Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
356 lines
12 KiB
356 lines
12 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2023 Google LLC. All rights reserved. |
|
// |
|
// Use of this source code is governed by a BSD-style |
|
// license that can be found in the LICENSE file or at |
|
// https://developers.google.com/open-source/licenses/bsd |
|
|
|
// Rust Protobuf runtime using the C++ kernel. |
|
|
|
use crate::__internal::{Private, RawArena, RawMessage, RawRepeatedField}; |
|
use paste::paste; |
|
use std::alloc::Layout; |
|
use std::cell::UnsafeCell; |
|
use std::fmt; |
|
use std::marker::PhantomData; |
|
use std::mem::MaybeUninit; |
|
use std::ops::Deref; |
|
use std::ptr::{self, NonNull}; |
|
|
|
/// A wrapper over a `proto2::Arena`. |
|
/// |
|
/// This is not a safe wrapper per se, because the allocation functions still |
|
/// have sharp edges (see their safety docs for more info). |
|
/// |
|
/// This is an owning type and will automatically free the arena when |
|
/// dropped. |
|
/// |
|
/// Note that this type is neither `Sync` nor `Send`. |
|
#[derive(Debug)] |
|
pub struct Arena { |
|
#[allow(dead_code)] |
|
ptr: RawArena, |
|
_not_sync: PhantomData<UnsafeCell<()>>, |
|
} |
|
|
|
impl Arena { |
|
/// Allocates a fresh arena. |
|
#[inline] |
|
#[allow(clippy::new_without_default)] |
|
pub fn new() -> Self { |
|
Self { ptr: NonNull::dangling(), _not_sync: PhantomData } |
|
} |
|
|
|
/// Returns the raw, C++-managed pointer to the arena. |
|
#[inline] |
|
pub fn raw(&self) -> ! { |
|
unimplemented!() |
|
} |
|
|
|
/// Allocates some memory on the arena. |
|
/// |
|
/// # Safety |
|
/// |
|
/// TODO alignment requirement for layout |
|
#[inline] |
|
pub unsafe fn alloc(&self, _layout: Layout) -> &mut [MaybeUninit<u8>] { |
|
unimplemented!() |
|
} |
|
|
|
/// Resizes some memory on the arena. |
|
/// |
|
/// # Safety |
|
/// |
|
/// After calling this function, `ptr` is essentially zapped. `old` must |
|
/// be the layout `ptr` was allocated with via [`Arena::alloc()`]. |
|
/// TODO alignment for layout |
|
#[inline] |
|
pub unsafe fn resize(&self, _ptr: *mut u8, _old: Layout, _new: Layout) -> &[MaybeUninit<u8>] { |
|
unimplemented!() |
|
} |
|
} |
|
|
|
impl Drop for Arena { |
|
#[inline] |
|
fn drop(&mut self) { |
|
// unimplemented |
|
} |
|
} |
|
|
|
/// Serialized Protobuf wire format data. It's typically produced by |
|
/// `<Message>.serialize()`. |
|
/// |
|
/// This struct is ABI-compatible with the equivalent struct on the C++ side. It |
|
/// owns (and drops) its data. |
|
#[repr(C)] |
|
pub struct SerializedData { |
|
/// Owns the memory. |
|
data: NonNull<u8>, |
|
len: usize, |
|
} |
|
|
|
impl SerializedData { |
|
/// Constructs owned serialized data from raw components. |
|
/// |
|
/// # Safety |
|
/// - `data` must be readable for `len` bytes. |
|
/// - `data` must be an owned pointer and valid until deallocated. |
|
/// - `data` must have been allocated by the Rust global allocator with a |
|
/// size of `len` and align of 1. |
|
pub unsafe fn from_raw_parts(data: NonNull<u8>, len: usize) -> Self { |
|
Self { data, len } |
|
} |
|
|
|
/// Gets a raw slice pointer. |
|
pub fn as_ptr(&self) -> *const [u8] { |
|
ptr::slice_from_raw_parts(self.data.as_ptr(), self.len) |
|
} |
|
|
|
/// Gets a mutable raw slice pointer. |
|
fn as_mut_ptr(&mut self) -> *mut [u8] { |
|
ptr::slice_from_raw_parts_mut(self.data.as_ptr(), self.len) |
|
} |
|
} |
|
|
|
impl Deref for SerializedData { |
|
type Target = [u8]; |
|
fn deref(&self) -> &Self::Target { |
|
// SAFETY: `data` is valid for `len` bytes until deallocated as promised by |
|
// `from_raw_parts`. |
|
unsafe { &*self.as_ptr() } |
|
} |
|
} |
|
|
|
impl Drop for SerializedData { |
|
fn drop(&mut self) { |
|
// SAFETY: `data` was allocated by the Rust global allocator with a |
|
// size of `len` and align of 1 as promised by `from_raw_parts`. |
|
unsafe { drop(Box::from_raw(self.as_mut_ptr())) } |
|
} |
|
} |
|
|
|
impl fmt::Debug for SerializedData { |
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
|
fmt::Debug::fmt(self.deref(), f) |
|
} |
|
} |
|
|
|
pub type BytesPresentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; |
|
pub type BytesAbsentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; |
|
pub type InnerBytesMut<'msg> = crate::vtable::RawVTableMutator<'msg, [u8]>; |
|
pub type InnerPrimitiveMut<'a, T> = crate::vtable::RawVTableMutator<'a, T>; |
|
|
|
/// The raw contents of every generated message. |
|
#[derive(Debug)] |
|
pub struct MessageInner { |
|
pub msg: RawMessage, |
|
} |
|
|
|
/// Mutators that point to their original message use this to do so. |
|
/// |
|
/// Since C++ messages manage their own memory, this can just copy the |
|
/// `RawMessage` instead of referencing an arena like UPB must. |
|
/// |
|
/// Note: even though this type is `Copy`, it should only be copied by |
|
/// protobuf internals that can maintain mutation invariants: |
|
/// |
|
/// - No concurrent mutation for any two fields in a message: this means |
|
/// mutators cannot be `Send` but are `Sync`. |
|
/// - If there are multiple accessible `Mut` to a single message at a time, they |
|
/// must be different fields, and not be in the same oneof. As such, a `Mut` |
|
/// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which |
|
/// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`. |
|
#[derive(Clone, Copy, Debug)] |
|
pub struct MutatorMessageRef<'msg> { |
|
msg: RawMessage, |
|
_phantom: PhantomData<&'msg mut ()>, |
|
} |
|
impl<'msg> MutatorMessageRef<'msg> { |
|
#[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access. |
|
pub fn new(_private: Private, msg: &'msg mut MessageInner) -> Self { |
|
MutatorMessageRef { msg: msg.msg, _phantom: PhantomData } |
|
} |
|
|
|
pub fn msg(&self) -> RawMessage { |
|
self.msg |
|
} |
|
} |
|
|
|
pub fn copy_bytes_in_arena_if_needed_by_runtime<'a>( |
|
_msg_ref: MutatorMessageRef<'a>, |
|
val: &'a [u8], |
|
) -> &'a [u8] { |
|
// Nothing to do, the message manages its own string memory for C++. |
|
val |
|
} |
|
|
|
/// RepeatedField impls delegate out to `extern "C"` functions exposed by |
|
/// `cpp_api.h` and store either a RepeatedField* or a RepeatedPtrField* |
|
/// depending on the type. |
|
/// |
|
/// Note: even though this type is `Copy`, it should only be copied by |
|
/// protobuf internals that can maintain mutation invariants: |
|
/// |
|
/// - No concurrent mutation for any two fields in a message: this means |
|
/// mutators cannot be `Send` but are `Sync`. |
|
/// - If there are multiple accessible `Mut` to a single message at a time, they |
|
/// must be different fields, and not be in the same oneof. As such, a `Mut` |
|
/// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which |
|
/// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`. |
|
#[derive(Debug)] |
|
pub struct RepeatedField<'msg, T: ?Sized> { |
|
inner: RepeatedFieldInner<'msg>, |
|
_phantom: PhantomData<&'msg mut T>, |
|
} |
|
|
|
/// CPP runtime-specific arguments for initializing a RepeatedField. |
|
/// See RepeatedField comment about mutation invariants for when this type can |
|
/// be copied. |
|
#[derive(Clone, Copy, Debug)] |
|
pub struct RepeatedFieldInner<'msg> { |
|
pub raw: RawRepeatedField, |
|
pub _phantom: PhantomData<&'msg ()>, |
|
} |
|
|
|
impl<'msg, T: ?Sized> RepeatedField<'msg, T> { |
|
pub fn from_inner(_private: Private, inner: RepeatedFieldInner<'msg>) -> Self { |
|
RepeatedField { inner, _phantom: PhantomData } |
|
} |
|
} |
|
|
|
// These use manual impls instead of derives to avoid unnecessary bounds on `T`. |
|
// This problem is referred to as "perfect derive". |
|
// https://smallcultfollowing.com/babysteps/blog/2022/04/12/implied-bounds-and-perfect-derive/ |
|
impl<'msg, T: ?Sized> Copy for RepeatedField<'msg, T> {} |
|
impl<'msg, T: ?Sized> Clone for RepeatedField<'msg, T> { |
|
fn clone(&self) -> RepeatedField<'msg, T> { |
|
*self |
|
} |
|
} |
|
|
|
pub trait RepeatedScalarOps { |
|
fn new_repeated_field() -> RawRepeatedField; |
|
fn push(f: RawRepeatedField, v: Self); |
|
fn len(f: RawRepeatedField) -> usize; |
|
fn get(f: RawRepeatedField, i: usize) -> Self; |
|
fn set(f: RawRepeatedField, i: usize, v: Self); |
|
fn copy_from(src: RawRepeatedField, dst: RawRepeatedField); |
|
} |
|
|
|
macro_rules! impl_repeated_scalar_ops { |
|
($($t: ty),*) => { |
|
paste! { $( |
|
extern "C" { |
|
fn [< __pb_rust_RepeatedField_ $t _new >]() -> RawRepeatedField; |
|
fn [< __pb_rust_RepeatedField_ $t _add >](f: RawRepeatedField, v: $t); |
|
fn [< __pb_rust_RepeatedField_ $t _size >](f: RawRepeatedField) -> usize; |
|
fn [< __pb_rust_RepeatedField_ $t _get >](f: RawRepeatedField, i: usize) -> $t; |
|
fn [< __pb_rust_RepeatedField_ $t _set >](f: RawRepeatedField, i: usize, v: $t); |
|
fn [< __pb_rust_RepeatedField_ $t _copy_from >](src: RawRepeatedField, dst: RawRepeatedField); |
|
} |
|
impl RepeatedScalarOps for $t { |
|
fn new_repeated_field() -> RawRepeatedField { |
|
unsafe { [< __pb_rust_RepeatedField_ $t _new >]() } |
|
} |
|
fn push(f: RawRepeatedField, v: Self) { |
|
unsafe { [< __pb_rust_RepeatedField_ $t _add >](f, v) } |
|
} |
|
fn len(f: RawRepeatedField) -> usize { |
|
unsafe { [< __pb_rust_RepeatedField_ $t _size >](f) } |
|
} |
|
fn get(f: RawRepeatedField, i: usize) -> Self { |
|
unsafe { [< __pb_rust_RepeatedField_ $t _get >](f, i) } |
|
} |
|
fn set(f: RawRepeatedField, i: usize, v: Self) { |
|
unsafe { [< __pb_rust_RepeatedField_ $t _set >](f, i, v) } |
|
} |
|
fn copy_from(src: RawRepeatedField, dst: RawRepeatedField) { |
|
unsafe { [< __pb_rust_RepeatedField_ $t _copy_from >](src, dst) } |
|
} |
|
} |
|
)* } |
|
}; |
|
} |
|
|
|
impl_repeated_scalar_ops!(i32, u32, i64, u64, f32, f64, bool); |
|
|
|
impl<'msg, T: RepeatedScalarOps> RepeatedField<'msg, T> { |
|
#[allow(clippy::new_without_default, dead_code)] |
|
/// new() is not currently used in our normal pathways, it is only used |
|
/// for testing. Existing `RepeatedField<>`s are owned by, and retrieved |
|
/// from, the containing `Message`. |
|
pub fn new() -> Self { |
|
Self::from_inner( |
|
Private, |
|
RepeatedFieldInner::<'msg> { raw: T::new_repeated_field(), _phantom: PhantomData }, |
|
) |
|
} |
|
pub fn push(&mut self, val: T) { |
|
T::push(self.inner.raw, val) |
|
} |
|
pub fn len(&self) -> usize { |
|
T::len(self.inner.raw) |
|
} |
|
pub fn is_empty(&self) -> bool { |
|
self.len() == 0 |
|
} |
|
pub fn get(&self, index: usize) -> Option<T> { |
|
if index >= self.len() { |
|
return None; |
|
} |
|
Some(T::get(self.inner.raw, index)) |
|
} |
|
pub fn set(&mut self, index: usize, val: T) { |
|
if index >= self.len() { |
|
return; |
|
} |
|
T::set(self.inner.raw, index, val) |
|
} |
|
pub fn copy_from(&mut self, src: &RepeatedField<'_, T>) { |
|
T::copy_from(src.inner.raw, self.inner.raw) |
|
} |
|
} |
|
|
|
#[cfg(test)] |
|
mod tests { |
|
use super::*; |
|
use std::boxed::Box; |
|
|
|
// We need to allocate the byte array so SerializedData can own it and |
|
// deallocate it in its drop. This function makes it easier to do so for our |
|
// tests. |
|
fn allocate_byte_array(content: &'static [u8]) -> (*mut u8, usize) { |
|
let content: &mut [u8] = Box::leak(content.into()); |
|
(content.as_mut_ptr(), content.len()) |
|
} |
|
|
|
#[test] |
|
fn test_serialized_data_roundtrip() { |
|
let (ptr, len) = allocate_byte_array(b"Hello world"); |
|
let serialized_data = SerializedData { data: NonNull::new(ptr).unwrap(), len: len }; |
|
assert_eq!(&*serialized_data, b"Hello world"); |
|
} |
|
|
|
#[test] |
|
fn repeated_field() { |
|
let mut r = RepeatedField::<i32>::new(); |
|
assert_eq!(r.len(), 0); |
|
r.push(32); |
|
assert_eq!(r.get(0), Some(32)); |
|
|
|
let mut r = RepeatedField::<u32>::new(); |
|
assert_eq!(r.len(), 0); |
|
r.push(32); |
|
assert_eq!(r.get(0), Some(32)); |
|
|
|
let mut r = RepeatedField::<f64>::new(); |
|
assert_eq!(r.len(), 0); |
|
r.push(0.1234f64); |
|
assert_eq!(r.get(0), Some(0.1234)); |
|
|
|
let mut r = RepeatedField::<bool>::new(); |
|
assert_eq!(r.len(), 0); |
|
r.push(true); |
|
assert_eq!(r.get(0), Some(true)); |
|
} |
|
}
|
|
|