Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1280 lines
39 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Tests for C++ wrappers.
*/
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <set>
#include <sstream>
#include "upb/def.h"
#include "upb/env.h"
#include "upb/descriptor/reader.h"
#include "upb/handlers.h"
#include "upb/pb/decoder.h"
#include "upb/pb/glue.h"
#include "upb_test.h"
#include "upb/upb.h"
template <class T>
void AssertInsert(T* const container, const typename T::value_type& val) {
bool inserted = container->insert(val).second;
ASSERT(inserted);
}
static void TestCastsUpDown() {
upb::reffed_ptr<const upb::MessageDef> reffed_md(upb::MessageDef::New());
const upb::MessageDef* md = reffed_md.get();
// Upcast to reffed_ptr implicitly.
upb::reffed_ptr<const upb::Def> reffed_def = reffed_md;
ASSERT(reffed_def.get() == upb::upcast(reffed_md.get()));
// Upcast to raw pointer must be explicit.
const upb::Def* def = upb::upcast(md);
ASSERT(def == reffed_def.get());
const upb::Def* def2 = upb::upcast(reffed_md.get());
ASSERT(def2 == reffed_def.get());
// Downcast/dyncast of raw pointer uses upb::down_cast/upb::dyn_cast.
const upb::MessageDef* md2 = upb::down_cast<const upb::MessageDef*>(def);
const upb::MessageDef* md3 = upb::dyn_cast<const upb::MessageDef*>(def);
ASSERT(md == md2);
ASSERT(md == md3);
// Downcast/dyncast of reffed_ptr uses down_cast/dyn_cast members.
upb::reffed_ptr<const upb::MessageDef> md4(
reffed_def.down_cast<const upb::MessageDef>());
upb::reffed_ptr<const upb::MessageDef> md5(
reffed_def.dyn_cast<const upb::MessageDef>());
ASSERT(md == md4.get());
ASSERT(md == md5.get());
// Failed dyncast returns NULL.
ASSERT(upb::dyn_cast<const upb::EnumDef*>(def) == NULL);
ASSERT(reffed_def.dyn_cast<const upb::EnumDef>().get() == NULL);
}
static void TestCastsConst0() {
// Should clean up properly even if it is not assigned to anything.
upb::MessageDef::New();
}
static void TestCastsConst1() {
// Test reffed mutable -> reffed mutable construction/assignment.
upb::reffed_ptr<upb::MessageDef> md(upb::MessageDef::New());
upb::MessageDef *md2 = md.get();
md = upb::MessageDef::New();
ASSERT(md.get());
ASSERT(md.get() != md2);
}
static void TestCastsConst2() {
// Test reffed mutable -> reffed mutable upcast construction/assignment.
upb::reffed_ptr<upb::MessageDef> md(upb::MessageDef::New());
upb::reffed_ptr<upb::Def> def = md;
ASSERT(upb::upcast(md.get()) == def.get());
def = md;
ASSERT(upb::upcast(md.get()) == def.get());
}
static void TestCastsConst3() {
// Test reffed mutable -> reffed mutable downcast.
upb::reffed_ptr<upb::Def> def(upb::MessageDef::New());
upb::reffed_ptr<upb::MessageDef> md = def.down_cast<upb::MessageDef>();
ASSERT(upb::upcast(md.get()) == def.get());
}
static void TestCastsConst4() {
// Test reffed mutable -> reffed mutable dyncast.
upb::reffed_ptr<upb::Def> def(upb::MessageDef::New());
upb::reffed_ptr<upb::MessageDef> md = def.dyn_cast<upb::MessageDef>();
ASSERT(upb::upcast(md.get()) == def.get());
}
static void TestCastsConst5() {
// Test reffed mutable -> reffed const construction/assignment.
upb::reffed_ptr<const upb::MessageDef> md(upb::MessageDef::New());
const upb::MessageDef *md2 = md.get();
md = upb::MessageDef::New();
ASSERT(md.get());
ASSERT(md.get() != md2);
}
static void TestCastsConst6() {
// Test reffed mutable -> reffed const upcast construction/assignment.
upb::reffed_ptr<upb::MessageDef> md(upb::MessageDef::New());
upb::reffed_ptr<const upb::Def> def = md;
ASSERT(upb::upcast(md.get()) == def.get());
def = md;
ASSERT(upb::upcast(md.get()) == def.get());
}
static void TestCastsConst7() {
// Test reffed mutable -> reffed const downcast.
upb::reffed_ptr<upb::Def> def(upb::MessageDef::New());
upb::reffed_ptr<const upb::MessageDef> md =
def.down_cast<const upb::MessageDef>();
ASSERT(upb::upcast(md.get()) == def.get());
}
static void TestCastsConst8() {
// Test reffed mutable -> reffed const dyncast.
upb::reffed_ptr<upb::Def> def(upb::MessageDef::New());
upb::reffed_ptr<const upb::MessageDef> md =
def.dyn_cast<const upb::MessageDef>();
ASSERT(upb::upcast(md.get()) == def.get());
}
static void TestCastsConst9() {
// Test plain mutable -> plain mutable upcast
upb::reffed_ptr<upb::MessageDef> md(upb::MessageDef::New());
upb::Def* def = upb::upcast(md.get());
ASSERT(upb::down_cast<upb::MessageDef*>(def) == md.get());
}
static void TestCastsConst10() {
// Test plain const -> plain const upcast
upb::reffed_ptr<const upb::MessageDef> md(upb::MessageDef::New());
const upb::Def* def = upb::upcast(md.get());
ASSERT(upb::down_cast<const upb::MessageDef*>(def) == md.get());
}
static void TestSymbolTable(const char *descriptor_file) {
upb::reffed_ptr<upb::SymbolTable> s(upb::SymbolTable::New());
upb::Status status;
if (!upb::LoadDescriptorFileIntoSymtab(s.get(), descriptor_file, &status)) {
std::cerr << "Couldn't load descriptor: " << status.error_message();
exit(1);
}
ASSERT(!s->IsFrozen());
s->Freeze();
ASSERT(s->IsFrozen());
upb::reffed_ptr<const upb::MessageDef> md(s->LookupMessage("C"));
ASSERT(md.get());
// We want a def that satisfies this to test iteration.
ASSERT(md->field_count() > 1);
#ifdef UPB_CXX11
// Test range-based for.
std::set<const upb::FieldDef*> fielddefs;
for (const upb::FieldDef* f : md.get()->fields()) {
AssertInsert(&fielddefs, f);
ASSERT(f->containing_type() == md.get());
}
ASSERT(fielddefs.size() == md->field_count());
#endif
ASSERT(md.get());
}
static void TestCasts1() {
upb::reffed_ptr<const upb::MessageDef> md(upb::MessageDef::New());
const upb::Def* def = upb::upcast(md.get());
const upb::MessageDef* md2 = upb::down_cast<const upb::MessageDef*>(def);
const upb::MessageDef* md3 = upb::dyn_cast<const upb::MessageDef*>(def);
ASSERT(md.get() == md2);
ASSERT(md.get() == md3);
const upb::EnumDef* ed = upb::dyn_cast<const upb::EnumDef*>(def);
ASSERT(!ed);
}
static void TestCasts2() {
// Test mutable -> const cast.
upb::reffed_ptr<upb::MessageDef> md(upb::MessageDef::New());
upb::Def* def = upb::upcast(md.get());
const upb::MessageDef* const_md = upb::down_cast<const upb::MessageDef*>(def);
ASSERT(const_md == md.get());
}
//
// Tests for registering and calling handlers in all their variants.
// This test code is very repetitive because we have to declare each
// handler function variant separately, and they all have different
// signatures so it does not lend itself well to templates.
//
// We test three handler types:
// StartMessage (no data params)
// Int32 (1 data param (int32_t))
// String Buf (2 data params (const char*, size_t))
//
// For each handler type we test all 8 handler variants:
// (handler data?) x (function/method) x (returns {void, success})
//
// The one notable thing we don't test at the moment is
// StartSequence/StartString handlers: these are different from StartMessage()
// in that they return void* for the sub-closure. But this is exercised in
// other tests.
//
static const int kExpectedHandlerData = 1232323;
class StringBufTesterBase {
public:
static const upb::FieldDef::Type kFieldType = UPB_TYPE_STRING;
StringBufTesterBase() : seen_(false), handler_data_val_(0) {}
void CallAndVerify(upb::Sink* sink, const upb::FieldDef* f) {
upb::Handlers::Selector start;
ASSERT(upb::Handlers::GetSelector(f, UPB_HANDLER_STARTSTR, &start));
upb::Handlers::Selector str;
ASSERT(upb::Handlers::GetSelector(f, UPB_HANDLER_STRING, &str));
ASSERT(!seen_);
upb::Sink sub;
sink->StartMessage();
sink->StartString(start, 0, &sub);
size_t ret = sub.PutStringBuffer(str, &buf_, 5, &handle_);
ASSERT(seen_);
ASSERT(len_ == 5);
ASSERT(ret == 5);
ASSERT(handler_data_val_ == kExpectedHandlerData);
}
protected:
bool seen_;
int handler_data_val_;
size_t len_;
char buf_;
upb::BufferHandle handle_;
};
// Test 8 combinations of:
// (handler data?) x (buffer handle?) x (function/method)
//
// Then we add one test each for this variation: to prevent combinatorial
// explosion of these tests we don't test the full 16 combinations, but
// rely on our knowledge that the implementation processes the return wrapping
// in a second separate and independent stage:
//
// (function/method)
class StringBufTesterVoidMethodNoHandlerDataNoHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterVoidMethodNoHandlerDataNoHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(f, UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
void Handler(const char *buf, size_t len) {
ASSERT(buf == &buf_);
seen_ = true;
len_ = len;
}
};
class StringBufTesterVoidMethodNoHandlerDataWithHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterVoidMethodNoHandlerDataWithHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(f, UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
void Handler(const char *buf, size_t len, const upb::BufferHandle* handle) {
ASSERT(buf == &buf_);
ASSERT(handle == &handle_);
seen_ = true;
len_ = len;
}
};
class StringBufTesterVoidMethodWithHandlerDataNoHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterVoidMethodWithHandlerDataNoHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(
f, UpbBind(&ME::Handler, new int(kExpectedHandlerData))));
}
private:
void Handler(const int* hd, const char *buf, size_t len) {
ASSERT(buf == &buf_);
handler_data_val_ = *hd;
seen_ = true;
len_ = len;
}
};
class StringBufTesterVoidMethodWithHandlerDataWithHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterVoidMethodWithHandlerDataWithHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(
f, UpbBind(&ME::Handler, new int(kExpectedHandlerData))));
}
private:
void Handler(const int* hd, const char* buf, size_t len,
const upb::BufferHandle* handle) {
ASSERT(buf == &buf_);
ASSERT(handle == &handle_);
handler_data_val_ = *hd;
seen_ = true;
len_ = len;
}
};
class StringBufTesterVoidFunctionNoHandlerDataNoHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterVoidFunctionNoHandlerDataNoHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(f, UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
static void Handler(ME* t, const char *buf, size_t len) {
ASSERT(buf == &t->buf_);
t->seen_ = true;
t->len_ = len;
}
};
class StringBufTesterVoidFunctionNoHandlerDataWithHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterVoidFunctionNoHandlerDataWithHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(f, UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
static void Handler(ME* t, const char* buf, size_t len,
const upb::BufferHandle* handle) {
ASSERT(buf == &t->buf_);
ASSERT(handle == &t->handle_);
t->seen_ = true;
t->len_ = len;
}
};
class StringBufTesterVoidFunctionWithHandlerDataNoHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterVoidFunctionWithHandlerDataNoHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(
f, UpbBind(&ME::Handler, new int(kExpectedHandlerData))));
}
private:
static void Handler(ME* t, const int* hd, const char *buf, size_t len) {
ASSERT(buf == &t->buf_);
t->handler_data_val_ = *hd;
t->seen_ = true;
t->len_ = len;
}
};
class StringBufTesterVoidFunctionWithHandlerDataWithHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterVoidFunctionWithHandlerDataWithHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(
f, UpbBind(&ME::Handler, new int(kExpectedHandlerData))));
}
private:
static void Handler(ME* t, const int* hd, const char* buf, size_t len,
const upb::BufferHandle* handle) {
ASSERT(buf == &t->buf_);
ASSERT(handle == &t->handle_);
t->handler_data_val_ = *hd;
t->seen_ = true;
t->len_ = len;
}
};
class StringBufTesterSizeTMethodNoHandlerDataNoHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterSizeTMethodNoHandlerDataNoHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(f, UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
size_t Handler(const char *buf, size_t len) {
ASSERT(buf == &buf_);
seen_ = true;
len_ = len;
return len;
}
};
class StringBufTesterBoolMethodNoHandlerDataNoHandle
: public StringBufTesterBase {
public:
typedef StringBufTesterBoolMethodNoHandlerDataNoHandle ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStringHandler(f, UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
bool Handler(const char *buf, size_t len) {
ASSERT(buf == &buf_);
seen_ = true;
len_ = len;
return true;
}
};
class StartMsgTesterBase {
public:
// We don't need the FieldDef it will create, but the test harness still
// requires that we provide one.
static const upb::FieldDef::Type kFieldType = UPB_TYPE_STRING;
StartMsgTesterBase() : seen_(false), handler_data_val_(0) {}
void CallAndVerify(upb::Sink* sink, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(!seen_);
sink->StartMessage();
ASSERT(seen_);
ASSERT(handler_data_val_ == kExpectedHandlerData);
}
protected:
bool seen_;
int handler_data_val_;
};
// Test all 8 combinations of:
// (handler data?) x (function/method) x (returns {void, bool})
class StartMsgTesterVoidFunctionNoHandlerData : public StartMsgTesterBase {
public:
typedef StartMsgTesterVoidFunctionNoHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStartMessageHandler(UpbMakeHandler(&Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
//static void Handler(ME* t) {
static void Handler(ME* t) {
t->seen_ = true;
}
};
class StartMsgTesterBoolFunctionNoHandlerData : public StartMsgTesterBase {
public:
typedef StartMsgTesterBoolFunctionNoHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStartMessageHandler(UpbMakeHandler(&Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
static bool Handler(ME* t) {
t->seen_ = true;
return true;
}
};
class StartMsgTesterVoidMethodNoHandlerData : public StartMsgTesterBase {
public:
typedef StartMsgTesterVoidMethodNoHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStartMessageHandler(UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
void Handler() {
seen_ = true;
}
};
class StartMsgTesterBoolMethodNoHandlerData : public StartMsgTesterBase {
public:
typedef StartMsgTesterBoolMethodNoHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStartMessageHandler(UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
bool Handler() {
seen_ = true;
return true;
}
};
class StartMsgTesterVoidFunctionWithHandlerData : public StartMsgTesterBase {
public:
typedef StartMsgTesterVoidFunctionWithHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStartMessageHandler(
UpbBind(&Handler, new int(kExpectedHandlerData))));
}
private:
static void Handler(ME* t, const int* hd) {
t->handler_data_val_ = *hd;
t->seen_ = true;
}
};
class StartMsgTesterBoolFunctionWithHandlerData : public StartMsgTesterBase {
public:
typedef StartMsgTesterBoolFunctionWithHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStartMessageHandler(
UpbBind(&Handler, new int(kExpectedHandlerData))));
}
private:
static bool Handler(ME* t, const int* hd) {
t->handler_data_val_ = *hd;
t->seen_ = true;
return true;
}
};
class StartMsgTesterVoidMethodWithHandlerData : public StartMsgTesterBase {
public:
typedef StartMsgTesterVoidMethodWithHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStartMessageHandler(
UpbBind(&ME::Handler, new int(kExpectedHandlerData))));
}
private:
void Handler(const int* hd) {
handler_data_val_ = *hd;
seen_ = true;
}
};
class StartMsgTesterBoolMethodWithHandlerData : public StartMsgTesterBase {
public:
typedef StartMsgTesterBoolMethodWithHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
UPB_UNUSED(f);
ASSERT(h->SetStartMessageHandler(
UpbBind(&ME::Handler, new int(kExpectedHandlerData))));
}
private:
bool Handler(const int* hd) {
handler_data_val_ = *hd;
seen_ = true;
return true;
}
};
class Int32ValueTesterBase {
public:
static const upb::FieldDef::Type kFieldType = UPB_TYPE_INT32;
Int32ValueTesterBase() : seen_(false), val_(0), handler_data_val_(0) {}
void CallAndVerify(upb::Sink* sink, const upb::FieldDef* f) {
upb::Handlers::Selector s;
ASSERT(upb::Handlers::GetSelector(f, UPB_HANDLER_INT32, &s));
ASSERT(!seen_);
sink->PutInt32(s, 5);
ASSERT(seen_);
ASSERT(handler_data_val_ == kExpectedHandlerData);
ASSERT(val_ == 5);
}
protected:
bool seen_;
int32_t val_;
int handler_data_val_;
};
// Test all 8 combinations of:
// (handler data?) x (function/method) x (returns {void, bool})
class ValueTesterInt32VoidFunctionNoHandlerData
: public Int32ValueTesterBase {
public:
typedef ValueTesterInt32VoidFunctionNoHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
ASSERT(h->SetInt32Handler(f, UpbMakeHandler(&Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
static void Handler(ME* t, int32_t val) {
t->val_ = val;
t->seen_ = true;
}
};
class ValueTesterInt32BoolFunctionNoHandlerData
: public Int32ValueTesterBase {
public:
typedef ValueTesterInt32BoolFunctionNoHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
ASSERT(h->SetInt32Handler(f, UpbMakeHandler(&Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
static bool Handler(ME* t, int32_t val) {
t->val_ = val;
t->seen_ = true;
return true;
}
};
class ValueTesterInt32VoidMethodNoHandlerData : public Int32ValueTesterBase {
public:
typedef ValueTesterInt32VoidMethodNoHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
ASSERT(h->SetInt32Handler(f, UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
void Handler(int32_t val) {
val_ = val;
seen_ = true;
}
};
class ValueTesterInt32BoolMethodNoHandlerData : public Int32ValueTesterBase {
public:
typedef ValueTesterInt32BoolMethodNoHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
ASSERT(h->SetInt32Handler(f, UpbMakeHandler(&ME::Handler)));
handler_data_val_ = kExpectedHandlerData;
}
private:
bool Handler(int32_t val) {
val_ = val;
seen_ = true;
return true;
}
};
class ValueTesterInt32VoidFunctionWithHandlerData
: public Int32ValueTesterBase {
public:
typedef ValueTesterInt32VoidFunctionWithHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
ASSERT(h->SetInt32Handler(
f, UpbBind(&Handler, new int(kExpectedHandlerData))));
}
private:
static void Handler(ME* t, const int* hd, int32_t val) {
t->val_ = val;
t->handler_data_val_ = *hd;
t->seen_ = true;
}
};
class ValueTesterInt32BoolFunctionWithHandlerData
: public Int32ValueTesterBase {
public:
typedef ValueTesterInt32BoolFunctionWithHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
ASSERT(h->SetInt32Handler(
f, UpbBind(&Handler, new int(kExpectedHandlerData))));
}
private:
static bool Handler(ME* t, const int* hd, int32_t val) {
t->val_ = val;
t->handler_data_val_ = *hd;
t->seen_ = true;
return true;
}
};
class ValueTesterInt32VoidMethodWithHandlerData : public Int32ValueTesterBase {
public:
typedef ValueTesterInt32VoidMethodWithHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
ASSERT(h->SetInt32Handler(
f, UpbBind(&ME::Handler, new int(kExpectedHandlerData))));
}
private:
void Handler(const int* hd, int32_t val) {
val_ = val;
handler_data_val_ = *hd;
seen_ = true;
}
};
class ValueTesterInt32BoolMethodWithHandlerData : public Int32ValueTesterBase {
public:
typedef ValueTesterInt32BoolMethodWithHandlerData ME;
void Register(upb::Handlers* h, const upb::FieldDef* f) {
ASSERT(h->SetInt32Handler(
f, UpbBind(&ME::Handler, new int(kExpectedHandlerData))));
}
private:
bool Handler(const int* hd, int32_t val) {
val_ = val;
handler_data_val_ = *hd;
seen_ = true;
return true;
}
};
template <class T>
void TestHandler() {
upb::reffed_ptr<upb::MessageDef> md(upb::MessageDef::New());
upb::reffed_ptr<upb::FieldDef> f(upb::FieldDef::New());
f->set_type(T::kFieldType);
ASSERT(f->set_name("test", NULL));
ASSERT(f->set_number(1, NULL));
ASSERT(md->AddField(f, NULL));
ASSERT(md->Freeze(NULL));
upb::reffed_ptr<upb::Handlers> h(upb::Handlers::New(md.get()));
T tester;
tester.Register(h.get(), f.get());
ASSERT(h->Freeze(NULL));
upb::Sink sink(h.get(), &tester);
tester.CallAndVerify(&sink, f.get());
}
class T1 {};
class T2 {};
template <class C>
void DoNothingHandler(C* closure) {
UPB_UNUSED(closure);
}
template <class C>
void DoNothingInt32Handler(C* closure, int32_t val) {
UPB_UNUSED(closure);
UPB_UNUSED(val);
}
template <class R>
class DoNothingStartHandler {
public:
// We wrap these functions inside of a class for a somewhat annoying reason.
// UpbMakeHandler() is a macro, so we can't say
// UpbMakeHandler(DoNothingStartHandler<T1, T2>)
//
// because otherwise the preprocessor gets confused at the comma and tries to
// make it two macro arguments. The usual solution doesn't work either:
// UpbMakeHandler((DoNothingStartHandler<T1, T2>))
//
// If we do that the macro expands correctly, but then it tries to pass that
// parenthesized expression as a template parameter, ie. Type<(F)>, which
// isn't legal C++ (Clang will compile it but complains with
// warning: address non-type template argument cannot be surrounded by
// parentheses
//
// This two-level thing allows us to effectively pass two template parameters,
// but without any commas:
// UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T2>)
template <class C>
static R* Handler(C* closure) {
UPB_UNUSED(closure);
return NULL;
}
template <class C>
static R* String(C* closure, size_t size_len) {
UPB_UNUSED(closure);
UPB_UNUSED(size_len);
return NULL;
}
};
template <class C>
void DoNothingStringBufHandler(C* closure, const char *buf, size_t len) {
UPB_UNUSED(closure);
UPB_UNUSED(buf);
UPB_UNUSED(len);
}
template <class C>
void DoNothingEndMessageHandler(C* closure, upb::Status *status) {
UPB_UNUSED(closure);
UPB_UNUSED(status);
}
void TestMismatchedTypes() {
// First create a schema for our test.
upb::reffed_ptr<upb::MessageDef> md(upb::MessageDef::New());
upb::reffed_ptr<upb::FieldDef> f(upb::FieldDef::New());
f->set_type(UPB_TYPE_INT32);
ASSERT(f->set_name("i32", NULL));
ASSERT(f->set_number(1, NULL));
ASSERT(md->AddField(f, NULL));
const upb::FieldDef* i32 = f.get();
f = upb::FieldDef::New();
f->set_type(UPB_TYPE_INT32);
ASSERT(f->set_name("r_i32", NULL));
ASSERT(f->set_number(2, NULL));
f->set_label(UPB_LABEL_REPEATED);
ASSERT(md->AddField(f, NULL));
const upb::FieldDef* r_i32 = f.get();
f = upb::FieldDef::New();
f->set_type(UPB_TYPE_STRING);
ASSERT(f->set_name("str", NULL));
ASSERT(f->set_number(3, NULL));
ASSERT(md->AddField(f, NULL));
const upb::FieldDef* str = f.get();
f = upb::FieldDef::New();
f->set_type(UPB_TYPE_STRING);
ASSERT(f->set_name("r_str", NULL));
ASSERT(f->set_number(4, NULL));
f->set_label(UPB_LABEL_REPEATED);
ASSERT(md->AddField(f, NULL));
const upb::FieldDef* r_str = f.get();
f = upb::FieldDef::New();
f->set_type(UPB_TYPE_MESSAGE);
ASSERT(f->set_name("msg", NULL));
ASSERT(f->set_number(5, NULL));
ASSERT(f->set_message_subdef(md.get(), NULL));
ASSERT(md->AddField(f, NULL));
const upb::FieldDef* msg = f.get();
f = upb::FieldDef::New();
f->set_type(UPB_TYPE_MESSAGE);
ASSERT(f->set_name("r_msg", NULL));
ASSERT(f->set_number(6, NULL));
ASSERT(f->set_message_subdef(md.get(), NULL));
f->set_label(UPB_LABEL_REPEATED);
ASSERT(md->AddField(f, NULL));
const upb::FieldDef* r_msg = f.get();
ASSERT(md->Freeze(NULL));
// Now test the type-checking in handler registration.
upb::reffed_ptr<upb::Handlers> h(upb::Handlers::New(md.get()));
// Establish T1 as the top-level closure type.
ASSERT(h->SetInt32Handler(i32, UpbMakeHandler(DoNothingInt32Handler<T1>)));
// Now any other attempt to set another handler with T2 as the top-level
// closure should fail. But setting these same handlers with T1 as the
// top-level closure will succeed.
ASSERT(!h->SetStartMessageHandler(UpbMakeHandler(DoNothingHandler<T2>)));
ASSERT(h->SetStartMessageHandler(UpbMakeHandler(DoNothingHandler<T1>)));
ASSERT(
!h->SetEndMessageHandler(UpbMakeHandler(DoNothingEndMessageHandler<T2>)));
ASSERT(
h->SetEndMessageHandler(UpbMakeHandler(DoNothingEndMessageHandler<T1>)));
ASSERT(!h->SetStartStringHandler(
str, UpbMakeHandler(DoNothingStartHandler<T1>::String<T2>)));
ASSERT(h->SetStartStringHandler(
str, UpbMakeHandler(DoNothingStartHandler<T1>::String<T1>)));
ASSERT(!h->SetEndStringHandler(str, UpbMakeHandler(DoNothingHandler<T2>)));
ASSERT(h->SetEndStringHandler(str, UpbMakeHandler(DoNothingHandler<T1>)));
ASSERT(!h->SetStartSubMessageHandler(
msg, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T2>)));
ASSERT(h->SetStartSubMessageHandler(
msg, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T1>)));
ASSERT(
!h->SetEndSubMessageHandler(msg, UpbMakeHandler(DoNothingHandler<T2>)));
ASSERT(
h->SetEndSubMessageHandler(msg, UpbMakeHandler(DoNothingHandler<T1>)));
ASSERT(!h->SetStartSequenceHandler(
r_i32, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T2>)));
ASSERT(h->SetStartSequenceHandler(
r_i32, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T1>)));
ASSERT(!h->SetEndSequenceHandler(
r_i32, UpbMakeHandler(DoNothingHandler<T2>)));
ASSERT(h->SetEndSequenceHandler(
r_i32, UpbMakeHandler(DoNothingHandler<T1>)));
ASSERT(!h->SetStartSequenceHandler(
r_msg, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T2>)));
ASSERT(h->SetStartSequenceHandler(
r_msg, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T1>)));
ASSERT(!h->SetEndSequenceHandler(
r_msg, UpbMakeHandler(DoNothingHandler<T2>)));
ASSERT(h->SetEndSequenceHandler(
r_msg, UpbMakeHandler(DoNothingHandler<T1>)));
ASSERT(!h->SetStartSequenceHandler(
r_str, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T2>)));
ASSERT(h->SetStartSequenceHandler(
r_str, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T1>)));
ASSERT(!h->SetEndSequenceHandler(
r_str, UpbMakeHandler(DoNothingHandler<T2>)));
ASSERT(h->SetEndSequenceHandler(
r_str, UpbMakeHandler(DoNothingHandler<T1>)));
// By setting T1 as the return type for the Start* handlers we have
// established T1 as the type of the sequence and string frames.
// Setting callbacks that use T2 should fail, but T1 should succeed.
ASSERT(
!h->SetStringHandler(str, UpbMakeHandler(DoNothingStringBufHandler<T2>)));
ASSERT(
h->SetStringHandler(str, UpbMakeHandler(DoNothingStringBufHandler<T1>)));
ASSERT(!h->SetInt32Handler(r_i32, UpbMakeHandler(DoNothingInt32Handler<T2>)));
ASSERT(h->SetInt32Handler(r_i32, UpbMakeHandler(DoNothingInt32Handler<T1>)));
ASSERT(!h->SetStartSubMessageHandler(
r_msg, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T2>)));
ASSERT(h->SetStartSubMessageHandler(
r_msg, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T1>)));
ASSERT(!h->SetEndSubMessageHandler(r_msg,
UpbMakeHandler(DoNothingHandler<T2>)));
ASSERT(h->SetEndSubMessageHandler(r_msg,
UpbMakeHandler(DoNothingHandler<T1>)));
ASSERT(!h->SetStartStringHandler(
r_str, UpbMakeHandler(DoNothingStartHandler<T1>::String<T2>)));
ASSERT(h->SetStartStringHandler(
r_str, UpbMakeHandler(DoNothingStartHandler<T1>::String<T1>)));
ASSERT(
!h->SetEndStringHandler(r_str, UpbMakeHandler(DoNothingHandler<T2>)));
ASSERT(h->SetEndStringHandler(r_str, UpbMakeHandler(DoNothingHandler<T1>)));
ASSERT(!h->SetStringHandler(r_str,
UpbMakeHandler(DoNothingStringBufHandler<T2>)));
ASSERT(h->SetStringHandler(r_str,
UpbMakeHandler(DoNothingStringBufHandler<T1>)));
h->ClearError();
ASSERT(h->Freeze(NULL));
// For our second test we do the same in reverse. We directly set the type of
// the frame and then observe failures at registering a Start* handler that
// returns a different type.
h = upb::Handlers::New(md.get());
// First establish the type of a sequence frame directly.
ASSERT(h->SetInt32Handler(r_i32, UpbMakeHandler(DoNothingInt32Handler<T1>)));
// Now setting a StartSequence callback that returns a different type should
// fail.
ASSERT(!h->SetStartSequenceHandler(
r_i32, UpbMakeHandler(DoNothingStartHandler<T2>::Handler<T1>)));
ASSERT(h->SetStartSequenceHandler(
r_i32, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T1>)));
// Establish a string frame directly.
ASSERT(h->SetStringHandler(r_str,
UpbMakeHandler(DoNothingStringBufHandler<T1>)));
// Fail setting a StartString callback that returns a different type.
ASSERT(!h->SetStartStringHandler(
r_str, UpbMakeHandler(DoNothingStartHandler<T2>::String<T1>)));
ASSERT(h->SetStartStringHandler(
r_str, UpbMakeHandler(DoNothingStartHandler<T1>::String<T1>)));
// The previous established T1 as the frame for the r_str sequence.
ASSERT(!h->SetStartSequenceHandler(
r_str, UpbMakeHandler(DoNothingStartHandler<T2>::Handler<T1>)));
ASSERT(h->SetStartSequenceHandler(
r_str, UpbMakeHandler(DoNothingStartHandler<T1>::Handler<T1>)));
// Now test for this error that is not caught until freeze time:
// Change-of-closure-type implies that a StartSequence or StartString handler
// should exist to return the closure type of the inner frame but no
// StartSequence/StartString handler is registered.
h = upb::Handlers::New(md.get());
// Establish T1 as top-level closure type.
ASSERT(h->SetInt32Handler(i32, UpbMakeHandler(DoNothingInt32Handler<T1>)));
// Establish T2 as closure type of sequence frame.
ASSERT(
h->SetInt32Handler(r_i32, UpbMakeHandler(DoNothingInt32Handler<T2>)));
// Now attempt to freeze; this should fail because a StartSequence handler
// needs to be registered that takes a T1 and returns a T2.
ASSERT(!h->Freeze(NULL));
// Now if we register the necessary StartSequence handler, the freezing should
// work.
ASSERT(h->SetStartSequenceHandler(
r_i32, UpbMakeHandler(DoNothingStartHandler<T2>::Handler<T1>)));
h->ClearError();
ASSERT(h->Freeze(NULL));
// Test for a broken chain that is two deep.
h = upb::Handlers::New(md.get());
// Establish T1 as top-level closure type.
ASSERT(h->SetInt32Handler(i32, UpbMakeHandler(DoNothingInt32Handler<T1>)));
// Establish T2 as the closure type of the string frame inside a sequence
// frame.
ASSERT(h->SetStringHandler(r_str,
UpbMakeHandler(DoNothingStringBufHandler<T2>)));
// Now attempt to freeze; this should fail because a StartSequence or
// StartString handler needs to be registered that takes a T1 and returns a
// T2.
ASSERT(!h->Freeze(NULL));
// Now if we register a StartSequence handler it succeeds.
ASSERT(h->SetStartSequenceHandler(
r_str, UpbMakeHandler(DoNothingStartHandler<T2>::Handler<T1>)));
h->ClearError();
ASSERT(h->Freeze(NULL));
// TODO(haberman): test that closure returned by StartSubMessage does not
// match top-level closure of sub-handlers.
}
class IntIncrementer {
public:
explicit IntIncrementer(int* x) : x_(x) { (*x_)++; }
~IntIncrementer() { (*x_)--; }
static void Handler(void* closure, const IntIncrementer* incrementer,
int32_t x) {
UPB_UNUSED(closure);
UPB_UNUSED(incrementer);
UPB_UNUSED(x);
}
private:
int* x_;
};
void TestHandlerDataDestruction() {
upb::reffed_ptr<upb::MessageDef> md(upb::MessageDef::New());
upb::reffed_ptr<upb::FieldDef> f(upb::FieldDef::New());
f->set_type(UPB_TYPE_INT32);
ASSERT(f->set_name("test", NULL));
ASSERT(f->set_number(1, NULL));
ASSERT(md->AddField(f, NULL));
ASSERT(md->Freeze(NULL));
int x = 0;
{
upb::reffed_ptr<upb::Handlers> h(upb::Handlers::New(md.get()));
h->SetInt32Handler(
f.get(), UpbBind(&IntIncrementer::Handler, new IntIncrementer(&x)));
ASSERT(x == 1);
}
ASSERT(x == 0);
}
void TestOneofs() {
upb::Status status;
upb::reffed_ptr<upb::MessageDef> md(upb::MessageDef::New());
upb::reffed_ptr<upb::OneofDef> o(upb::OneofDef::New());
o->set_name("test_oneof", &status);
ASSERT(status.ok());
for (int i = 0; i < 5; i++) {
std::ostringstream fieldname;
fieldname << "field_" << i;
upb::reffed_ptr<upb::FieldDef> f(upb::FieldDef::New());
f->set_name(fieldname.str(), &status);
ASSERT(status.ok());
f->set_type(UPB_TYPE_INT32);
f->set_number(i + 1, &status);
ASSERT(status.ok());
f->set_label(UPB_LABEL_OPTIONAL);
o->AddField(f.get(), &status);
ASSERT(status.ok());
}
md->AddOneof(o.get(), &status);
ASSERT(status.ok());
int field_count = 0;
for (upb::OneofDef::iterator it = o->begin(); it != o->end(); ++it) {
upb::FieldDef* f = *it;
ASSERT(f->type() == UPB_TYPE_INT32);
field_count++;
}
ASSERT(field_count == 5);
upb::MessageDef::oneof_iterator msg_it = md->oneof_begin();
ASSERT(msg_it != md->oneof_end());
ASSERT((*msg_it) == o.get());
#ifdef UPB_CXX11
// Test range-based for on both fields and oneofs (with the iterator adaptor).
field_count = 0;
for (auto* field : md->fields()) {
UPB_UNUSED(field);
field_count++;
}
ASSERT(field_count == 5);
int oneof_count = 0;
for (auto* oneof : md->oneofs()) {
UPB_UNUSED(oneof);
oneof_count++;
}
ASSERT(oneof_count == 1);
#endif // UPB_CXX11
// Test that we can add a new field to the oneof and that it becomes a member
// of the msgdef as well.
upb::reffed_ptr<upb::FieldDef> newf(upb::FieldDef::New());
newf->set_name("new_field_10", &status);
ASSERT(status.ok());
newf->set_number(10, &status);
ASSERT(status.ok());
newf->set_label(UPB_LABEL_OPTIONAL);
newf->set_type(UPB_TYPE_INT32);
o->AddField(newf.get(), &status);
ASSERT(status.ok());
ASSERT(newf->containing_type() == md.get());
// Test that we can add a new field to the msgdef first and then to the oneof.
upb::reffed_ptr<upb::FieldDef> newf2(upb::FieldDef::New());
newf2->set_name("new_field_11", &status);
ASSERT(status.ok());
newf2->set_number(11, &status);
ASSERT(status.ok());
newf2->set_label(UPB_LABEL_OPTIONAL);
newf2->set_type(UPB_TYPE_INT32);
md->AddField(newf2.get(), &status);
ASSERT(status.ok());
o->AddField(newf2.get(), &status);
ASSERT(status.ok());
ASSERT(newf2->containing_oneof() == o.get());
// Test that we cannot add REQUIRED or REPEATED fields to the oneof.
upb::reffed_ptr<upb::FieldDef> newf3(upb::FieldDef::New());
newf3->set_name("new_field_12", &status);
ASSERT(status.ok());
newf3->set_number(12, &status);
ASSERT(status.ok());
newf3->set_label(UPB_LABEL_REQUIRED);
newf3->set_type(UPB_TYPE_INT32);
o->AddField(newf3.get(), &status);
ASSERT(!status.ok());
newf->set_label(UPB_LABEL_REPEATED);
o->AddField(newf3.get(), &status);
ASSERT(!status.ok());
}
extern "C" {
int run_tests(int argc, char *argv[]) {
if (argc < 2) {
fprintf(stderr, "Usage: test_cpp <descriptor file>\n");
return 1;
}
TestSymbolTable(argv[1]);
TestCastsUpDown();
TestCasts1();
TestCasts2();
TestCastsConst0();
TestCastsConst1();
TestCastsConst2();
TestCastsConst3();
TestCastsConst4();
TestCastsConst5();
TestCastsConst6();
TestCastsConst7();
TestCastsConst8();
TestCastsConst9();
TestCastsConst10();
TestHandler<ValueTesterInt32VoidFunctionNoHandlerData>();
TestHandler<ValueTesterInt32BoolFunctionNoHandlerData>();
TestHandler<ValueTesterInt32VoidMethodNoHandlerData>();
TestHandler<ValueTesterInt32BoolMethodNoHandlerData>();
TestHandler<ValueTesterInt32VoidFunctionWithHandlerData>();
TestHandler<ValueTesterInt32BoolFunctionWithHandlerData>();
TestHandler<ValueTesterInt32VoidMethodWithHandlerData>();
TestHandler<ValueTesterInt32BoolMethodWithHandlerData>();
TestHandler<StartMsgTesterVoidFunctionNoHandlerData>();
TestHandler<StartMsgTesterBoolFunctionNoHandlerData>();
TestHandler<StartMsgTesterVoidMethodNoHandlerData>();
TestHandler<StartMsgTesterBoolMethodNoHandlerData>();
TestHandler<StartMsgTesterVoidFunctionWithHandlerData>();
TestHandler<StartMsgTesterBoolFunctionWithHandlerData>();
TestHandler<StartMsgTesterVoidMethodWithHandlerData>();
TestHandler<StartMsgTesterBoolMethodWithHandlerData>();
TestHandler<StringBufTesterVoidMethodNoHandlerDataNoHandle>();
TestHandler<StringBufTesterVoidMethodNoHandlerDataWithHandle>();
TestHandler<StringBufTesterVoidMethodWithHandlerDataNoHandle>();
TestHandler<StringBufTesterVoidMethodWithHandlerDataWithHandle>();
TestHandler<StringBufTesterVoidFunctionNoHandlerDataNoHandle>();
TestHandler<StringBufTesterVoidFunctionNoHandlerDataWithHandle>();
TestHandler<StringBufTesterVoidFunctionWithHandlerDataNoHandle>();
TestHandler<StringBufTesterVoidFunctionWithHandlerDataWithHandle>();
TestHandler<StringBufTesterSizeTMethodNoHandlerDataNoHandle>();
TestHandler<StringBufTesterBoolMethodNoHandlerDataNoHandle>();
TestMismatchedTypes();
TestHandlerDataDestruction();
TestOneofs();
return 0;
}
}