Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

460 lines
16 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* This header is INTERNAL-ONLY! Its interfaces are not public or stable!
* This file defines very fast int->upb_value (inttable) and string->upb_value
* (strtable) hash tables.
*
* The table uses chained scatter with Brent's variation (inspired by the Lua
* implementation of hash tables). The hash function for strings is Austin
* Appleby's "MurmurHash."
*
* The inttable uses uintptr_t as its key, which guarantees it can be used to
* store pointers or integers of at least 32 bits (upb isn't really useful on
* systems where sizeof(void*) < 4).
*
* The table must be homogenous (all values of the same type). In debug
* mode, we check this on insert and lookup.
*/
#ifndef UPB_TABLE_H_
#define UPB_TABLE_H_
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include "upb/upb.h"
#ifdef __cplusplus
extern "C" {
#endif
/* upb_value ******************************************************************/
// A tagged union (stored untagged inside the table) so that we can check that
// clients calling table accessors are correctly typed without having to have
// an explosion of accessors.
typedef enum {
UPB_CTYPE_INT32 = 1,
UPB_CTYPE_INT64 = 2,
UPB_CTYPE_UINT32 = 3,
UPB_CTYPE_UINT64 = 4,
UPB_CTYPE_BOOL = 5,
UPB_CTYPE_CSTR = 6,
UPB_CTYPE_PTR = 7,
UPB_CTYPE_CONSTPTR = 8,
UPB_CTYPE_FPTR = 9,
} upb_ctype_t;
typedef union {
int32_t int32;
int64_t int64;
uint64_t uint64;
uint32_t uint32;
bool _bool;
char *cstr;
void *ptr;
const void *constptr;
upb_func *fptr;
} _upb_value;
typedef struct {
_upb_value val;
#ifndef NDEBUG
// In debug mode we carry the value type around also so we can check accesses
// to be sure the right member is being read.
upb_ctype_t ctype;
#endif
} upb_value;
#ifdef UPB_C99
#define UPB_VALUE_INIT(v, member) {.member = v}
#endif
#define UPB__VALUE_INIT_NONE UPB_VALUE_INIT(NULL, ptr)
#ifdef NDEBUG
#define SET_TYPE(dest, val) UPB_UNUSED(val)
#define UPB_VALUE_INIT_NONE {UPB__VALUE_INIT_NONE}
#else
#define SET_TYPE(dest, val) dest = val
// Non-existent type, all reads will fail.
#define UPB_VALUE_INIT_NONE {UPB__VALUE_INIT_NONE, -1}
#endif
#define UPB_VALUE_INIT_INT32(v) UPB_VALUE_INIT(v, int32)
#define UPB_VALUE_INIT_INT64(v) UPB_VALUE_INIT(v, int64)
#define UPB_VALUE_INIT_UINT32(v) UPB_VALUE_INIT(v, uint32)
#define UPB_VALUE_INIT_UINT64(v) UPB_VALUE_INIT(v, uint64)
#define UPB_VALUE_INIT_BOOL(v) UPB_VALUE_INIT(v, _bool)
#define UPB_VALUE_INIT_CSTR(v) UPB_VALUE_INIT(v, cstr)
#define UPB_VALUE_INIT_PTR(v) UPB_VALUE_INIT(v, ptr)
#define UPB_VALUE_INIT_CONSTPTR(v) UPB_VALUE_INIT(v, constptr)
#define UPB_VALUE_INIT_FPTR(v) UPB_VALUE_INIT(v, fptr)
// Like strdup(), which isn't always available since it's not ANSI C.
char *upb_strdup(const char *s);
// Variant that works with a length-delimited rather than NULL-delimited string,
// as supported by strtable.
char *upb_strdup2(const char *s, size_t len);
UPB_INLINE void _upb_value_setval(upb_value *v, _upb_value val,
upb_ctype_t ctype) {
v->val = val;
SET_TYPE(v->ctype, ctype);
}
UPB_INLINE upb_value _upb_value_val(_upb_value val, upb_ctype_t ctype) {
upb_value ret;
_upb_value_setval(&ret, val, ctype);
return ret;
}
// For each value ctype, define the following set of functions:
//
// // Get/set an int32 from a upb_value.
// int32_t upb_value_getint32(upb_value val);
// void upb_value_setint32(upb_value *val, int32_t cval);
//
// // Construct a new upb_value from an int32.
// upb_value upb_value_int32(int32_t val);
#define FUNCS(name, membername, type_t, proto_type) \
UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \
val->val.uint64 = 0; \
SET_TYPE(val->ctype, proto_type); \
val->val.membername = cval; \
} \
UPB_INLINE upb_value upb_value_ ## name(type_t val) { \
upb_value ret; \
upb_value_set ## name(&ret, val); \
return ret; \
} \
UPB_INLINE type_t upb_value_get ## name(upb_value val) { \
assert(val.ctype == proto_type); \
return val.val.membername; \
}
FUNCS(int32, int32, int32_t, UPB_CTYPE_INT32);
FUNCS(int64, int64, int64_t, UPB_CTYPE_INT64);
FUNCS(uint32, uint32, uint32_t, UPB_CTYPE_UINT32);
FUNCS(uint64, uint64, uint64_t, UPB_CTYPE_UINT64);
FUNCS(bool, _bool, bool, UPB_CTYPE_BOOL);
FUNCS(cstr, cstr, char*, UPB_CTYPE_CSTR);
FUNCS(ptr, ptr, void*, UPB_CTYPE_PTR);
FUNCS(constptr, constptr, const void*, UPB_CTYPE_CONSTPTR);
FUNCS(fptr, fptr, upb_func*, UPB_CTYPE_FPTR);
#undef FUNCS
/* upb_table ******************************************************************/
#define UPB_TABKEY_NUM(n) n
#define UPB_TABKEY_NONE 0
// The preprocessor isn't quite powerful enough to turn the compile-time string
// length into a byte-wise string representation, so code generation needs to
// help it along.
//
// "len1" is the low byte and len4 is the high byte.
#ifdef UPB_BIG_ENDIAN
#define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
(uintptr_t)(len4 len3 len2 len1 strval)
#else
#define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \
(uintptr_t)(len1 len2 len3 len4 strval)
#endif
// Either:
// 1. an actual integer key, or
// 2. a pointer to a string prefixed by its uint32_t length, owned by us.
//
// ...depending on whether this is a string table or an int table. We would
// make this a union of those two types, but C89 doesn't support statically
// initializing a non-first union member.
typedef uintptr_t upb_tabkey;
// Ideally we could use a structure like this instead of the memcpy() calls:
//
// typedef struct {
// uint32_t len;
// char data[1]; // Allocate to correct length.
// } upb_tabstr;
//
// But unfortuantely in C89 there is no way to statically initialize such a
// thing. So instead of memcpy() the length in and out of the string.
UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) {
char* mem = (char*)key;
if (len) memcpy(len, mem, sizeof(*len));
return mem + sizeof(*len);
}
typedef struct _upb_tabent {
upb_tabkey key;
_upb_value val;
// Internal chaining. This is const so we can create static initializers for
// tables. We cast away const sometimes, but *only* when the containing
// upb_table is known to be non-const. This requires a bit of care, but
// the subtlety is confined to table.c.
const struct _upb_tabent *next;
} upb_tabent;
typedef struct {
size_t count; // Number of entries in the hash part.
size_t mask; // Mask to turn hash value -> bucket.
upb_ctype_t ctype; // Type of all values.
uint8_t size_lg2; // Size of the hash table part is 2^size_lg2 entries.
// Hash table entries.
// Making this const isn't entirely accurate; what we really want is for it to
// have the same const-ness as the table it's inside. But there's no way to
// declare that in C. So we have to make it const so that we can statically
// initialize const hash tables. Then we cast away const when we have to.
const upb_tabent *entries;
} upb_table;
typedef struct {
upb_table t;
} upb_strtable;
#define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \
{{count, mask, ctype, size_lg2, entries}}
#define UPB_EMPTY_STRTABLE_INIT(ctype) \
UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL)
typedef struct {
upb_table t; // For entries that don't fit in the array part.
const _upb_value *array; // Array part of the table. See const note above.
size_t array_size; // Array part size.
size_t array_count; // Array part number of elements.
} upb_inttable;
#define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \
{{count, mask, ctype, size_lg2, ent}, a, asize, acount}
#define UPB_EMPTY_INTTABLE_INIT(ctype) \
UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0)
#define UPB_ARRAY_EMPTYVAL -1
#define UPB_ARRAY_EMPTYENT UPB_VALUE_INIT_INT64(UPB_ARRAY_EMPTYVAL)
UPB_INLINE size_t upb_table_size(const upb_table *t) {
if (t->size_lg2 == 0)
return 0;
else
return 1 << t->size_lg2;
}
// Internal-only functions, in .h file only out of necessity.
UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) {
return e->key == 0;
}
// Used by some of the unit tests for generic hashing functionality.
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed);
UPB_INLINE uintptr_t upb_intkey(uintptr_t key) {
return key;
}
UPB_INLINE uint32_t upb_inthash(uintptr_t key) {
return (uint32_t)key;
}
static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) {
return t->entries + (hash & t->mask);
}
UPB_INLINE bool upb_arrhas(_upb_value v) {
return v.uint64 != (uint64_t)UPB_ARRAY_EMPTYVAL;
}
// Initialize and uninitialize a table, respectively. If memory allocation
// failed, false is returned that the table is uninitialized.
bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype);
bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype);
void upb_inttable_uninit(upb_inttable *table);
void upb_strtable_uninit(upb_strtable *table);
// Returns the number of values in the table.
size_t upb_inttable_count(const upb_inttable *t);
UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) {
return t->t.count;
}
// Inserts the given key into the hashtable with the given value. The key must
// not already exist in the hash table. For string tables, the key must be
// NULL-terminated, and the table will make an internal copy of the key.
// Inttables must not insert a value of UINTPTR_MAX.
//
// If a table resize was required but memory allocation failed, false is
// returned and the table is unchanged.
bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val);
bool upb_strtable_insert2(upb_strtable *t, const char *key, size_t len,
upb_value val);
// For NULL-terminated strings.
UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key,
upb_value val) {
return upb_strtable_insert2(t, key, strlen(key), val);
}
// Looks up key in this table, returning "true" if the key was found.
// If v is non-NULL, copies the value for this key into *v.
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v);
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
upb_value *v);
// For NULL-terminated strings.
UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key,
upb_value *v) {
return upb_strtable_lookup2(t, key, strlen(key), v);
}
// Removes an item from the table. Returns true if the remove was successful,
// and stores the removed item in *val if non-NULL.
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val);
bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len,
upb_value *val);
// For NULL-terminated strings.
UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key,
upb_value *v) {
return upb_strtable_remove2(t, key, strlen(key), v);
}
// Updates an existing entry in an inttable. If the entry does not exist,
// returns false and does nothing. Unlike insert/remove, this does not
// invalidate iterators.
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val);
// Handy routines for treating an inttable like a stack. May not be mixed with
// other insert/remove calls.
bool upb_inttable_push(upb_inttable *t, upb_value val);
upb_value upb_inttable_pop(upb_inttable *t);
// Convenience routines for inttables with pointer keys.
bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val);
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val);
bool upb_inttable_lookupptr(
const upb_inttable *t, const void *key, upb_value *val);
// Optimizes the table for the current set of entries, for both memory use and
// lookup time. Client should call this after all entries have been inserted;
// inserting more entries is legal, but will likely require a table resize.
void upb_inttable_compact(upb_inttable *t);
// A special-case inlinable version of the lookup routine for 32-bit integers.
UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key,
upb_value *v) {
*v = upb_value_int32(0); // Silence compiler warnings.
if (key < t->array_size) {
_upb_value arrval = t->array[key];
if (upb_arrhas(arrval)) {
_upb_value_setval(v, arrval, t->t.ctype);
return true;
} else {
return false;
}
} else {
const upb_tabent *e;
if (t->t.entries == NULL) return false;
for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) {
if ((uint32_t)e->key == key) {
_upb_value_setval(v, e->val, t->t.ctype);
return true;
}
if (e->next == NULL) return false;
}
}
}
// Exposed for testing only.
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2);
/* Iterators ******************************************************************/
// Iterators for int and string tables. We are subject to some kind of unusual
// design constraints:
//
// For high-level languages:
// - we must be able to guarantee that we don't crash or corrupt memory even if
// the program accesses an invalidated iterator.
//
// For C++11 range-based for:
// - iterators must be copyable
// - iterators must be comparable
// - it must be possible to construct an "end" value.
//
// Iteration order is undefined.
//
// Modifying the table invalidates iterators. upb_{str,int}table_done() is
// guaranteed to work even on an invalidated iterator, as long as the table it
// is iterating over has not been freed. Calling next() or accessing data from
// an invalidated iterator yields unspecified elements from the table, but it is
// guaranteed not to crash and to return real table elements (except when done()
// is true).
/* upb_strtable_iter **********************************************************/
// upb_strtable_iter i;
// upb_strtable_begin(&i, t);
// for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
// const char *key = upb_strtable_iter_key(&i);
// const upb_value val = upb_strtable_iter_value(&i);
// // ...
// }
typedef struct {
const upb_strtable *t;
size_t index;
} upb_strtable_iter;
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t);
void upb_strtable_next(upb_strtable_iter *i);
bool upb_strtable_done(const upb_strtable_iter *i);
const char *upb_strtable_iter_key(upb_strtable_iter *i);
size_t upb_strtable_iter_keylength(upb_strtable_iter *i);
upb_value upb_strtable_iter_value(const upb_strtable_iter *i);
void upb_strtable_iter_setdone(upb_strtable_iter *i);
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
const upb_strtable_iter *i2);
/* upb_inttable_iter **********************************************************/
// upb_inttable_iter i;
// upb_inttable_begin(&i, t);
// for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
// uintptr_t key = upb_inttable_iter_key(&i);
// upb_value val = upb_inttable_iter_value(&i);
// // ...
// }
typedef struct {
const upb_inttable *t;
size_t index;
bool array_part;
} upb_inttable_iter;
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t);
void upb_inttable_next(upb_inttable_iter *i);
bool upb_inttable_done(const upb_inttable_iter *i);
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i);
upb_value upb_inttable_iter_value(const upb_inttable_iter *i);
void upb_inttable_iter_setdone(upb_inttable_iter *i);
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
const upb_inttable_iter *i2);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* UPB_TABLE_H_ */