Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

597 lines
20 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "protobuf.h"
// -----------------------------------------------------------------------------
// Repeated field container type.
// -----------------------------------------------------------------------------
const rb_data_type_t RepeatedField_type = {
"Google::Protobuf::RepeatedField",
{ RepeatedField_mark, RepeatedField_free, NULL },
};
VALUE cRepeatedField;
RepeatedField* ruby_to_RepeatedField(VALUE _self) {
RepeatedField* self;
TypedData_Get_Struct(_self, RepeatedField, &RepeatedField_type, self);
return self;
}
/*
* call-seq:
* RepeatedField.each(&block)
*
* Invokes the block once for each element of the repeated field. RepeatedField
* also includes Enumerable; combined with this method, the repeated field thus
* acts like an ordinary Ruby sequence.
*/
VALUE RepeatedField_each(VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
upb_fieldtype_t field_type = self->field_type;
VALUE field_type_class = self->field_type_class;
int element_size = native_slot_size(field_type);
size_t off = 0;
for (int i = 0; i < self->size; i++, off += element_size) {
void* memory = (void *) (((uint8_t *)self->elements) + off);
VALUE val = native_slot_get(field_type, field_type_class, memory);
rb_yield(val);
}
return Qnil;
}
/*
* call-seq:
* RepeatedField.[](index) => value
*
* Accesses the element at the given index. Throws an exception on out-of-bounds
* errors.
*/
VALUE RepeatedField_index(VALUE _self, VALUE _index) {
RepeatedField* self = ruby_to_RepeatedField(_self);
int element_size = native_slot_size(self->field_type);
upb_fieldtype_t field_type = self->field_type;
VALUE field_type_class = self->field_type_class;
int index = NUM2INT(_index);
if (index < 0 || index >= self->size) {
rb_raise(rb_eRangeError, "Index out of range");
}
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size);
return native_slot_get(field_type, field_type_class, memory);
}
/*
* call-seq:
* RepeatedField.[]=(index, value)
*
* Sets the element at the given index. On out-of-bounds assignments, extends
* the array and fills the hole (if any) with default values.
*/
VALUE RepeatedField_index_set(VALUE _self, VALUE _index, VALUE val) {
RepeatedField* self = ruby_to_RepeatedField(_self);
upb_fieldtype_t field_type = self->field_type;
VALUE field_type_class = self->field_type_class;
int element_size = native_slot_size(field_type);
int index = NUM2INT(_index);
if (index < 0 || index >= (INT_MAX - 1)) {
rb_raise(rb_eRangeError, "Index out of range");
}
if (index >= self->size) {
RepeatedField_reserve(self, index + 1);
upb_fieldtype_t field_type = self->field_type;
int element_size = native_slot_size(field_type);
for (int i = self->size; i <= index; i++) {
void* elem = (void *)(((uint8_t *)self->elements) + i * element_size);
native_slot_init(field_type, elem);
}
self->size = index + 1;
}
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size);
native_slot_set(field_type, field_type_class, memory, val);
return Qnil;
}
static int kInitialSize = 8;
void RepeatedField_reserve(RepeatedField* self, int new_size) {
if (new_size <= self->capacity) {
return;
}
if (self->capacity == 0) {
self->capacity = kInitialSize;
}
while (self->capacity < new_size) {
self->capacity *= 2;
}
void* old_elems = self->elements;
int elem_size = native_slot_size(self->field_type);
self->elements = ALLOC_N(uint8_t, elem_size * self->capacity);
if (old_elems != NULL) {
memcpy(self->elements, old_elems, self->size * elem_size);
xfree(old_elems);
}
}
/*
* call-seq:
* RepeatedField.push(value)
*
* Adds a new element to the repeated field.
*/
VALUE RepeatedField_push(VALUE _self, VALUE val) {
RepeatedField* self = ruby_to_RepeatedField(_self);
upb_fieldtype_t field_type = self->field_type;
int element_size = native_slot_size(field_type);
RepeatedField_reserve(self, self->size + 1);
int index = self->size;
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size);
native_slot_set(field_type, self->field_type_class, memory, val);
// native_slot_set may raise an error; bump index only after set.
self->size++;
return _self;
}
// Used by parsing handlers.
void RepeatedField_push_native(VALUE _self, void* data) {
RepeatedField* self = ruby_to_RepeatedField(_self);
upb_fieldtype_t field_type = self->field_type;
int element_size = native_slot_size(field_type);
RepeatedField_reserve(self, self->size + 1);
int index = self->size;
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size);
memcpy(memory, data, element_size);
self->size++;
}
void* RepeatedField_index_native(VALUE _self, int index) {
RepeatedField* self = ruby_to_RepeatedField(_self);
upb_fieldtype_t field_type = self->field_type;
int element_size = native_slot_size(field_type);
return ((uint8_t *)self->elements) + index * element_size;
}
/*
* call-seq:
* RepeatedField.pop => value
*
* Removes the last element and returns it. Throws an exception if the repeated
* field is empty.
*/
VALUE RepeatedField_pop(VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
upb_fieldtype_t field_type = self->field_type;
VALUE field_type_class = self->field_type_class;
int element_size = native_slot_size(field_type);
if (self->size == 0) {
rb_raise(rb_eRangeError, "Pop from empty repeated field is not allowed.");
}
int index = self->size - 1;
void* memory = (void *) (((uint8_t *)self->elements) + index * element_size);
VALUE ret = native_slot_get(field_type, field_type_class, memory);
self->size--;
return ret;
}
/*
* call-seq:
* RepeatedField.insert(*args)
*
* Pushes each arg in turn onto the end of the repeated field.
*/
VALUE RepeatedField_insert(int argc, VALUE* argv, VALUE _self) {
for (int i = 0; i < argc; i++) {
RepeatedField_push(_self, argv[i]);
}
return Qnil;
}
/*
* call-seq:
* RepeatedField.replace(list)
*
* Replaces the contents of the repeated field with the given list of elements.
*/
VALUE RepeatedField_replace(VALUE _self, VALUE list) {
RepeatedField* self = ruby_to_RepeatedField(_self);
Check_Type(list, T_ARRAY);
self->size = 0;
for (int i = 0; i < RARRAY_LEN(list); i++) {
RepeatedField_push(_self, rb_ary_entry(list, i));
}
return Qnil;
}
/*
* call-seq:
* RepeatedField.clear
*
* Clears (removes all elements from) this repeated field.
*/
VALUE RepeatedField_clear(VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
self->size = 0;
return Qnil;
}
/*
* call-seq:
* RepeatedField.length
*
* Returns the length of this repeated field.
*/
VALUE RepeatedField_length(VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
return INT2NUM(self->size);
}
static VALUE RepeatedField_new_this_type(VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
VALUE new_rptfield = Qnil;
VALUE element_type = fieldtype_to_ruby(self->field_type);
if (self->field_type_class != Qnil) {
new_rptfield = rb_funcall(CLASS_OF(_self), rb_intern("new"), 2,
element_type, self->field_type_class);
} else {
new_rptfield = rb_funcall(CLASS_OF(_self), rb_intern("new"), 1,
element_type);
}
return new_rptfield;
}
/*
* call-seq:
* RepeatedField.dup => repeated_field
*
* Duplicates this repeated field with a shallow copy. References to all
* non-primitive element objects (e.g., submessages) are shared.
*/
VALUE RepeatedField_dup(VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
VALUE new_rptfield = RepeatedField_new_this_type(_self);
RepeatedField* new_rptfield_self = ruby_to_RepeatedField(new_rptfield);
RepeatedField_reserve(new_rptfield_self, self->size);
upb_fieldtype_t field_type = self->field_type;
size_t elem_size = native_slot_size(field_type);
size_t off = 0;
for (int i = 0; i < self->size; i++, off += elem_size) {
void* to_mem = (uint8_t *)new_rptfield_self->elements + off;
void* from_mem = (uint8_t *)self->elements + off;
native_slot_dup(field_type, to_mem, from_mem);
new_rptfield_self->size++;
}
return new_rptfield;
}
// Internal only: used by Google::Protobuf.deep_copy.
VALUE RepeatedField_deep_copy(VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
VALUE new_rptfield = RepeatedField_new_this_type(_self);
RepeatedField* new_rptfield_self = ruby_to_RepeatedField(new_rptfield);
RepeatedField_reserve(new_rptfield_self, self->size);
upb_fieldtype_t field_type = self->field_type;
size_t elem_size = native_slot_size(field_type);
size_t off = 0;
for (int i = 0; i < self->size; i++, off += elem_size) {
void* to_mem = (uint8_t *)new_rptfield_self->elements + off;
void* from_mem = (uint8_t *)self->elements + off;
native_slot_deep_copy(field_type, to_mem, from_mem);
new_rptfield_self->size++;
}
return new_rptfield;
}
/*
* call-seq:
* RepeatedField.==(other) => boolean
*
* Compares this repeated field to another. Repeated fields are equal if their
* element types are equal, their lengths are equal, and each element is equal.
* Elements are compared as per normal Ruby semantics, by calling their :==
* methods (or performing a more efficient comparison for primitive types).
*/
VALUE RepeatedField_eq(VALUE _self, VALUE _other) {
if (_self == _other) {
return Qtrue;
}
RepeatedField* self = ruby_to_RepeatedField(_self);
// Inefficient but workable: to support comparison to a generic array, we
// build a temporary RepeatedField of our type.
if (TYPE(_other) == T_ARRAY) {
VALUE new_rptfield = RepeatedField_new_this_type(_self);
for (int i = 0; i < RARRAY_LEN(_other); i++) {
VALUE elem = rb_ary_entry(_other, i);
RepeatedField_push(new_rptfield, elem);
}
_other = new_rptfield;
}
RepeatedField* other = ruby_to_RepeatedField(_other);
if (self->field_type != other->field_type ||
self->field_type_class != other->field_type_class ||
self->size != other->size) {
return Qfalse;
}
upb_fieldtype_t field_type = self->field_type;
size_t elem_size = native_slot_size(field_type);
size_t off = 0;
for (int i = 0; i < self->size; i++, off += elem_size) {
void* self_mem = ((uint8_t *)self->elements) + off;
void* other_mem = ((uint8_t *)other->elements) + off;
if (!native_slot_eq(field_type, self_mem, other_mem)) {
return Qfalse;
}
}
return Qtrue;
}
/*
* call-seq:
* RepeatedField.hash => hash_value
*
* Returns a hash value computed from this repeated field's elements.
*/
VALUE RepeatedField_hash(VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
VALUE hash = LL2NUM(0);
upb_fieldtype_t field_type = self->field_type;
VALUE field_type_class = self->field_type_class;
size_t elem_size = native_slot_size(field_type);
size_t off = 0;
for (int i = 0; i < self->size; i++, off += elem_size) {
void* mem = ((uint8_t *)self->elements) + off;
VALUE elem = native_slot_get(field_type, field_type_class, mem);
hash = rb_funcall(hash, rb_intern("<<"), 1, INT2NUM(2));
hash = rb_funcall(hash, rb_intern("^"), 1,
rb_funcall(elem, rb_intern("hash"), 0));
}
return hash;
}
/*
* call-seq:
* RepeatedField.inspect => string
*
* Returns a string representing this repeated field's elements. It will be
* formated as "[<element>, <element>, ...]", with each element's string
* representation computed by its own #inspect method.
*/
VALUE RepeatedField_inspect(VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
VALUE str = rb_str_new2("[");
bool first = true;
upb_fieldtype_t field_type = self->field_type;
VALUE field_type_class = self->field_type_class;
size_t elem_size = native_slot_size(field_type);
size_t off = 0;
for (int i = 0; i < self->size; i++, off += elem_size) {
void* mem = ((uint8_t *)self->elements) + off;
VALUE elem = native_slot_get(field_type, field_type_class, mem);
if (!first) {
str = rb_str_cat2(str, ", ");
} else {
first = false;
}
str = rb_str_append(str, rb_funcall(elem, rb_intern("inspect"), 0));
}
str = rb_str_cat2(str, "]");
return str;
}
/*
* call-seq:
* RepeatedField.+(other) => repeated field
*
* Returns a new repeated field that contains the concatenated list of this
* repeated field's elements and other's elements. The other (second) list may
* be either another repeated field or a Ruby array.
*/
VALUE RepeatedField_plus(VALUE _self, VALUE list) {
VALUE dupped = RepeatedField_dup(_self);
if (TYPE(list) == T_ARRAY) {
for (int i = 0; i < RARRAY_LEN(list); i++) {
VALUE elem = rb_ary_entry(list, i);
RepeatedField_push(dupped, elem);
}
} else if (RB_TYPE_P(list, T_DATA) && RTYPEDDATA_P(list) &&
RTYPEDDATA_TYPE(list) == &RepeatedField_type) {
RepeatedField* self = ruby_to_RepeatedField(_self);
RepeatedField* list_rptfield = ruby_to_RepeatedField(list);
if (self->field_type != list_rptfield->field_type ||
self->field_type_class != list_rptfield->field_type_class) {
rb_raise(rb_eArgError,
"Attempt to append RepeatedField with different element type.");
}
for (int i = 0; i < list_rptfield->size; i++) {
void* mem = RepeatedField_index_native(list, i);
RepeatedField_push_native(dupped, mem);
}
} else {
rb_raise(rb_eArgError, "Unknown type appending to RepeatedField");
}
return dupped;
}
static void validate_type_class(upb_fieldtype_t type, VALUE klass) {
if (rb_iv_get(klass, kDescriptorInstanceVar) == Qnil) {
rb_raise(rb_eArgError,
"Type class has no descriptor. Please pass a "
"class or enum as returned by the DescriptorPool.");
}
if (type == UPB_TYPE_MESSAGE) {
VALUE desc = rb_iv_get(klass, kDescriptorInstanceVar);
if (!RB_TYPE_P(desc, T_DATA) || !RTYPEDDATA_P(desc) ||
RTYPEDDATA_TYPE(desc) != &_Descriptor_type) {
rb_raise(rb_eArgError, "Descriptor has an incorrect type.");
}
if (rb_get_alloc_func(klass) != &Message_alloc) {
rb_raise(rb_eArgError,
"Message class was not returned by the DescriptorPool.");
}
} else if (type == UPB_TYPE_ENUM) {
VALUE enumdesc = rb_iv_get(klass, kDescriptorInstanceVar);
if (!RB_TYPE_P(enumdesc, T_DATA) || !RTYPEDDATA_P(enumdesc) ||
RTYPEDDATA_TYPE(enumdesc) != &_EnumDescriptor_type) {
rb_raise(rb_eArgError, "Descriptor has an incorrect type.");
}
}
}
void RepeatedField_init_args(int argc, VALUE* argv,
VALUE _self) {
RepeatedField* self = ruby_to_RepeatedField(_self);
VALUE ary = Qnil;
if (argc < 1) {
rb_raise(rb_eArgError, "Expected at least 1 argument.");
}
self->field_type = ruby_to_fieldtype(argv[0]);
if (self->field_type == UPB_TYPE_MESSAGE ||
self->field_type == UPB_TYPE_ENUM) {
if (argc < 2) {
rb_raise(rb_eArgError, "Expected at least 2 arguments for message/enum.");
}
self->field_type_class = argv[1];
if (argc > 2) {
ary = argv[2];
}
validate_type_class(self->field_type, self->field_type_class);
} else {
if (argc > 2) {
rb_raise(rb_eArgError, "Too many arguments: expected 1 or 2.");
}
if (argc > 1) {
ary = argv[1];
}
}
if (ary != Qnil) {
if (!RB_TYPE_P(ary, T_ARRAY)) {
rb_raise(rb_eArgError, "Expected array as initialize argument");
}
for (int i = 0; i < RARRAY_LEN(ary); i++) {
RepeatedField_push(_self, rb_ary_entry(ary, i));
}
}
}
// Mark, free, alloc, init and class setup functions.
void RepeatedField_mark(void* _self) {
RepeatedField* self = (RepeatedField*)_self;
rb_gc_mark(self->field_type_class);
upb_fieldtype_t field_type = self->field_type;
int element_size = native_slot_size(field_type);
for (int i = 0; i < self->size; i++) {
void* memory = (((uint8_t *)self->elements) + i * element_size);
native_slot_mark(self->field_type, memory);
}
}
void RepeatedField_free(void* _self) {
RepeatedField* self = (RepeatedField*)_self;
xfree(self->elements);
xfree(self);
}
/*
* call-seq:
* RepeatedField.new(type, type_class = nil, initial_elems = [])
*
* Creates a new repeated field. The provided type must be a Ruby symbol, and
* can take on the same values as those accepted by FieldDescriptor#type=. If
* the type is :message or :enum, type_class must be non-nil, and must be the
* Ruby class or module returned by Descriptor#msgclass or
* EnumDescriptor#enummodule, respectively. An initial list of elements may also
* be provided.
*/
VALUE RepeatedField_alloc(VALUE klass) {
RepeatedField* self = ALLOC(RepeatedField);
self->elements = NULL;
self->size = 0;
self->capacity = 0;
self->field_type = -1;
self->field_type_class = Qnil;
VALUE ret = TypedData_Wrap_Struct(klass, &RepeatedField_type, self);
return ret;
}
VALUE RepeatedField_init(int argc, VALUE* argv, VALUE self) {
RepeatedField_init_args(argc, argv, self);
return Qnil;
}
void RepeatedField_register(VALUE module) {
VALUE klass = rb_define_class_under(
module, "RepeatedField", rb_cObject);
rb_define_alloc_func(klass, RepeatedField_alloc);
cRepeatedField = klass;
rb_gc_register_address(&cRepeatedField);
rb_define_method(klass, "initialize",
RepeatedField_init, -1);
rb_define_method(klass, "each", RepeatedField_each, 0);
rb_define_method(klass, "[]", RepeatedField_index, 1);
rb_define_method(klass, "[]=", RepeatedField_index_set, 2);
rb_define_method(klass, "push", RepeatedField_push, 1);
rb_define_method(klass, "<<", RepeatedField_push, 1);
rb_define_method(klass, "pop", RepeatedField_pop, 0);
rb_define_method(klass, "insert", RepeatedField_insert, -1);
rb_define_method(klass, "replace", RepeatedField_replace, 1);
rb_define_method(klass, "clear", RepeatedField_clear, 0);
rb_define_method(klass, "length", RepeatedField_length, 0);
rb_define_method(klass, "dup", RepeatedField_dup, 0);
// Also define #clone so that we don't inherit Object#clone.
rb_define_method(klass, "clone", RepeatedField_dup, 0);
rb_define_method(klass, "==", RepeatedField_eq, 1);
rb_define_method(klass, "hash", RepeatedField_hash, 0);
rb_define_method(klass, "inspect", RepeatedField_inspect, 0);
rb_define_method(klass, "+", RepeatedField_plus, 1);
rb_include_module(klass, rb_mEnumerable);
}