries, e);
}
#ifdef UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHash2, by Austin Appleby (released as public domain).
// Reformatted and C99-ified by Joshua Haberman.
// Note - This code makes a few assumptions about how your machine behaves -
// 1. We can read a 4-byte value from any address without crashing
// 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
// And it has a few limitations -
// 1. It will not work incrementally.
// 2. It will not produce the same results on little-endian and big-endian
// machines.
static uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed)
{
// 'm' and 'r' are mixing constants generated offline.
// They're not really 'magic', they just happen to work well.
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
// Initialize the hash to a 'random' value
uint32_t h = seed ^ len;
// Mix 4 bytes at a time into the hash
const uint8_t * data = (const uint8_t *)key;
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
// Handle the last few bytes of the input array
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
// Do a few final mixes of the hash to ensure the last few
// bytes are well-incorporated.
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
#else // !UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHashAligned2, by Austin Appleby
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
// on certain platforms.
// Performance will be lower than MurmurHash2
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
static uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed)
{
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
const uint8_t * data = (const uint8_t *)key;
uint32_t h = seed ^ len;
uint8_t align = (uintptr_t)data & 3;
if(align && (len >= 4)) {
// Pre-load the temp registers
uint32_t t = 0, d = 0;
switch(align) {
case 1: t |= data[2] << 16;
case 2: t |= data[1] << 8;
case 3: t |= data[0];
}
t <<= (8 * align);
data += 4-align;
len -= 4-align;
int32_t sl = 8 * (4-align);
int32_t sr = 8 * align;
// Mix
while(len >= 4) {
d = *(uint32_t *)data;
t = (t >> sr) | (d << sl);
uint32_t k = t;
MIX(h,k,m);
t = d;
data += 4;
len -= 4;
}
// Handle leftover data in temp registers
d = 0;
if(len >= align) {
switch(align) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
}
uint32_t k = (t >> sr) | (d << sl);
MIX(h,k,m);
data += align;
len -= align;
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
} else {
switch(len) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
case 0: h ^= (t >> sr) | (d << sl); h *= m;
}
}
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
} else {
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
MIX(h,k,m);
data += 4;
len -= 4;
}
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
}
#undef MIX
#endif // UPB_UNALIGNED_READS_OK