Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
782 lines
26 KiB
782 lines
26 KiB
/* |
|
* upb - a minimalist implementation of protocol buffers. |
|
* |
|
* Copyright (c) 2012 Google Inc. See LICENSE for details. |
|
* Author: Josh Haberman <jhaberman@gmail.com> |
|
* |
|
* Our key invariants are: |
|
* 1. reference cycles never span groups |
|
* 2. for ref2(to, from), we increment to's count iff group(from) != group(to) |
|
* |
|
* The previous two are how we avoid leaking cycles. Other important |
|
* invariants are: |
|
* 3. for mutable objects "from" and "to", if there exists a ref2(to, from) |
|
* this implies group(from) == group(to). (In practice, what we implement |
|
* is even stronger; "from" and "to" will share a group if there has *ever* |
|
* been a ref2(to, from), but all that is necessary for correctness is the |
|
* weaker one). |
|
* 4. mutable and immutable objects are never in the same group. |
|
*/ |
|
|
|
#include "upb/refcounted.h" |
|
|
|
#include <setjmp.h> |
|
#include <stdlib.h> |
|
|
|
uint32_t static_refcount = 1; |
|
|
|
/* arch-specific atomic primitives *******************************************/ |
|
|
|
#ifdef UPB_THREAD_UNSAFE ////////////////////////////////////////////////////// |
|
|
|
static void atomic_inc(uint32_t *a) { (*a)++; } |
|
static bool atomic_dec(uint32_t *a) { return --(*a) == 0; } |
|
|
|
#elif (__GNUC__ == 4 && __GNUC_MINOR__ >= 1) || __GNUC__ > 4 /////////////////// |
|
|
|
static void atomic_inc(uint32_t *a) { __sync_fetch_and_add(a, 1); } |
|
static bool atomic_dec(uint32_t *a) { return __sync_sub_and_fetch(a, 1) == 0; } |
|
|
|
#elif defined(WIN32) /////////////////////////////////////////////////////////// |
|
|
|
#include <Windows.h> |
|
|
|
static void atomic_inc(upb_atomic_t *a) { InterlockedIncrement(&a->val); } |
|
static bool atomic_dec(upb_atomic_t *a) { |
|
return InterlockedDecrement(&a->val) == 0; |
|
} |
|
|
|
#else |
|
#error Atomic primitives not defined for your platform/CPU. \ |
|
Implement them or compile with UPB_THREAD_UNSAFE. |
|
#endif |
|
|
|
|
|
/* Reference tracking (debug only) ********************************************/ |
|
|
|
#ifdef UPB_DEBUG_REFS |
|
|
|
#ifdef UPB_THREAD_UNSAFE |
|
|
|
static void upb_lock() {} |
|
static void upb_unlock() {} |
|
|
|
#else |
|
|
|
// User must define functions that lock/unlock a global mutex and link this |
|
// file against them. |
|
void upb_lock(); |
|
void upb_unlock(); |
|
|
|
#endif |
|
|
|
// UPB_DEBUG_REFS mode counts on being able to malloc() memory in some |
|
// code-paths that can normally never fail, like upb_refcounted_ref(). Since |
|
// we have no way to propagage out-of-memory errors back to the user, and since |
|
// these errors can only occur in UPB_DEBUG_REFS mode, we immediately fail. |
|
#define CHECK_OOM(predicate) assert(predicate) |
|
|
|
typedef struct { |
|
const upb_refcounted *obj; // Object we are taking a ref on. |
|
int count; // How many refs there are (duplicates only allowed for ref2). |
|
bool is_ref2; |
|
} trackedref; |
|
|
|
trackedref *trackedref_new(const upb_refcounted *obj, bool is_ref2) { |
|
trackedref *ret = malloc(sizeof(*ret)); |
|
CHECK_OOM(ret); |
|
ret->obj = obj; |
|
ret->count = 1; |
|
ret->is_ref2 = is_ref2; |
|
return ret; |
|
} |
|
|
|
// A reversible function for obfuscating a uintptr_t. |
|
// This depends on sizeof(uintptr_t) <= sizeof(uint64_t), so would fail |
|
// on 128-bit machines. |
|
static uintptr_t obfuscate(const void *x) { return ~(uintptr_t)x; } |
|
|
|
static upb_value obfuscate_v(const void *x) { |
|
return upb_value_uint64(obfuscate(x)); |
|
} |
|
|
|
static const void *unobfuscate_v(upb_value x) { |
|
return (void*)~upb_value_getuint64(x); |
|
} |
|
|
|
// |
|
// Stores tracked references according to the following scheme: |
|
// (upb_inttable)reftracks = { |
|
// (void*)owner -> (upb_inttable*) = { |
|
// obfuscate((upb_refcounted*)obj) -> obfuscate((trackedref*)is_ref2) |
|
// } |
|
// } |
|
// |
|
// obfuscate() is a function that hides the link from the heap checker, so |
|
// that it is not followed for the purposes of deciding what has "indirectly |
|
// leaked." Even though we have a pointer to the trackedref*, we want it to |
|
// appear leaked if it is not freed. |
|
// |
|
// This scheme gives us the following desirable properties: |
|
// |
|
// 1. We can easily determine whether an (owner->obj) ref already exists |
|
// and error out if a duplicate ref is taken. |
|
// |
|
// 2. Because the trackedref is allocated with malloc() at the point that |
|
// the ref is taken, that memory will be leaked if the ref is not released. |
|
// Because the malloc'd memory points to the refcounted object, the object |
|
// itself will only be considered "indirectly leaked" by smart memory |
|
// checkers like Valgrind. This will correctly blame the ref leaker |
|
// instead of the innocent code that allocated the object to begin with. |
|
// |
|
// 3. We can easily enumerate all of the ref2 refs for a given owner, which |
|
// allows us to double-check that the object's visit() function is |
|
// correctly implemented. |
|
// |
|
static upb_inttable reftracks = UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR); |
|
|
|
static upb_inttable *trygettab(const void *p) { |
|
upb_value v; |
|
return upb_inttable_lookupptr(&reftracks, p, &v) ? upb_value_getptr(v) : NULL; |
|
} |
|
|
|
// Gets or creates the tracking table for the given owner. |
|
static upb_inttable *gettab(const void *p) { |
|
upb_inttable *tab = trygettab(p); |
|
if (tab == NULL) { |
|
tab = malloc(sizeof(*tab)); |
|
CHECK_OOM(tab); |
|
upb_inttable_init(tab, UPB_CTYPE_UINT64); |
|
upb_inttable_insertptr(&reftracks, p, upb_value_ptr(tab)); |
|
} |
|
return tab; |
|
} |
|
|
|
static void track(const upb_refcounted *r, const void *owner, bool ref2) { |
|
upb_lock(); |
|
upb_inttable *refs = gettab(owner); |
|
upb_value v; |
|
if (upb_inttable_lookup(refs, obfuscate(r), &v)) { |
|
trackedref *ref = (trackedref*)unobfuscate_v(v); |
|
// Since we allow multiple ref2's for the same to/from pair without |
|
// allocating separate memory for each one, we lose the fine-grained |
|
// tracking behavior we get with regular refs. Since ref2s only happen |
|
// inside upb, we'll accept this limitation until/unless there is a really |
|
// difficult upb-internal bug that can't be figured out without it. |
|
assert(ref2); |
|
assert(ref->is_ref2); |
|
ref->count++; |
|
} else { |
|
trackedref *ref = trackedref_new(r, ref2); |
|
bool ok = upb_inttable_insert(refs, obfuscate(r), obfuscate_v(ref)); |
|
CHECK_OOM(ok); |
|
} |
|
upb_unlock(); |
|
} |
|
|
|
static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { |
|
upb_lock(); |
|
upb_inttable *refs = gettab(owner); |
|
upb_value v; |
|
bool found = upb_inttable_lookup(refs, obfuscate(r), &v); |
|
// This assert will fail if an owner attempts to release a ref it didn't have. |
|
UPB_ASSERT_VAR(found, found); |
|
trackedref *ref = (trackedref*)unobfuscate_v(v); |
|
assert(ref->is_ref2 == ref2); |
|
if (--ref->count == 0) { |
|
free(ref); |
|
upb_inttable_remove(refs, obfuscate(r), NULL); |
|
if (upb_inttable_count(refs) == 0) { |
|
upb_inttable_uninit(refs); |
|
free(refs); |
|
upb_inttable_removeptr(&reftracks, owner, NULL); |
|
} |
|
} |
|
upb_unlock(); |
|
} |
|
|
|
static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { |
|
upb_lock(); |
|
upb_inttable *refs = gettab(owner); |
|
upb_value v; |
|
bool found = upb_inttable_lookup(refs, obfuscate(r), &v); |
|
UPB_ASSERT_VAR(found, found); |
|
trackedref *ref = (trackedref*)unobfuscate_v(v); |
|
assert(ref->obj == r); |
|
assert(ref->is_ref2 == ref2); |
|
upb_unlock(); |
|
} |
|
|
|
// Populates the given UPB_CTYPE_INT32 inttable with counts of ref2's that |
|
// originate from the given owner. |
|
static void getref2s(const upb_refcounted *owner, upb_inttable *tab) { |
|
upb_lock(); |
|
upb_inttable *refs = trygettab(owner); |
|
if (refs) { |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, refs); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
trackedref *ref = (trackedref*)unobfuscate_v(upb_inttable_iter_value(&i)); |
|
if (ref->is_ref2) { |
|
upb_value count = upb_value_int32(ref->count); |
|
bool ok = upb_inttable_insertptr(tab, ref->obj, count); |
|
CHECK_OOM(ok); |
|
} |
|
} |
|
} |
|
upb_unlock(); |
|
} |
|
|
|
typedef struct { |
|
upb_inttable ref2; |
|
const upb_refcounted *obj; |
|
} check_state; |
|
|
|
static void visit_check(const upb_refcounted *obj, const upb_refcounted *subobj, |
|
void *closure) { |
|
check_state *s = closure; |
|
assert(obj == s->obj); |
|
assert(subobj); |
|
upb_inttable *ref2 = &s->ref2; |
|
upb_value v; |
|
bool removed = upb_inttable_removeptr(ref2, subobj, &v); |
|
// The following assertion will fail if the visit() function visits a subobj |
|
// that it did not have a ref2 on, or visits the same subobj too many times. |
|
assert(removed); |
|
int32_t newcount = upb_value_getint32(v) - 1; |
|
if (newcount > 0) { |
|
upb_inttable_insert(ref2, (uintptr_t)subobj, upb_value_int32(newcount)); |
|
} |
|
} |
|
|
|
static void visit(const upb_refcounted *r, upb_refcounted_visit *v, |
|
void *closure) { |
|
// In DEBUG_REFS mode we know what existing ref2 refs there are, so we know |
|
// exactly the set of nodes that visit() should visit. So we verify visit()'s |
|
// correctness here. |
|
check_state state; |
|
state.obj = r; |
|
bool ok = upb_inttable_init(&state.ref2, UPB_CTYPE_INT32); |
|
CHECK_OOM(ok); |
|
getref2s(r, &state.ref2); |
|
|
|
// This should visit any children in the ref2 table. |
|
if (r->vtbl->visit) r->vtbl->visit(r, visit_check, &state); |
|
|
|
// This assertion will fail if the visit() function missed any children. |
|
assert(upb_inttable_count(&state.ref2) == 0); |
|
upb_inttable_uninit(&state.ref2); |
|
if (r->vtbl->visit) r->vtbl->visit(r, v, closure); |
|
} |
|
|
|
#else |
|
|
|
static void track(const upb_refcounted *r, const void *owner, bool ref2) { |
|
UPB_UNUSED(r); |
|
UPB_UNUSED(owner); |
|
UPB_UNUSED(ref2); |
|
} |
|
|
|
static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { |
|
UPB_UNUSED(r); |
|
UPB_UNUSED(owner); |
|
UPB_UNUSED(ref2); |
|
} |
|
|
|
static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { |
|
UPB_UNUSED(r); |
|
UPB_UNUSED(owner); |
|
UPB_UNUSED(ref2); |
|
} |
|
|
|
static void visit(const upb_refcounted *r, upb_refcounted_visit *v, |
|
void *closure) { |
|
if (r->vtbl->visit) r->vtbl->visit(r, v, closure); |
|
} |
|
|
|
#endif // UPB_DEBUG_REFS |
|
|
|
|
|
/* freeze() *******************************************************************/ |
|
|
|
// The freeze() operation is by far the most complicated part of this scheme. |
|
// We compute strongly-connected components and then mutate the graph such that |
|
// we preserve the invariants documented at the top of this file. And we must |
|
// handle out-of-memory errors gracefully (without leaving the graph |
|
// inconsistent), which adds to the fun. |
|
|
|
// The state used by the freeze operation (shared across many functions). |
|
typedef struct { |
|
int depth; |
|
int maxdepth; |
|
uint64_t index; |
|
// Maps upb_refcounted* -> attributes (color, etc). attr layout varies by |
|
// color. |
|
upb_inttable objattr; |
|
upb_inttable stack; // stack of upb_refcounted* for Tarjan's algorithm. |
|
upb_inttable groups; // array of uint32_t*, malloc'd refcounts for new groups |
|
upb_status *status; |
|
jmp_buf err; |
|
} tarjan; |
|
|
|
static void release_ref2(const upb_refcounted *obj, |
|
const upb_refcounted *subobj, |
|
void *closure); |
|
|
|
// Node attributes ///////////////////////////////////////////////////////////// |
|
|
|
// After our analysis phase all nodes will be either GRAY or WHITE. |
|
|
|
typedef enum { |
|
BLACK = 0, // Object has not been seen. |
|
GRAY, // Object has been found via a refgroup but may not be reachable. |
|
GREEN, // Object is reachable and is currently on the Tarjan stack. |
|
WHITE, // Object is reachable and has been assigned a group (SCC). |
|
} color_t; |
|
|
|
UPB_NORETURN static void err(tarjan *t) { longjmp(t->err, 1); } |
|
UPB_NORETURN static void oom(tarjan *t) { |
|
upb_status_seterrliteral(t->status, "out of memory"); |
|
err(t); |
|
} |
|
|
|
uint64_t trygetattr(const tarjan *t, const upb_refcounted *r) { |
|
upb_value v; |
|
return upb_inttable_lookupptr(&t->objattr, r, &v) ? |
|
upb_value_getuint64(v) : 0; |
|
} |
|
|
|
uint64_t getattr(const tarjan *t, const upb_refcounted *r) { |
|
upb_value v; |
|
bool found = upb_inttable_lookupptr(&t->objattr, r, &v); |
|
UPB_ASSERT_VAR(found, found); |
|
return upb_value_getuint64(v); |
|
} |
|
|
|
void setattr(tarjan *t, const upb_refcounted *r, uint64_t attr) { |
|
upb_inttable_removeptr(&t->objattr, r, NULL); |
|
upb_inttable_insertptr(&t->objattr, r, upb_value_uint64(attr)); |
|
} |
|
|
|
static color_t color(tarjan *t, const upb_refcounted *r) { |
|
return trygetattr(t, r) & 0x3; // Color is always stored in the low 2 bits. |
|
} |
|
|
|
static void set_gray(tarjan *t, const upb_refcounted *r) { |
|
assert(color(t, r) == BLACK); |
|
setattr(t, r, GRAY); |
|
} |
|
|
|
// Pushes an obj onto the Tarjan stack and sets it to GREEN. |
|
static void push(tarjan *t, const upb_refcounted *r) { |
|
assert(color(t, r) == BLACK || color(t, r) == GRAY); |
|
// This defines the attr layout for the GREEN state. "index" and "lowlink" |
|
// get 31 bits, which is plenty (limit of 2B objects frozen at a time). |
|
setattr(t, r, GREEN | (t->index << 2) | (t->index << 33)); |
|
if (++t->index == 0x80000000) { |
|
upb_status_seterrliteral(t->status, "too many objects to freeze"); |
|
err(t); |
|
} |
|
upb_inttable_push(&t->stack, upb_value_ptr((void*)r)); |
|
} |
|
|
|
// Pops an obj from the Tarjan stack and sets it to WHITE, with a ptr to its |
|
// SCC group. |
|
static upb_refcounted *pop(tarjan *t) { |
|
upb_refcounted *r = upb_value_getptr(upb_inttable_pop(&t->stack)); |
|
assert(color(t, r) == GREEN); |
|
// This defines the attr layout for nodes in the WHITE state. |
|
// Top of group stack is [group, NULL]; we point at group. |
|
setattr(t, r, WHITE | (upb_inttable_count(&t->groups) - 2) << 8); |
|
return r; |
|
} |
|
|
|
static void newgroup(tarjan *t) { |
|
uint32_t *group = malloc(sizeof(*group)); |
|
if (!group) oom(t); |
|
// Push group and empty group leader (we'll fill in leader later). |
|
if (!upb_inttable_push(&t->groups, upb_value_ptr(group)) || |
|
!upb_inttable_push(&t->groups, upb_value_ptr(NULL))) { |
|
free(group); |
|
oom(t); |
|
} |
|
*group = 0; |
|
} |
|
|
|
static uint32_t idx(tarjan *t, const upb_refcounted *r) { |
|
assert(color(t, r) == GREEN); |
|
return (getattr(t, r) >> 2) & 0x7FFFFFFF; |
|
} |
|
|
|
static uint32_t lowlink(tarjan *t, const upb_refcounted *r) { |
|
if (color(t, r) == GREEN) { |
|
return getattr(t, r) >> 33; |
|
} else { |
|
return UINT32_MAX; |
|
} |
|
} |
|
|
|
static void set_lowlink(tarjan *t, const upb_refcounted *r, uint32_t lowlink) { |
|
assert(color(t, r) == GREEN); |
|
setattr(t, r, ((uint64_t)lowlink << 33) | (getattr(t, r) & 0x1FFFFFFFF)); |
|
} |
|
|
|
uint32_t *group(tarjan *t, upb_refcounted *r) { |
|
assert(color(t, r) == WHITE); |
|
uint64_t groupnum = getattr(t, r) >> 8; |
|
upb_value v; |
|
bool found = upb_inttable_lookup(&t->groups, groupnum, &v); |
|
UPB_ASSERT_VAR(found, found); |
|
return upb_value_getptr(v); |
|
} |
|
|
|
// If the group leader for this object's group has not previously been set, |
|
// the given object is assigned to be its leader. |
|
static upb_refcounted *groupleader(tarjan *t, upb_refcounted *r) { |
|
assert(color(t, r) == WHITE); |
|
uint64_t leader_slot = (getattr(t, r) >> 8) + 1; |
|
upb_value v; |
|
bool found = upb_inttable_lookup(&t->groups, leader_slot, &v); |
|
UPB_ASSERT_VAR(found, found); |
|
if (upb_value_getptr(v)) { |
|
return upb_value_getptr(v); |
|
} else { |
|
upb_inttable_remove(&t->groups, leader_slot, NULL); |
|
upb_inttable_insert(&t->groups, leader_slot, upb_value_ptr(r)); |
|
return r; |
|
} |
|
} |
|
|
|
|
|
// Tarjan's algorithm ////////////////////////////////////////////////////////// |
|
|
|
// See: |
|
// http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm |
|
static void do_tarjan(const upb_refcounted *obj, tarjan *t); |
|
|
|
static void tarjan_visit(const upb_refcounted *obj, |
|
const upb_refcounted *subobj, |
|
void *closure) { |
|
tarjan *t = closure; |
|
if (++t->depth > t->maxdepth) { |
|
upb_status_seterrf(t->status, "graph too deep to freeze (%d)", t->maxdepth); |
|
err(t); |
|
} else if (subobj->is_frozen || color(t, subobj) == WHITE) { |
|
// Do nothing: we don't want to visit or color already-frozen nodes, |
|
// and WHITE nodes have already been assigned a SCC. |
|
} else if (color(t, subobj) < GREEN) { |
|
// Subdef has not yet been visited; recurse on it. |
|
do_tarjan(subobj, t); |
|
set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), lowlink(t, subobj))); |
|
} else if (color(t, subobj) == GREEN) { |
|
// Subdef is in the stack and hence in the current SCC. |
|
set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), idx(t, subobj))); |
|
} |
|
--t->depth; |
|
} |
|
|
|
static void do_tarjan(const upb_refcounted *obj, tarjan *t) { |
|
if (color(t, obj) == BLACK) { |
|
// We haven't seen this object's group; mark the whole group GRAY. |
|
const upb_refcounted *o = obj; |
|
do { set_gray(t, o); } while ((o = o->next) != obj); |
|
} |
|
|
|
push(t, obj); |
|
visit(obj, tarjan_visit, t); |
|
if (lowlink(t, obj) == idx(t, obj)) { |
|
newgroup(t); |
|
while (pop(t) != obj) |
|
; |
|
} |
|
} |
|
|
|
|
|
// freeze() //////////////////////////////////////////////////////////////////// |
|
|
|
static void crossref(const upb_refcounted *r, const upb_refcounted *subobj, |
|
void *_t) { |
|
tarjan *t = _t; |
|
assert(color(t, r) > BLACK); |
|
if (color(t, subobj) > BLACK && r->group != subobj->group) { |
|
// Previously this ref was not reflected in subobj->group because they |
|
// were in the same group; now that they are split a ref must be taken. |
|
atomic_inc(subobj->group); |
|
} |
|
} |
|
|
|
static bool freeze(upb_refcounted *const*roots, int n, upb_status *s) { |
|
volatile bool ret = false; |
|
|
|
// We run in two passes so that we can allocate all memory before performing |
|
// any mutation of the input -- this allows us to leave the input unchanged |
|
// in the case of memory allocation failure. |
|
tarjan t; |
|
t.index = 0; |
|
t.depth = 0; |
|
t.maxdepth = UPB_MAX_TYPE_DEPTH * 2; // May want to make this a parameter. |
|
t.status = s; |
|
if (!upb_inttable_init(&t.objattr, UPB_CTYPE_UINT64)) goto err1; |
|
if (!upb_inttable_init(&t.stack, UPB_CTYPE_PTR)) goto err2; |
|
if (!upb_inttable_init(&t.groups, UPB_CTYPE_PTR)) goto err3; |
|
if (setjmp(t.err) != 0) goto err4; |
|
|
|
|
|
for (int i = 0; i < n; i++) { |
|
if (color(&t, roots[i]) < GREEN) { |
|
do_tarjan(roots[i], &t); |
|
} |
|
} |
|
|
|
// If we've made it this far, no further errors are possible so it's safe to |
|
// mutate the objects without risk of leaving them in an inconsistent state. |
|
ret = true; |
|
|
|
// The transformation that follows requires care. The preconditions are: |
|
// - all objects in attr map are WHITE or GRAY, and are in mutable groups |
|
// (groups of all mutable objs) |
|
// - no ref2(to, from) refs have incremented count(to) if both "to" and |
|
// "from" are in our attr map (this follows from invariants (2) and (3)) |
|
|
|
// Pass 1: we remove WHITE objects from their mutable groups, and add them to |
|
// new groups according to the SCC's we computed. These new groups will |
|
// consist of only frozen objects. None will be immediately collectible, |
|
// because WHITE objects are by definition reachable from one of "roots", |
|
// which the caller must own refs on. |
|
upb_inttable_iter i; |
|
upb_inttable_begin(&i, &t.objattr); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i); |
|
// Since removal from a singly-linked list requires access to the object's |
|
// predecessor, we consider obj->next instead of obj for moving. With the |
|
// while() loop we guarantee that we will visit every node's predecessor. |
|
// Proof: |
|
// 1. every node's predecessor is in our attr map. |
|
// 2. though the loop body may change a node's predecessor, it will only |
|
// change it to be the node we are currently operating on, so with a |
|
// while() loop we guarantee ourselves the chance to remove each node. |
|
while (color(&t, obj->next) == WHITE && |
|
group(&t, obj->next) != obj->next->group) { |
|
// Remove from old group. |
|
upb_refcounted *move = obj->next; |
|
if (obj == move) { |
|
// Removing the last object from a group. |
|
assert(*obj->group == obj->individual_count); |
|
free(obj->group); |
|
} else { |
|
obj->next = move->next; |
|
// This may decrease to zero; we'll collect GRAY objects (if any) that |
|
// remain in the group in the third pass. |
|
assert(*move->group >= move->individual_count); |
|
*move->group -= move->individual_count; |
|
} |
|
|
|
// Add to new group. |
|
upb_refcounted *leader = groupleader(&t, move); |
|
if (move == leader) { |
|
// First object added to new group is its leader. |
|
move->group = group(&t, move); |
|
move->next = move; |
|
*move->group = move->individual_count; |
|
} else { |
|
// Group already has at least one object in it. |
|
assert(leader->group == group(&t, move)); |
|
move->group = group(&t, move); |
|
move->next = leader->next; |
|
leader->next = move; |
|
*move->group += move->individual_count; |
|
} |
|
|
|
move->is_frozen = true; |
|
} |
|
} |
|
|
|
// Pass 2: GRAY and WHITE objects "obj" with ref2(to, obj) references must |
|
// increment count(to) if group(obj) != group(to) (which could now be the |
|
// case if "to" was just frozen). |
|
upb_inttable_begin(&i, &t.objattr); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i); |
|
visit(obj, crossref, &t); |
|
} |
|
|
|
// Pass 3: GRAY objects are collected if their group's refcount dropped to |
|
// zero when we removed its white nodes. This can happen if they had only |
|
// been kept alive by virtue of sharing a group with an object that was just |
|
// frozen. |
|
// |
|
// It is important that we do this last, since the GRAY object's free() |
|
// function could call unref2() on just-frozen objects, which will decrement |
|
// refs that were added in pass 2. |
|
upb_inttable_begin(&i, &t.objattr); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
|
upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&i); |
|
if (obj->group == NULL || *obj->group == 0) { |
|
if (obj->group) { |
|
// We eagerly free() the group's count (since we can't easily determine |
|
// the group's remaining size it's the easiest way to ensure it gets |
|
// done). |
|
free(obj->group); |
|
|
|
// Visit to release ref2's (done in a separate pass since release_ref2 |
|
// depends on o->group being unmodified so it can test merged()). |
|
upb_refcounted *o = obj; |
|
do { visit(o, release_ref2, NULL); } while ((o = o->next) != obj); |
|
|
|
// Mark "group" fields as NULL so we know to free the objects later in |
|
// this loop, but also don't try to delete the group twice. |
|
o = obj; |
|
do { o->group = NULL; } while ((o = o->next) != obj); |
|
} |
|
obj->vtbl->free(obj); |
|
} |
|
} |
|
|
|
err4: |
|
if (!ret) { |
|
upb_inttable_begin(&i, &t.groups); |
|
for(; !upb_inttable_done(&i); upb_inttable_next(&i)) |
|
free(upb_value_getptr(upb_inttable_iter_value(&i))); |
|
} |
|
upb_inttable_uninit(&t.groups); |
|
err3: |
|
upb_inttable_uninit(&t.stack); |
|
err2: |
|
upb_inttable_uninit(&t.objattr); |
|
err1: |
|
return ret; |
|
} |
|
|
|
|
|
/* Misc internal functions ***************************************************/ |
|
|
|
static bool merged(const upb_refcounted *r, const upb_refcounted *r2) { |
|
return r->group == r2->group; |
|
} |
|
|
|
static void merge(upb_refcounted *r, upb_refcounted *from) { |
|
if (merged(r, from)) return; |
|
*r->group += *from->group; |
|
free(from->group); |
|
upb_refcounted *base = from; |
|
|
|
// Set all refcount pointers in the "from" chain to the merged refcount. |
|
// |
|
// TODO(haberman): this linear algorithm can result in an overall O(n^2) bound |
|
// if the user continuously extends a group by one object. Prevent this by |
|
// using one of the techniques in this paper: |
|
// ftp://www.ncedc.org/outgoing/geomorph/dino/orals/p245-tarjan.pdf |
|
do { from->group = r->group; } while ((from = from->next) != base); |
|
|
|
// Merge the two circularly linked lists by swapping their next pointers. |
|
upb_refcounted *tmp = r->next; |
|
r->next = base->next; |
|
base->next = tmp; |
|
} |
|
|
|
static void unref(const upb_refcounted *r); |
|
|
|
static void release_ref2(const upb_refcounted *obj, |
|
const upb_refcounted *subobj, |
|
void *closure) { |
|
UPB_UNUSED(closure); |
|
if (!merged(obj, subobj)) { |
|
assert(subobj->is_frozen); |
|
unref(subobj); |
|
} |
|
untrack(subobj, obj, true); |
|
} |
|
|
|
static void unref(const upb_refcounted *r) { |
|
if (atomic_dec(r->group)) { |
|
free(r->group); |
|
|
|
// In two passes, since release_ref2 needs a guarantee that any subobjs |
|
// are alive. |
|
const upb_refcounted *o = r; |
|
do { visit(o, release_ref2, NULL); } while((o = o->next) != r); |
|
|
|
o = r; |
|
do { |
|
const upb_refcounted *next = o->next; |
|
assert(o->is_frozen || o->individual_count == 0); |
|
o->vtbl->free((upb_refcounted*)o); |
|
o = next; |
|
} while(o != r); |
|
} |
|
} |
|
|
|
|
|
/* Public interface ***********************************************************/ |
|
|
|
bool upb_refcounted_init(upb_refcounted *r, |
|
const struct upb_refcounted_vtbl *vtbl, |
|
const void *owner) { |
|
r->next = r; |
|
r->vtbl = vtbl; |
|
r->individual_count = 0; |
|
r->is_frozen = false; |
|
r->group = malloc(sizeof(*r->group)); |
|
if (!r->group) return false; |
|
*r->group = 0; |
|
upb_refcounted_ref(r, owner); |
|
return true; |
|
} |
|
|
|
bool upb_refcounted_isfrozen(const upb_refcounted *r) { |
|
return r->is_frozen; |
|
} |
|
|
|
void upb_refcounted_ref(const upb_refcounted *r, const void *owner) { |
|
if (!r->is_frozen) |
|
((upb_refcounted*)r)->individual_count++; |
|
atomic_inc(r->group); |
|
track(r, owner, false); |
|
} |
|
|
|
void upb_refcounted_unref(const upb_refcounted *r, const void *owner) { |
|
if (!r->is_frozen) |
|
((upb_refcounted*)r)->individual_count--; |
|
unref(r); |
|
untrack(r, owner, false); |
|
} |
|
|
|
void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from) { |
|
assert(!from->is_frozen); // Non-const pointer implies this. |
|
if (r->is_frozen) { |
|
atomic_inc(r->group); |
|
} else { |
|
merge((upb_refcounted*)r, from); |
|
} |
|
track(r, from, true); |
|
} |
|
|
|
void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from) { |
|
assert(!from->is_frozen); // Non-const pointer implies this. |
|
if (r->is_frozen) { |
|
unref(r); |
|
} else { |
|
assert(merged(r, from)); |
|
} |
|
untrack(r, from, true); |
|
} |
|
|
|
void upb_refcounted_donateref( |
|
const upb_refcounted *r, const void *from, const void *to) { |
|
assert(from != to); |
|
assert(to != NULL); |
|
upb_refcounted_ref(r, to); |
|
if (from != NULL) |
|
upb_refcounted_unref(r, from); |
|
} |
|
|
|
void upb_refcounted_checkref(const upb_refcounted *r, const void *owner) { |
|
checkref(r, owner, false); |
|
} |
|
|
|
bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s) { |
|
for (int i = 0; i < n; i++) { |
|
assert(!roots[i]->is_frozen); |
|
} |
|
return freeze(roots, n, s); |
|
}
|
|
|