Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
496 lines
16 KiB
496 lines
16 KiB
/* |
|
* upb - a minimalist implementation of protocol buffers. |
|
* |
|
* Copyright (c) 2013 Google Inc. See LICENSE for details. |
|
* Author: Josh Haberman <jhaberman@gmail.com> |
|
* |
|
* Driver code for the x64 JIT compiler. |
|
*/ |
|
|
|
#include <dlfcn.h> |
|
#include <stdio.h> |
|
#include <sys/mman.h> |
|
#include <unistd.h> |
|
#include "upb/pb/decoder.h" |
|
#include "upb/pb/decoder.int.h" |
|
#include "upb/pb/varint.int.h" |
|
#include "upb/shim/shim.h" |
|
|
|
// To debug the JIT: |
|
// |
|
// 1. Uncomment: |
|
// #define UPB_JIT_LOAD_SO |
|
// |
|
// Note: this mode requires that we can shell out to gcc. |
|
// |
|
// 2. Run the test once locally. This will load the JIT code by building a |
|
// .so (/tmp/upb-jit-code.so) and using dlopen, so more of the tooling will |
|
// work properly (like GDB). |
|
// |
|
// IF YOU ALSO WANT AUTOMATIC JIT DEBUG OUTPUT: |
|
// |
|
// 3. Run: upb/pb/make-gdb-script.rb > script.gdb. This reads |
|
// /tmp/upb-jit-code.so as input and generates a GDB script that is specific |
|
// to this jit code. |
|
// |
|
// 4. Run: gdb --command=script.gdb --args path/to/test |
|
// This will drop you to a GDB prompt which you can now use normally. |
|
// But when you run the test it will print a message to stdout every time |
|
// the JIT executes assembly for a particular bytecode. Sample output: |
|
// |
|
// X.enterjit bytes=18 |
|
// buf_ofs=1 data_rem=17 delim_rem=-2 X.0x6.OP_PARSE_DOUBLE |
|
// buf_ofs=9 data_rem=9 delim_rem=-10 X.0x7.OP_CHECKDELIM |
|
// buf_ofs=9 data_rem=9 delim_rem=-10 X.0x8.OP_TAG1 |
|
// X.0x3.dispatch.DecoderTest |
|
// X.parse_unknown |
|
// X.0x3.dispatch.DecoderTest |
|
// X.decode_unknown_tag_fallback |
|
// X.exitjit |
|
// |
|
// This output should roughly correspond to the output that the bytecode |
|
// interpreter emits when compiled with UPB_DUMP_BYTECODE (modulo some |
|
// extra JIT-specific output). |
|
|
|
// These defines are necessary for DynASM codegen. |
|
// See dynasm/dasm_proto.h for more info. |
|
#define Dst_DECL jitcompiler *jc |
|
#define Dst_REF (jc->dynasm) |
|
#define Dst (jc) |
|
|
|
// In debug mode, make DynASM do internal checks (must be defined before any |
|
// dasm header is included. |
|
#ifndef NDEBUG |
|
#define DASM_CHECKS |
|
#endif |
|
|
|
#ifndef MAP_ANONYMOUS |
|
#define MAP_ANONYMOUS MAP_ANON |
|
#endif |
|
|
|
typedef struct { |
|
mgroup *group; |
|
uint32_t *pc; |
|
|
|
// This pointer is allocated by dasm_init() and freed by dasm_free(). |
|
struct dasm_State *dynasm; |
|
|
|
// Maps some key (an arbitrary void*) to a pclabel. |
|
// |
|
// The pclabel represents a location in the generated code -- DynASM exposes |
|
// a pclabel -> (machine code offset) lookup function. |
|
// |
|
// The key can be anything. There are two main kinds of keys: |
|
// - bytecode location -- the void* points to the bytecode instruction |
|
// itself. We can then use this to generate jumps to this instruction. |
|
// - other object (like dispatch table). We use these to represent parts |
|
// of the generated code that do not exactly correspond to a bytecode |
|
// instruction. |
|
upb_inttable jmptargets; |
|
|
|
#ifndef NDEBUG |
|
// Like jmptargets, but members are present in the table when they have had |
|
// define_jmptarget() (as opposed to jmptarget) called. Used to verify that |
|
// define_jmptarget() is called exactly once for every target. |
|
// The value is ignored. |
|
upb_inttable jmpdefined; |
|
|
|
// For checking that two asmlabels aren't defined for the same byte. |
|
int lastlabelofs; |
|
#endif |
|
|
|
#ifdef UPB_JIT_LOAD_SO |
|
// For marking labels that should go into the generated code. |
|
// Maps pclabel -> char* label (string is owned by the table). |
|
upb_inttable asmlabels; |
|
#endif |
|
|
|
// The total number of pclabels currently defined. |
|
// Note that this contains both jmptargets and asmlabels, which both use |
|
// pclabels but for different purposes. |
|
uint32_t pclabel_count; |
|
|
|
// Used by DynASM to store globals. |
|
void **globals; |
|
} jitcompiler; |
|
|
|
// Functions called by codegen. |
|
static int jmptarget(jitcompiler *jc, const void *key); |
|
static int define_jmptarget(jitcompiler *jc, const void *key); |
|
static void asmlabel(jitcompiler *jc, const char *fmt, ...); |
|
static int pcofs(jitcompiler* jc); |
|
static int alloc_pclabel(jitcompiler *jc); |
|
|
|
#ifdef UPB_JIT_LOAD_SO |
|
static char *upb_vasprintf(const char *fmt, va_list ap); |
|
static char *upb_asprintf(const char *fmt, ...); |
|
#endif |
|
|
|
#include "dynasm/dasm_proto.h" |
|
#include "dynasm/dasm_x86.h" |
|
#include "upb/pb/compile_decoder_x64.h" |
|
|
|
static jitcompiler *newjitcompiler(mgroup *group) { |
|
jitcompiler *jc = malloc(sizeof(jitcompiler)); |
|
jc->group = group; |
|
jc->pclabel_count = 0; |
|
upb_inttable_init(&jc->jmptargets, UPB_CTYPE_UINT32); |
|
#ifndef NDEBUG |
|
jc->lastlabelofs = -1; |
|
upb_inttable_init(&jc->jmpdefined, UPB_CTYPE_BOOL); |
|
#endif |
|
#ifdef UPB_JIT_LOAD_SO |
|
upb_inttable_init(&jc->asmlabels, UPB_CTYPE_PTR); |
|
#endif |
|
jc->globals = malloc(UPB_JIT_GLOBAL__MAX * sizeof(*jc->globals)); |
|
|
|
dasm_init(jc, 1); |
|
dasm_setupglobal(jc, jc->globals, UPB_JIT_GLOBAL__MAX); |
|
dasm_setup(jc, upb_jit_actionlist); |
|
|
|
return jc; |
|
} |
|
|
|
static void freejitcompiler(jitcompiler *jc) { |
|
#ifdef UPB_JIT_LOAD_SO |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, &jc->asmlabels); |
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
free(upb_value_getptr(upb_inttable_iter_value(&i))); |
|
} |
|
upb_inttable_uninit(&jc->asmlabels); |
|
#endif |
|
#ifndef NDEBUG |
|
upb_inttable_uninit(&jc->jmpdefined); |
|
#endif |
|
upb_inttable_uninit(&jc->jmptargets); |
|
dasm_free(jc); |
|
free(jc->globals); |
|
free(jc); |
|
} |
|
|
|
#ifdef UPB_JIT_LOAD_SO |
|
|
|
// Like sprintf except allocates the string, which is returned and owned by the |
|
// caller. |
|
// |
|
// Like the GNU extension asprintf(), except we abort on error (since this is |
|
// only for debugging). |
|
static char *upb_vasprintf(const char *fmt, va_list args) { |
|
// Run once to get the length of the string. |
|
va_list args_copy; |
|
va_copy(args_copy, args); |
|
int len = vsnprintf(NULL, 0, fmt, args_copy); |
|
va_end(args_copy); |
|
|
|
char *ret = malloc(len + 1); // + 1 for NULL terminator. |
|
if (!ret) abort(); |
|
int written = vsnprintf(ret, len + 1, fmt, args); |
|
UPB_ASSERT_VAR(written, written == len); |
|
|
|
return ret; |
|
} |
|
|
|
static char *upb_asprintf(const char *fmt, ...) { |
|
va_list args; |
|
va_start(args, fmt); |
|
char *ret = upb_vasprintf(fmt, args); |
|
va_end(args); |
|
return ret; |
|
} |
|
|
|
#endif |
|
|
|
static int alloc_pclabel(jitcompiler *jc) { |
|
int newpc = jc->pclabel_count++; |
|
dasm_growpc(jc, jc->pclabel_count); |
|
return newpc; |
|
} |
|
|
|
static bool try_getjmptarget(jitcompiler *jc, const void *key, int *pclabel) { |
|
upb_value v; |
|
if (upb_inttable_lookupptr(&jc->jmptargets, key, &v)) { |
|
*pclabel = upb_value_getuint32(v); |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
// Gets the pclabel for this bytecode location's jmptarget. Requires that the |
|
// jmptarget() has been previously defined. |
|
static int getjmptarget(jitcompiler *jc, const void *key) { |
|
int pclabel = 0; |
|
assert(upb_inttable_lookupptr(&jc->jmpdefined, key, NULL)); |
|
bool ok = try_getjmptarget(jc, key, &pclabel); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return pclabel; |
|
} |
|
|
|
// Returns a pclabel that serves as a jmp target for the given bytecode pointer. |
|
// This should only be called for code that is jumping to the target; code |
|
// defining the target should use define_jmptarget(). |
|
// |
|
// Creates/allocates a pclabel for this target if one does not exist already. |
|
static int jmptarget(jitcompiler *jc, const void *key) { |
|
int pclabel; |
|
if (!try_getjmptarget(jc, key, &pclabel)) { |
|
pclabel = alloc_pclabel(jc); |
|
upb_inttable_insertptr(&jc->jmptargets, key, upb_value_uint32(pclabel)); |
|
} |
|
return pclabel; |
|
} |
|
|
|
// Defines a pclabel associated with the given bytecode location. |
|
// Must be called exactly once by the code that is generating the code for this |
|
// bytecode. |
|
// |
|
// Must be called exactly once before bytecode generation is complete (this is a |
|
// sanity check to make sure the label is defined exactly once). |
|
static int define_jmptarget(jitcompiler *jc, const void *key) { |
|
#ifndef NDEBUG |
|
upb_inttable_insertptr(&jc->jmpdefined, key, upb_value_bool(true)); |
|
#endif |
|
return jmptarget(jc, key); |
|
} |
|
|
|
// Returns a bytecode pc offset relative to the beginning of the group's code. |
|
static int pcofs(jitcompiler *jc) { |
|
return jc->pc - jc->group->bytecode; |
|
} |
|
|
|
// Returns a machine code offset corresponding to the given key. |
|
// Requires that this key was defined with define_jmptarget. |
|
static int machine_code_ofs(jitcompiler *jc, const void *key) { |
|
int pclabel = getjmptarget(jc, key); |
|
// Despite its name, this function takes a pclabel and returns the |
|
// corresponding machine code offset. |
|
return dasm_getpclabel(jc, pclabel); |
|
} |
|
|
|
// Returns a machine code offset corresponding to the given method-relative |
|
// bytecode offset. Note that the bytecode offset is relative to the given |
|
// method, but the returned machine code offset is relative to the beginning of |
|
// *all* the machine code. |
|
static int machine_code_ofs2(jitcompiler *jc, const upb_pbdecodermethod *method, |
|
int pcofs) { |
|
void *bc_target = jc->group->bytecode + method->code_base.ofs + pcofs; |
|
return machine_code_ofs(jc, bc_target); |
|
} |
|
|
|
// Given a pcofs relative to this method's base, returns a machine code offset |
|
// relative to jmptarget(dispatch->array) (which is used in jitdispatch as the |
|
// machine code base for dispatch table lookups). |
|
uint32_t dispatchofs(jitcompiler *jc, const upb_pbdecodermethod *method, |
|
int pcofs) { |
|
int mc_base = machine_code_ofs(jc, method->dispatch.array); |
|
int mc_target = machine_code_ofs2(jc, method, pcofs); |
|
assert(mc_base > 0); |
|
assert(mc_target > 0); |
|
int ret = mc_target - mc_base; |
|
assert(ret > 0); |
|
return ret; |
|
} |
|
|
|
// Rewrites the dispatch tables into machine code offsets. |
|
static void patchdispatch(jitcompiler *jc) { |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, &jc->group->methods); |
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); |
|
method->is_native_ = true; |
|
|
|
upb_inttable *dispatch = &method->dispatch; |
|
|
|
// Remove DISPATCH_ENDMSG -- only the bytecode interpreter needs it. |
|
// And leaving it around will cause us to find field 0 improperly. |
|
upb_inttable_remove(dispatch, DISPATCH_ENDMSG, NULL); |
|
|
|
upb_inttable_iter i2; |
|
upb_inttable_begin(&i2, dispatch); |
|
for (; !upb_inttable_done(&i2); upb_inttable_next(&i2)) { |
|
uintptr_t key = upb_inttable_iter_key(&i2); |
|
uint64_t val = upb_value_getuint64(upb_inttable_iter_value(&i2)); |
|
uint64_t newval; |
|
if (key <= UPB_MAX_FIELDNUMBER) { |
|
// Primary slot. |
|
uint64_t ofs; |
|
uint8_t wt1; |
|
uint8_t wt2; |
|
upb_pbdecoder_unpackdispatch(val, &ofs, &wt1, &wt2); |
|
|
|
// Update offset and repack. |
|
ofs = dispatchofs(jc, method, ofs); |
|
newval = upb_pbdecoder_packdispatch(ofs, wt1, wt2); |
|
assert((int64_t)newval > 0); |
|
} else { |
|
// Secondary slot. Since we have 64 bits for the value, we use an |
|
// absolute offset. |
|
int mcofs = machine_code_ofs2(jc, method, val); |
|
newval = (uint64_t)(jc->group->jit_code + mcofs); |
|
} |
|
bool ok = upb_inttable_replace(dispatch, key, upb_value_uint64(newval)); |
|
UPB_ASSERT_VAR(ok, ok); |
|
} |
|
|
|
// Update entry point for this method to point at mc base instead of bc |
|
// base. Set this only *after* we have patched the offsets |
|
// (machine_code_ofs2() uses this). |
|
method->code_base.ptr = jc->group->jit_code + machine_code_ofs(jc, method); |
|
|
|
upb_byteshandler *h = &method->input_handler_; |
|
upb_byteshandler_setstartstr(h, upb_pbdecoder_startjit, NULL); |
|
upb_byteshandler_setstring(h, jc->group->jit_code, method->code_base.ptr); |
|
upb_byteshandler_setendstr(h, upb_pbdecoder_end, method); |
|
} |
|
} |
|
|
|
#ifdef UPB_JIT_LOAD_SO |
|
|
|
static void load_so(jitcompiler *jc) { |
|
// Dump to a .so file in /tmp and load that, so all the tooling works right |
|
// (for example, debuggers and profilers will see symbol names for the JIT-ted |
|
// code). This is the same goal of the GDB JIT code below, but the GDB JIT |
|
// interface is only used/understood by GDB. Hopefully a standard will |
|
// develop for registering JIT-ted code that all tools will recognize, |
|
// rendering this obsolete. |
|
|
|
// jc->asmlabels maps: |
|
// pclabel -> char* label |
|
// |
|
// Use this to build mclabels, which maps: |
|
// machine code offset -> char* label |
|
// |
|
// Then we can use mclabels to emit the labels as we iterate over the bytes we |
|
// are outputting. |
|
upb_inttable_iter i; |
|
upb_inttable mclabels; |
|
upb_inttable_init(&mclabels, UPB_CTYPE_PTR); |
|
upb_inttable_begin(&i, &jc->asmlabels); |
|
for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
upb_inttable_insert(&mclabels, |
|
dasm_getpclabel(jc, upb_inttable_iter_key(&i)), |
|
upb_inttable_iter_value(&i)); |
|
} |
|
|
|
// We write a .s file in text format, as input to the assembler. |
|
// Then we run gcc to turn it into a .so file. |
|
// |
|
// The last "XXXXXX" will be replaced with something randomly generated by |
|
// mkstmemp(). We don't add ".s" to this filename because it makes the string |
|
// processing for mkstemp() and system() more complicated. |
|
char s_filename[] = "/tmp/upb-jit-codeXXXXXX"; |
|
int fd = mkstemp(s_filename); |
|
FILE *f; |
|
if (fd >= 0 && (f = fdopen(fd, "wb")) != NULL) { |
|
uint8_t *jit_code = (uint8_t*)jc->group->jit_code; |
|
fputs(" .text\n\n", f); |
|
size_t linelen = 0; |
|
for (size_t i = 0; i < jc->group->jit_size; i++) { |
|
upb_value v; |
|
if (upb_inttable_lookup(&mclabels, i, &v)) { |
|
const char *label = upb_value_getptr(v); |
|
// "X." makes our JIT syms recognizable as such, which we build into |
|
// other tooling. |
|
fprintf(f, "\n\nX.%s:\n", label); |
|
fprintf(f, " .globl X.%s", label); |
|
linelen = 1000; |
|
} |
|
if (linelen >= 77) { |
|
linelen = fprintf(f, "\n .byte %u", jit_code[i]); |
|
} else { |
|
linelen += fprintf(f, ",%u", jit_code[i]); |
|
} |
|
} |
|
fputs("\n", f); |
|
fclose(f); |
|
} else { |
|
fprintf(stderr, "Error opening tmp file for JIT debug output.\n"); |
|
abort(); |
|
} |
|
|
|
// This is exploitable if you have an adversary on your machine who can write |
|
// to this tmp directory. But this is just for debugging so we don't worry |
|
// too much about that. It shouldn't be prone to races against concurrent |
|
// (non-adversarial) upb JIT's because we used mkstemp(). |
|
char *cmd = upb_asprintf("gcc -shared -o %s.so -x assembler %s", s_filename, |
|
s_filename); |
|
if (system(cmd) != 0) { |
|
fprintf(stderr, "Error compiling %s\n", s_filename); |
|
abort(); |
|
} |
|
free(cmd); |
|
|
|
char *so_filename = upb_asprintf("%s.so", s_filename); |
|
|
|
// Some convenience symlinks. |
|
// This is racy, but just for convenience. |
|
unlink("/tmp/upb-jit-code.so"); |
|
unlink("/tmp/upb-jit-code.s"); |
|
symlink(s_filename, "/tmp/upb-jit-code.s"); |
|
symlink(so_filename, "/tmp/upb-jit-code.so"); |
|
|
|
jc->group->dl = dlopen(so_filename, RTLD_LAZY); |
|
free(so_filename); |
|
if (!jc->group->dl) { |
|
fprintf(stderr, "Couldn't dlopen(): %s\n", dlerror()); |
|
abort(); |
|
} |
|
|
|
munmap(jc->group->jit_code, jc->group->jit_size); |
|
jc->group->jit_code = dlsym(jc->group->dl, "X.enterjit"); |
|
if (!jc->group->jit_code) { |
|
fprintf(stderr, "Couldn't find enterjit sym\n"); |
|
abort(); |
|
} |
|
|
|
upb_inttable_uninit(&mclabels); |
|
} |
|
|
|
#endif |
|
|
|
void upb_pbdecoder_jit(mgroup *group) { |
|
group->debug_info = NULL; |
|
group->dl = NULL; |
|
|
|
assert(group->bytecode); |
|
jitcompiler *jc = newjitcompiler(group); |
|
emit_static_asm(jc); |
|
jitbytecode(jc); |
|
|
|
int dasm_status = dasm_link(jc, &jc->group->jit_size); |
|
if (dasm_status != DASM_S_OK) { |
|
fprintf(stderr, "DynASM error; returned status: 0x%08x\n", dasm_status); |
|
abort(); |
|
} |
|
|
|
char *jit_code = mmap(NULL, jc->group->jit_size, PROT_READ | PROT_WRITE, |
|
MAP_ANONYMOUS | MAP_PRIVATE, 0, 0); |
|
dasm_encode(jc, jit_code); |
|
mprotect(jit_code, jc->group->jit_size, PROT_EXEC | PROT_READ); |
|
jc->group->jit_code = (upb_string_handlerfunc *)jit_code; |
|
|
|
#ifdef UPB_JIT_LOAD_SO |
|
load_so(jc); |
|
#endif |
|
|
|
patchdispatch(jc); |
|
|
|
freejitcompiler(jc); |
|
|
|
// Now the bytecode is no longer needed. |
|
free(group->bytecode); |
|
group->bytecode = NULL; |
|
} |
|
|
|
void upb_pbdecoder_freejit(mgroup *group) { |
|
if (!group->jit_code) return; |
|
if (group->dl) { |
|
#ifdef UPB_JIT_LOAD_SO |
|
dlclose(group->dl); |
|
#endif |
|
} else { |
|
munmap(group->jit_code, group->jit_size); |
|
} |
|
free(group->debug_info); |
|
}
|
|
|