Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
662 lines
23 KiB
662 lines
23 KiB
/* |
|
* Copyright (c) 2009-2021, Google LLC |
|
* All rights reserved. |
|
* |
|
* Redistribution and use in source and binary forms, with or without |
|
* modification, are permitted provided that the following conditions are met: |
|
* * Redistributions of source code must retain the above copyright |
|
* notice, this list of conditions and the following disclaimer. |
|
* * Redistributions in binary form must reproduce the above copyright |
|
* notice, this list of conditions and the following disclaimer in the |
|
* documentation and/or other materials provided with the distribution. |
|
* * Neither the name of Google LLC nor the |
|
* names of its contributors may be used to endorse or promote products |
|
* derived from this software without specific prior written permission. |
|
* |
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
|
* ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT, |
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
*/ |
|
|
|
/* |
|
** Our memory representation for parsing tables and messages themselves. |
|
** Functions in this file are used by generated code and possibly reflection. |
|
** |
|
** The definitions in this file are internal to upb. |
|
**/ |
|
|
|
#ifndef UPB_MSG_INT_H_ |
|
#define UPB_MSG_INT_H_ |
|
|
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
#include "upb/extension_registry.h" |
|
#include "upb/internal/table.h" |
|
#include "upb/msg.h" |
|
#include "upb/upb.h" |
|
|
|
// Must be last. |
|
#include "upb/port_def.inc" |
|
|
|
#ifdef __cplusplus |
|
extern "C" { |
|
#endif |
|
|
|
/** upb_*Int* conversion routines ********************************************/ |
|
|
|
UPB_INLINE int32_t _upb_Int32_FromI(int v) { return (int32_t)v; } |
|
|
|
UPB_INLINE int64_t _upb_Int64_FromLL(long long v) { return (int64_t)v; } |
|
|
|
UPB_INLINE uint32_t _upb_UInt32_FromU(unsigned v) { return (uint32_t)v; } |
|
|
|
UPB_INLINE uint64_t _upb_UInt64_FromULL(unsigned long long v) { |
|
return (uint64_t)v; |
|
} |
|
|
|
extern const float kUpb_FltInfinity; |
|
extern const double kUpb_Infinity; |
|
|
|
/** upb_MiniTable *************************************************************/ |
|
|
|
/* upb_MiniTable represents the memory layout of a given upb_MessageDef. The |
|
* members are public so generated code can initialize them, but users MUST NOT |
|
* read or write any of its members. */ |
|
|
|
typedef struct { |
|
uint32_t number; |
|
uint16_t offset; |
|
int16_t presence; // If >0, hasbit_index. If <0, ~oneof_index |
|
uint16_t submsg_index; // kUpb_NoSub if descriptortype != MESSAGE/GROUP/ENUM |
|
uint8_t descriptortype; |
|
uint8_t mode; /* upb_FieldMode | upb_LabelFlags | |
|
(upb_FieldRep << kUpb_FieldRep_Shift) */ |
|
} upb_MiniTable_Field; |
|
|
|
#define kUpb_NoSub ((uint16_t)-1) |
|
|
|
typedef enum { |
|
kUpb_FieldMode_Map = 0, |
|
kUpb_FieldMode_Array = 1, |
|
kUpb_FieldMode_Scalar = 2, |
|
} upb_FieldMode; |
|
|
|
// Mask to isolate the upb_FieldMode from field.mode. |
|
#define kUpb_FieldMode_Mask 3 |
|
|
|
/* Extra flags on the mode field. */ |
|
typedef enum { |
|
kUpb_LabelFlags_IsPacked = 4, |
|
kUpb_LabelFlags_IsExtension = 8, |
|
// Indicates that this descriptor type is an "alternate type": |
|
// - for Int32, this indicates that the actual type is Enum (but was |
|
// rewritten to Int32 because it is an open enum that requires no check). |
|
// - for Bytes, this indicates that the actual type is String (but does |
|
// not require any UTF-8 check). |
|
kUpb_LabelFlags_IsAlternate = 16, |
|
} upb_LabelFlags; |
|
|
|
// Note: we sort by this number when calculating layout order. |
|
typedef enum { |
|
kUpb_FieldRep_1Byte = 0, |
|
kUpb_FieldRep_4Byte = 1, |
|
kUpb_FieldRep_StringView = 2, |
|
kUpb_FieldRep_8Byte = 3, |
|
|
|
kUpb_FieldRep_Shift = 6, // Bit offset of the rep in upb_MiniTable_Field.mode |
|
kUpb_FieldRep_Max = kUpb_FieldRep_8Byte, |
|
} upb_FieldRep; |
|
|
|
UPB_INLINE upb_FieldMode upb_FieldMode_Get(const upb_MiniTable_Field* field) { |
|
return (upb_FieldMode)(field->mode & 3); |
|
} |
|
|
|
UPB_INLINE bool upb_IsRepeatedOrMap(const upb_MiniTable_Field* field) { |
|
/* This works because upb_FieldMode has no value 3. */ |
|
return !(field->mode & kUpb_FieldMode_Scalar); |
|
} |
|
|
|
UPB_INLINE bool upb_IsSubMessage(const upb_MiniTable_Field* field) { |
|
return field->descriptortype == kUpb_FieldType_Message || |
|
field->descriptortype == kUpb_FieldType_Group; |
|
} |
|
|
|
struct upb_Decoder; |
|
struct upb_MiniTable; |
|
|
|
typedef const char* _upb_FieldParser(struct upb_Decoder* d, const char* ptr, |
|
upb_Message* msg, intptr_t table, |
|
uint64_t hasbits, uint64_t data); |
|
|
|
typedef struct { |
|
uint64_t field_data; |
|
_upb_FieldParser* field_parser; |
|
} _upb_FastTable_Entry; |
|
|
|
typedef struct { |
|
uint32_t mask_limit; // Limit enum value that can be tested with mask. |
|
uint32_t value_count; // Number of values after the bitfield. |
|
uint32_t data[]; // Bitmask + enumerated values follow. |
|
} upb_MiniTable_Enum; |
|
|
|
typedef enum { |
|
_kUpb_FastEnumCheck_ValueIsInEnum = 0, |
|
_kUpb_FastEnumCheck_ValueIsNotInEnum = 1, |
|
_kUpb_FastEnumCheck_CannotCheckFast = 2, |
|
} _kUpb_FastEnumCheck_Status; |
|
|
|
UPB_INLINE _kUpb_FastEnumCheck_Status |
|
_upb_MiniTable_CheckEnumValueFast(const upb_MiniTable_Enum* e, uint32_t val) { |
|
if (UPB_UNLIKELY(val >= 64)) return _kUpb_FastEnumCheck_CannotCheckFast; |
|
uint64_t mask = e->data[0] | ((uint64_t)e->data[1] << 32); |
|
return (mask & (1ULL << val)) ? _kUpb_FastEnumCheck_ValueIsInEnum |
|
: _kUpb_FastEnumCheck_ValueIsNotInEnum; |
|
} |
|
|
|
UPB_INLINE bool _upb_MiniTable_CheckEnumValueSlow(const upb_MiniTable_Enum* e, |
|
uint32_t val) { |
|
if (val < e->mask_limit) return e->data[val / 32] & (1ULL << (val % 32)); |
|
// OPT: binary search long lists? |
|
const uint32_t* start = &e->data[e->mask_limit / 32]; |
|
const uint32_t* limit = &e->data[(e->mask_limit / 32) + e->value_count]; |
|
for (const uint32_t* p = start; p < limit; p++) { |
|
if (*p == val) return true; |
|
} |
|
return false; |
|
} |
|
|
|
// Validates enum value against range defined by enum mini table. |
|
UPB_INLINE bool upb_MiniTable_Enum_CheckValue(const upb_MiniTable_Enum* e, |
|
uint32_t val) { |
|
_kUpb_FastEnumCheck_Status status = _upb_MiniTable_CheckEnumValueFast(e, val); |
|
if (UPB_UNLIKELY(status == _kUpb_FastEnumCheck_CannotCheckFast)) { |
|
return _upb_MiniTable_CheckEnumValueSlow(e, val); |
|
} |
|
return status == _kUpb_FastEnumCheck_ValueIsInEnum ? true : false; |
|
} |
|
|
|
typedef union { |
|
const struct upb_MiniTable* submsg; |
|
const upb_MiniTable_Enum* subenum; |
|
} upb_MiniTable_Sub; |
|
|
|
typedef enum { |
|
kUpb_ExtMode_NonExtendable = 0, // Non-extendable message. |
|
kUpb_ExtMode_Extendable = 1, // Normal extendable message. |
|
kUpb_ExtMode_IsMessageSet = 2, // MessageSet message. |
|
kUpb_ExtMode_IsMessageSet_ITEM = |
|
3, // MessageSet item (temporary only, see decode.c) |
|
|
|
// During table building we steal a bit to indicate that the message is a map |
|
// entry. *Only* used during table building! |
|
kUpb_ExtMode_IsMapEntry = 4, |
|
} upb_ExtMode; |
|
|
|
/* MessageSet wire format is: |
|
* message MessageSet { |
|
* repeated group Item = 1 { |
|
* required int32 type_id = 2; |
|
* required bytes message = 3; |
|
* } |
|
* } |
|
*/ |
|
typedef enum { |
|
_UPB_MSGSET_ITEM = 1, |
|
_UPB_MSGSET_TYPEID = 2, |
|
_UPB_MSGSET_MESSAGE = 3, |
|
} upb_msgext_fieldnum; |
|
|
|
struct upb_MiniTable { |
|
const upb_MiniTable_Sub* subs; |
|
const upb_MiniTable_Field* fields; |
|
/* Must be aligned to sizeof(void*). Doesn't include internal members like |
|
* unknown fields, extension dict, pointer to msglayout, etc. */ |
|
uint16_t size; |
|
uint16_t field_count; |
|
uint8_t ext; // upb_ExtMode, declared as uint8_t so sizeof(ext) == 1 |
|
uint8_t dense_below; |
|
uint8_t table_mask; |
|
uint8_t required_count; // Required fields have the lowest hasbits. |
|
/* To statically initialize the tables of variable length, we need a flexible |
|
* array member, and we need to compile in gnu99 mode (constant initialization |
|
* of flexible array members is a GNU extension, not in C99 unfortunately. */ |
|
_upb_FastTable_Entry fasttable[]; |
|
}; |
|
|
|
struct upb_MiniTable_Extension { |
|
upb_MiniTable_Field field; |
|
const upb_MiniTable* extendee; |
|
upb_MiniTable_Sub sub; /* NULL unless submessage or proto2 enum */ |
|
}; |
|
|
|
typedef struct { |
|
const upb_MiniTable** msgs; |
|
const upb_MiniTable_Enum** enums; |
|
const upb_MiniTable_Extension** exts; |
|
int msg_count; |
|
int enum_count; |
|
int ext_count; |
|
} upb_MiniTable_File; |
|
|
|
// Computes a bitmask in which the |l->required_count| lowest bits are set, |
|
// except that we skip the lowest bit (because upb never uses hasbit 0). |
|
// |
|
// Sample output: |
|
// requiredmask(1) => 0b10 (0x2) |
|
// requiredmask(5) => 0b111110 (0x3e) |
|
UPB_INLINE uint64_t upb_MiniTable_requiredmask(const upb_MiniTable* l) { |
|
int n = l->required_count; |
|
assert(0 < n && n <= 63); |
|
return ((1ULL << n) - 1) << 1; |
|
} |
|
|
|
/** upb_Message ***************************************************************/ |
|
|
|
/* Internal members of a upb_Message that track unknown fields and/or |
|
* extensions. We can change this without breaking binary compatibility. We put |
|
* these before the user's data. The user's upb_Message* points after the |
|
* upb_Message_Internal. */ |
|
|
|
typedef struct { |
|
/* Total size of this structure, including the data that follows. |
|
* Must be aligned to 8, which is alignof(upb_Message_Extension) */ |
|
uint32_t size; |
|
|
|
/* Offsets relative to the beginning of this structure. |
|
* |
|
* Unknown data grows forward from the beginning to unknown_end. |
|
* Extension data grows backward from size to ext_begin. |
|
* When the two meet, we're out of data and have to realloc. |
|
* |
|
* If we imagine that the final member of this struct is: |
|
* char data[size - overhead]; // overhead = |
|
* sizeof(upb_Message_InternalData) |
|
* |
|
* Then we have: |
|
* unknown data: data[0 .. (unknown_end - overhead)] |
|
* extensions data: data[(ext_begin - overhead) .. (size - overhead)] */ |
|
uint32_t unknown_end; |
|
uint32_t ext_begin; |
|
/* Data follows, as if there were an array: |
|
* char data[size - sizeof(upb_Message_InternalData)]; */ |
|
} upb_Message_InternalData; |
|
|
|
typedef struct { |
|
upb_Message_InternalData* internal; |
|
/* Message data follows. */ |
|
} upb_Message_Internal; |
|
|
|
/* Maps upb_CType -> memory size. */ |
|
extern char _upb_CTypeo_size[12]; |
|
|
|
UPB_INLINE size_t upb_msg_sizeof(const upb_MiniTable* l) { |
|
return l->size + sizeof(upb_Message_Internal); |
|
} |
|
|
|
UPB_INLINE upb_Message* _upb_Message_New_inl(const upb_MiniTable* l, |
|
upb_Arena* a) { |
|
size_t size = upb_msg_sizeof(l); |
|
void* mem = upb_Arena_Malloc(a, size + sizeof(upb_Message_Internal)); |
|
upb_Message* msg; |
|
if (UPB_UNLIKELY(!mem)) return NULL; |
|
msg = UPB_PTR_AT(mem, sizeof(upb_Message_Internal), upb_Message); |
|
memset(mem, 0, size); |
|
return msg; |
|
} |
|
|
|
/* Creates a new messages with the given layout on the given arena. */ |
|
upb_Message* _upb_Message_New(const upb_MiniTable* l, upb_Arena* a); |
|
|
|
UPB_INLINE upb_Message_Internal* upb_Message_Getinternal(upb_Message* msg) { |
|
ptrdiff_t size = sizeof(upb_Message_Internal); |
|
return (upb_Message_Internal*)((char*)msg - size); |
|
} |
|
|
|
/* Clears the given message. */ |
|
void _upb_Message_Clear(upb_Message* msg, const upb_MiniTable* l); |
|
|
|
/* Discards the unknown fields for this message only. */ |
|
void _upb_Message_DiscardUnknown_shallow(upb_Message* msg); |
|
|
|
/* Adds unknown data (serialized protobuf data) to the given message. The data |
|
* is copied into the message instance. */ |
|
bool _upb_Message_AddUnknown(upb_Message* msg, const char* data, size_t len, |
|
upb_Arena* arena); |
|
|
|
/** upb_Message_Extension *****************************************************/ |
|
|
|
/* The internal representation of an extension is self-describing: it contains |
|
* enough information that we can serialize it to binary format without needing |
|
* to look it up in a upb_ExtensionRegistry. |
|
* |
|
* This representation allocates 16 bytes to data on 64-bit platforms. This is |
|
* rather wasteful for scalars (in the extreme case of bool, it wastes 15 |
|
* bytes). We accept this because we expect messages to be the most common |
|
* extension type. */ |
|
typedef struct { |
|
const upb_MiniTable_Extension* ext; |
|
union { |
|
upb_StringView str; |
|
void* ptr; |
|
char scalar_data[8]; |
|
} data; |
|
} upb_Message_Extension; |
|
|
|
/* Adds the given extension data to the given message. |ext| is copied into the |
|
* message instance. This logically replaces any previously-added extension with |
|
* this number */ |
|
upb_Message_Extension* _upb_Message_GetOrCreateExtension( |
|
upb_Message* msg, const upb_MiniTable_Extension* ext, upb_Arena* arena); |
|
|
|
/* Returns an array of extensions for this message. Note: the array is |
|
* ordered in reverse relative to the order of creation. */ |
|
const upb_Message_Extension* _upb_Message_Getexts(const upb_Message* msg, |
|
size_t* count); |
|
|
|
/* Returns an extension for the given field number, or NULL if no extension |
|
* exists for this field number. */ |
|
const upb_Message_Extension* _upb_Message_Getext( |
|
const upb_Message* msg, const upb_MiniTable_Extension* ext); |
|
|
|
void _upb_Message_Clearext(upb_Message* msg, |
|
const upb_MiniTable_Extension* ext); |
|
|
|
void _upb_Message_Clearext(upb_Message* msg, |
|
const upb_MiniTable_Extension* ext); |
|
|
|
/** Hasbit access *************************************************************/ |
|
|
|
UPB_INLINE bool _upb_hasbit(const upb_Message* msg, size_t idx) { |
|
return (*UPB_PTR_AT(msg, idx / 8, const char) & (1 << (idx % 8))) != 0; |
|
} |
|
|
|
UPB_INLINE void _upb_sethas(const upb_Message* msg, size_t idx) { |
|
(*UPB_PTR_AT(msg, idx / 8, char)) |= (char)(1 << (idx % 8)); |
|
} |
|
|
|
UPB_INLINE void _upb_clearhas(const upb_Message* msg, size_t idx) { |
|
(*UPB_PTR_AT(msg, idx / 8, char)) &= (char)(~(1 << (idx % 8))); |
|
} |
|
|
|
UPB_INLINE size_t _upb_Message_Hasidx(const upb_MiniTable_Field* f) { |
|
UPB_ASSERT(f->presence > 0); |
|
return f->presence; |
|
} |
|
|
|
UPB_INLINE bool _upb_hasbit_field(const upb_Message* msg, |
|
const upb_MiniTable_Field* f) { |
|
return _upb_hasbit(msg, _upb_Message_Hasidx(f)); |
|
} |
|
|
|
UPB_INLINE void _upb_sethas_field(const upb_Message* msg, |
|
const upb_MiniTable_Field* f) { |
|
_upb_sethas(msg, _upb_Message_Hasidx(f)); |
|
} |
|
|
|
UPB_INLINE void _upb_clearhas_field(const upb_Message* msg, |
|
const upb_MiniTable_Field* f) { |
|
_upb_clearhas(msg, _upb_Message_Hasidx(f)); |
|
} |
|
|
|
/** Oneof case access *********************************************************/ |
|
|
|
UPB_INLINE uint32_t* _upb_oneofcase(upb_Message* msg, size_t case_ofs) { |
|
return UPB_PTR_AT(msg, case_ofs, uint32_t); |
|
} |
|
|
|
UPB_INLINE uint32_t _upb_getoneofcase(const void* msg, size_t case_ofs) { |
|
return *UPB_PTR_AT(msg, case_ofs, uint32_t); |
|
} |
|
|
|
UPB_INLINE size_t _upb_oneofcase_ofs(const upb_MiniTable_Field* f) { |
|
UPB_ASSERT(f->presence < 0); |
|
return ~(ptrdiff_t)f->presence; |
|
} |
|
|
|
UPB_INLINE uint32_t* _upb_oneofcase_field(upb_Message* msg, |
|
const upb_MiniTable_Field* f) { |
|
return _upb_oneofcase(msg, _upb_oneofcase_ofs(f)); |
|
} |
|
|
|
UPB_INLINE uint32_t _upb_getoneofcase_field(const upb_Message* msg, |
|
const upb_MiniTable_Field* f) { |
|
return _upb_getoneofcase(msg, _upb_oneofcase_ofs(f)); |
|
} |
|
|
|
UPB_INLINE bool _upb_has_submsg_nohasbit(const upb_Message* msg, size_t ofs) { |
|
return *UPB_PTR_AT(msg, ofs, const upb_Message*) != NULL; |
|
} |
|
|
|
/** upb_Map *******************************************************************/ |
|
|
|
/* Right now we use strmaps for everything. We'll likely want to use |
|
* integer-specific maps for integer-keyed maps.*/ |
|
struct upb_Map { |
|
/* Size of key and val, based on the map type. Strings are represented as '0' |
|
* because they must be handled specially. */ |
|
char key_size; |
|
char val_size; |
|
|
|
upb_strtable table; |
|
}; |
|
|
|
/* Map entries aren't actually stored, they are only used during parsing. For |
|
* parsing, it helps a lot if all map entry messages have the same layout. |
|
* The compiler and def.c must ensure that all map entries have this layout. */ |
|
typedef struct { |
|
upb_Message_Internal internal; |
|
union { |
|
upb_StringView str; /* For str/bytes. */ |
|
upb_value val; /* For all other types. */ |
|
} k; |
|
union { |
|
upb_StringView str; /* For str/bytes. */ |
|
upb_value val; /* For all other types. */ |
|
} v; |
|
} upb_MapEntry; |
|
|
|
/* Creates a new map on the given arena with this key/value type. */ |
|
upb_Map* _upb_Map_New(upb_Arena* a, size_t key_size, size_t value_size); |
|
|
|
/* Converting between internal table representation and user values. |
|
* |
|
* _upb_map_tokey() and _upb_map_fromkey() are inverses. |
|
* _upb_map_tovalue() and _upb_map_fromvalue() are inverses. |
|
* |
|
* These functions account for the fact that strings are treated differently |
|
* from other types when stored in a map. |
|
*/ |
|
|
|
UPB_INLINE upb_StringView _upb_map_tokey(const void* key, size_t size) { |
|
if (size == UPB_MAPTYPE_STRING) { |
|
return *(upb_StringView*)key; |
|
} else { |
|
return upb_StringView_FromDataAndSize((const char*)key, size); |
|
} |
|
} |
|
|
|
UPB_INLINE void _upb_map_fromkey(upb_StringView key, void* out, size_t size) { |
|
if (size == UPB_MAPTYPE_STRING) { |
|
memcpy(out, &key, sizeof(key)); |
|
} else { |
|
memcpy(out, key.data, size); |
|
} |
|
} |
|
|
|
UPB_INLINE bool _upb_map_tovalue(const void* val, size_t size, |
|
upb_value* msgval, upb_Arena* a) { |
|
if (size == UPB_MAPTYPE_STRING) { |
|
upb_StringView* strp = (upb_StringView*)upb_Arena_Malloc(a, sizeof(*strp)); |
|
if (!strp) return false; |
|
*strp = *(upb_StringView*)val; |
|
*msgval = upb_value_ptr(strp); |
|
} else { |
|
memcpy(msgval, val, size); |
|
} |
|
return true; |
|
} |
|
|
|
UPB_INLINE void _upb_map_fromvalue(upb_value val, void* out, size_t size) { |
|
if (size == UPB_MAPTYPE_STRING) { |
|
const upb_StringView* strp = (const upb_StringView*)upb_value_getptr(val); |
|
memcpy(out, strp, sizeof(upb_StringView)); |
|
} else { |
|
memcpy(out, &val, size); |
|
} |
|
} |
|
|
|
/* Map operations, shared by reflection and generated code. */ |
|
|
|
UPB_INLINE size_t _upb_Map_Size(const upb_Map* map) { |
|
return map->table.t.count; |
|
} |
|
|
|
UPB_INLINE bool _upb_Map_Get(const upb_Map* map, const void* key, |
|
size_t key_size, void* val, size_t val_size) { |
|
upb_value tabval; |
|
upb_StringView k = _upb_map_tokey(key, key_size); |
|
bool ret = upb_strtable_lookup2(&map->table, k.data, k.size, &tabval); |
|
if (ret && val) { |
|
_upb_map_fromvalue(tabval, val, val_size); |
|
} |
|
return ret; |
|
} |
|
|
|
UPB_INLINE void* _upb_map_next(const upb_Map* map, size_t* iter) { |
|
upb_strtable_iter it; |
|
it.t = &map->table; |
|
it.index = *iter; |
|
upb_strtable_next(&it); |
|
*iter = it.index; |
|
if (upb_strtable_done(&it)) return NULL; |
|
return (void*)str_tabent(&it); |
|
} |
|
|
|
typedef enum { |
|
// LINT.IfChange |
|
_kUpb_MapInsertStatus_Inserted = 0, |
|
_kUpb_MapInsertStatus_Replaced = 1, |
|
_kUpb_MapInsertStatus_OutOfMemory = 2, |
|
// LINT.ThenChange(//depot/google3/third_party/upb/upb/map.h) |
|
} _upb_MapInsertStatus; |
|
|
|
UPB_INLINE _upb_MapInsertStatus _upb_Map_Insert(upb_Map* map, const void* key, |
|
size_t key_size, void* val, |
|
size_t val_size, upb_Arena* a) { |
|
upb_StringView strkey = _upb_map_tokey(key, key_size); |
|
upb_value tabval = {0}; |
|
if (!_upb_map_tovalue(val, val_size, &tabval, a)) { |
|
return _kUpb_MapInsertStatus_OutOfMemory; |
|
} |
|
|
|
/* TODO(haberman): add overwrite operation to minimize number of lookups. */ |
|
bool removed = |
|
upb_strtable_remove2(&map->table, strkey.data, strkey.size, NULL); |
|
if (!upb_strtable_insert(&map->table, strkey.data, strkey.size, tabval, a)) { |
|
return _kUpb_MapInsertStatus_OutOfMemory; |
|
} |
|
return removed ? _kUpb_MapInsertStatus_Replaced |
|
: _kUpb_MapInsertStatus_Inserted; |
|
} |
|
|
|
UPB_INLINE bool _upb_Map_Delete(upb_Map* map, const void* key, |
|
size_t key_size) { |
|
upb_StringView k = _upb_map_tokey(key, key_size); |
|
return upb_strtable_remove2(&map->table, k.data, k.size, NULL); |
|
} |
|
|
|
UPB_INLINE void _upb_Map_Clear(upb_Map* map) { |
|
upb_strtable_clear(&map->table); |
|
} |
|
|
|
/* Message map operations, these get the map from the message first. */ |
|
|
|
UPB_INLINE size_t _upb_msg_map_size(const upb_Message* msg, size_t ofs) { |
|
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); |
|
return map ? _upb_Map_Size(map) : 0; |
|
} |
|
|
|
UPB_INLINE bool _upb_msg_map_get(const upb_Message* msg, size_t ofs, |
|
const void* key, size_t key_size, void* val, |
|
size_t val_size) { |
|
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); |
|
if (!map) return false; |
|
return _upb_Map_Get(map, key, key_size, val, val_size); |
|
} |
|
|
|
UPB_INLINE void* _upb_msg_map_next(const upb_Message* msg, size_t ofs, |
|
size_t* iter) { |
|
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); |
|
if (!map) return NULL; |
|
return _upb_map_next(map, iter); |
|
} |
|
|
|
UPB_INLINE bool _upb_msg_map_set(upb_Message* msg, size_t ofs, const void* key, |
|
size_t key_size, void* val, size_t val_size, |
|
upb_Arena* arena) { |
|
upb_Map** map = UPB_PTR_AT(msg, ofs, upb_Map*); |
|
if (!*map) { |
|
*map = _upb_Map_New(arena, key_size, val_size); |
|
} |
|
return _upb_Map_Insert(*map, key, key_size, val, val_size, arena) != |
|
_kUpb_MapInsertStatus_OutOfMemory; |
|
} |
|
|
|
UPB_INLINE bool _upb_msg_map_delete(upb_Message* msg, size_t ofs, |
|
const void* key, size_t key_size) { |
|
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); |
|
if (!map) return false; |
|
return _upb_Map_Delete(map, key, key_size); |
|
} |
|
|
|
UPB_INLINE void _upb_msg_map_clear(upb_Message* msg, size_t ofs) { |
|
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); |
|
if (!map) return; |
|
_upb_Map_Clear(map); |
|
} |
|
|
|
/* Accessing map key/value from a pointer, used by generated code only. */ |
|
|
|
UPB_INLINE void _upb_msg_map_key(const void* msg, void* key, size_t size) { |
|
const upb_tabent* ent = (const upb_tabent*)msg; |
|
uint32_t u32len; |
|
upb_StringView k; |
|
k.data = upb_tabstr(ent->key, &u32len); |
|
k.size = u32len; |
|
_upb_map_fromkey(k, key, size); |
|
} |
|
|
|
UPB_INLINE void _upb_msg_map_value(const void* msg, void* val, size_t size) { |
|
const upb_tabent* ent = (const upb_tabent*)msg; |
|
upb_value v = {ent->val.val}; |
|
_upb_map_fromvalue(v, val, size); |
|
} |
|
|
|
UPB_INLINE void _upb_msg_map_set_value(void* msg, const void* val, |
|
size_t size) { |
|
upb_tabent* ent = (upb_tabent*)msg; |
|
/* This is like _upb_map_tovalue() except the entry already exists so we can |
|
* reuse the allocated upb_StringView for string fields. */ |
|
if (size == UPB_MAPTYPE_STRING) { |
|
upb_StringView* strp = (upb_StringView*)(uintptr_t)ent->val.val; |
|
memcpy(strp, val, sizeof(*strp)); |
|
} else { |
|
memcpy(&ent->val.val, val, size); |
|
} |
|
} |
|
|
|
#ifdef __cplusplus |
|
} /* extern "C" */ |
|
#endif |
|
|
|
#include "upb/port_undef.inc" |
|
|
|
#endif /* UPB_MSG_INT_H_ */
|
|
|