Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

656 lines
23 KiB

/*
* Copyright (c) 2009-2021, Google LLC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google LLC nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
** Our memory representation for parsing tables and messages themselves.
** Functions in this file are used by generated code and possibly reflection.
**
** The definitions in this file are internal to upb.
**/
#ifndef UPB_MSG_INT_H_
#define UPB_MSG_INT_H_
#include <stdlib.h>
#include <string.h>
#include "upb/extension_registry.h"
#include "upb/internal/table.h"
#include "upb/msg.h"
#include "upb/upb.h"
// Must be last.
#include "upb/port_def.inc"
#ifdef __cplusplus
extern "C" {
#endif
/** upb_*Int* conversion routines ********************************************/
UPB_INLINE int32_t _upb_Int32_FromI(int v) { return (int32_t)v; }
UPB_INLINE int64_t _upb_Int64_FromLL(long long v) { return (int64_t)v; }
UPB_INLINE uint32_t _upb_UInt32_FromU(unsigned v) { return (uint32_t)v; }
UPB_INLINE uint64_t _upb_UInt64_FromULL(unsigned long long v) {
return (uint64_t)v;
}
extern const float kUpb_FltInfinity;
extern const double kUpb_Infinity;
/** upb_MiniTable *************************************************************/
/* upb_MiniTable represents the memory layout of a given upb_MessageDef. The
* members are public so generated code can initialize them, but users MUST NOT
* read or write any of its members. */
typedef struct {
uint32_t number;
uint16_t offset;
int16_t presence; // If >0, hasbit_index. If <0, ~oneof_index
uint16_t submsg_index; // kUpb_NoSub if descriptortype != MESSAGE/GROUP/ENUM
uint8_t descriptortype;
uint8_t mode; /* upb_FieldMode | upb_LabelFlags |
(upb_FieldRep << kUpb_FieldRep_Shift) */
} upb_MiniTable_Field;
#define kUpb_NoSub ((uint16_t)-1)
typedef enum {
kUpb_FieldMode_Map = 0,
kUpb_FieldMode_Array = 1,
kUpb_FieldMode_Scalar = 2,
} upb_FieldMode;
// Mask to isolate the upb_FieldMode from field.mode.
#define kUpb_FieldMode_Mask 3
/* Extra flags on the mode field. */
typedef enum {
kUpb_LabelFlags_IsPacked = 4,
kUpb_LabelFlags_IsExtension = 8,
// Indicates that this descriptor type is an "alternate type":
// - for Int32, this indicates that the actual type is Enum (but was
// rewritten to Int32 because it is an open enum that requires no check).
// - for Bytes, this indicates that the actual type is String (but does
// not require any UTF-8 check).
kUpb_LabelFlags_IsAlternate = 16,
} upb_LabelFlags;
// Note: we sort by this number when calculating layout order.
typedef enum {
kUpb_FieldRep_1Byte = 0,
kUpb_FieldRep_4Byte = 1,
kUpb_FieldRep_StringView = 2,
kUpb_FieldRep_8Byte = 3,
kUpb_FieldRep_Shift = 6, // Bit offset of the rep in upb_MiniTable_Field.mode
kUpb_FieldRep_Max = kUpb_FieldRep_8Byte,
} upb_FieldRep;
UPB_INLINE upb_FieldMode upb_FieldMode_Get(const upb_MiniTable_Field* field) {
return (upb_FieldMode)(field->mode & 3);
}
UPB_INLINE bool upb_IsRepeatedOrMap(const upb_MiniTable_Field* field) {
/* This works because upb_FieldMode has no value 3. */
return !(field->mode & kUpb_FieldMode_Scalar);
}
UPB_INLINE bool upb_IsSubMessage(const upb_MiniTable_Field* field) {
return field->descriptortype == kUpb_FieldType_Message ||
field->descriptortype == kUpb_FieldType_Group;
}
struct upb_Decoder;
struct upb_MiniTable;
typedef const char* _upb_FieldParser(struct upb_Decoder* d, const char* ptr,
upb_Message* msg, intptr_t table,
uint64_t hasbits, uint64_t data);
typedef struct {
uint64_t field_data;
_upb_FieldParser* field_parser;
} _upb_FastTable_Entry;
typedef struct {
uint32_t mask_limit; // Limit enum value that can be tested with mask.
uint32_t value_count; // Number of values after the bitfield.
uint32_t data[]; // Bitmask + enumerated values follow.
} upb_MiniTable_Enum;
typedef enum {
_kUpb_FastEnumCheck_ValueIsInEnum = 0,
_kUpb_FastEnumCheck_ValueIsNotInEnum = 1,
_kUpb_FastEnumCheck_CannotCheckFast = 2,
} _kUpb_FastEnumCheck_Status;
UPB_INLINE _kUpb_FastEnumCheck_Status
_upb_MiniTable_CheckEnumValueFast(const upb_MiniTable_Enum* e, uint32_t val) {
if (UPB_UNLIKELY(val >= 64)) return _kUpb_FastEnumCheck_CannotCheckFast;
uint64_t mask = e->data[0] | ((uint64_t)e->data[1] << 32);
return (mask & (1ULL << val)) ? _kUpb_FastEnumCheck_ValueIsInEnum
: _kUpb_FastEnumCheck_ValueIsNotInEnum;
}
UPB_INLINE bool _upb_MiniTable_CheckEnumValueSlow(const upb_MiniTable_Enum* e,
uint32_t val) {
if (val < e->mask_limit) return e->data[val / 32] & (1ULL << (val % 32));
// OPT: binary search long lists?
const uint32_t* start = &e->data[e->mask_limit / 32];
const uint32_t* limit = &e->data[(e->mask_limit / 32) + e->value_count];
for (const uint32_t* p = start; p < limit; p++) {
if (*p == val) return true;
}
return false;
}
// Validates enum value against range defined by enum mini table.
UPB_INLINE bool upb_MiniTable_Enum_CheckValue(const upb_MiniTable_Enum* e,
uint32_t val) {
_kUpb_FastEnumCheck_Status status = _upb_MiniTable_CheckEnumValueFast(e, val);
if (UPB_UNLIKELY(status == _kUpb_FastEnumCheck_CannotCheckFast)) {
return _upb_MiniTable_CheckEnumValueSlow(e, val);
}
return status == _kUpb_FastEnumCheck_ValueIsInEnum ? true : false;
}
typedef union {
const struct upb_MiniTable* submsg;
const upb_MiniTable_Enum* subenum;
} upb_MiniTable_Sub;
typedef enum {
kUpb_ExtMode_NonExtendable = 0, // Non-extendable message.
kUpb_ExtMode_Extendable = 1, // Normal extendable message.
kUpb_ExtMode_IsMessageSet = 2, // MessageSet message.
kUpb_ExtMode_IsMessageSet_ITEM =
3, // MessageSet item (temporary only, see decode.c)
// During table building we steal a bit to indicate that the message is a map
// entry. *Only* used during table building!
kUpb_ExtMode_IsMapEntry = 4,
} upb_ExtMode;
/* MessageSet wire format is:
* message MessageSet {
* repeated group Item = 1 {
* required int32 type_id = 2;
* required bytes message = 3;
* }
* }
*/
typedef enum {
_UPB_MSGSET_ITEM = 1,
_UPB_MSGSET_TYPEID = 2,
_UPB_MSGSET_MESSAGE = 3,
} upb_msgext_fieldnum;
struct upb_MiniTable {
const upb_MiniTable_Sub* subs;
const upb_MiniTable_Field* fields;
/* Must be aligned to sizeof(void*). Doesn't include internal members like
* unknown fields, extension dict, pointer to msglayout, etc. */
uint16_t size;
uint16_t field_count;
uint8_t ext; // upb_ExtMode, declared as uint8_t so sizeof(ext) == 1
uint8_t dense_below;
uint8_t table_mask;
uint8_t required_count; // Required fields have the lowest hasbits.
/* To statically initialize the tables of variable length, we need a flexible
* array member, and we need to compile in gnu99 mode (constant initialization
* of flexible array members is a GNU extension, not in C99 unfortunately. */
_upb_FastTable_Entry fasttable[];
};
struct upb_MiniTable_Extension {
upb_MiniTable_Field field;
const upb_MiniTable* extendee;
upb_MiniTable_Sub sub; /* NULL unless submessage or proto2 enum */
};
typedef struct {
const upb_MiniTable** msgs;
const upb_MiniTable_Enum** enums;
const upb_MiniTable_Extension** exts;
int msg_count;
int enum_count;
int ext_count;
} upb_MiniTable_File;
// Computes a bitmask in which the |l->required_count| lowest bits are set,
// except that we skip the lowest bit (because upb never uses hasbit 0).
//
// Sample output:
// requiredmask(1) => 0b10 (0x2)
// requiredmask(5) => 0b111110 (0x3e)
UPB_INLINE uint64_t upb_MiniTable_requiredmask(const upb_MiniTable* l) {
int n = l->required_count;
assert(0 < n && n <= 63);
return ((1ULL << n) - 1) << 1;
}
/** upb_Message ***************************************************************/
/* Internal members of a upb_Message that track unknown fields and/or
* extensions. We can change this without breaking binary compatibility. We put
* these before the user's data. The user's upb_Message* points after the
* upb_Message_Internal. */
typedef struct {
/* Total size of this structure, including the data that follows.
* Must be aligned to 8, which is alignof(upb_Message_Extension) */
uint32_t size;
/* Offsets relative to the beginning of this structure.
*
* Unknown data grows forward from the beginning to unknown_end.
* Extension data grows backward from size to ext_begin.
* When the two meet, we're out of data and have to realloc.
*
* If we imagine that the final member of this struct is:
* char data[size - overhead]; // overhead =
* sizeof(upb_Message_InternalData)
*
* Then we have:
* unknown data: data[0 .. (unknown_end - overhead)]
* extensions data: data[(ext_begin - overhead) .. (size - overhead)] */
uint32_t unknown_end;
uint32_t ext_begin;
/* Data follows, as if there were an array:
* char data[size - sizeof(upb_Message_InternalData)]; */
} upb_Message_InternalData;
typedef struct {
upb_Message_InternalData* internal;
/* Message data follows. */
} upb_Message_Internal;
/* Maps upb_CType -> memory size. */
extern char _upb_CTypeo_size[12];
UPB_INLINE size_t upb_msg_sizeof(const upb_MiniTable* l) {
return l->size + sizeof(upb_Message_Internal);
}
/* Inline version upb_Message_New(), for internal use */
UPB_INLINE upb_Message* _upb_Message_New(const upb_MiniTable* mini_table,
upb_Arena* arena) {
size_t size = upb_msg_sizeof(mini_table);
void* mem = upb_Arena_Malloc(arena, size + sizeof(upb_Message_Internal));
if (UPB_UNLIKELY(!mem)) return NULL;
upb_Message* msg = UPB_PTR_AT(mem, sizeof(upb_Message_Internal), upb_Message);
memset(mem, 0, size);
return msg;
}
UPB_INLINE upb_Message_Internal* upb_Message_Getinternal(upb_Message* msg) {
ptrdiff_t size = sizeof(upb_Message_Internal);
return (upb_Message_Internal*)((char*)msg - size);
}
/* Clears the given message. */
void _upb_Message_Clear(upb_Message* msg, const upb_MiniTable* l);
/* Discards the unknown fields for this message only. */
void _upb_Message_DiscardUnknown_shallow(upb_Message* msg);
/* Adds unknown data (serialized protobuf data) to the given message. The data
* is copied into the message instance. */
bool _upb_Message_AddUnknown(upb_Message* msg, const char* data, size_t len,
upb_Arena* arena);
/** upb_Message_Extension *****************************************************/
/* The internal representation of an extension is self-describing: it contains
* enough information that we can serialize it to binary format without needing
* to look it up in a upb_ExtensionRegistry.
*
* This representation allocates 16 bytes to data on 64-bit platforms. This is
* rather wasteful for scalars (in the extreme case of bool, it wastes 15
* bytes). We accept this because we expect messages to be the most common
* extension type. */
typedef struct {
const upb_MiniTable_Extension* ext;
union {
upb_StringView str;
void* ptr;
char scalar_data[8];
} data;
} upb_Message_Extension;
/* Adds the given extension data to the given message. |ext| is copied into the
* message instance. This logically replaces any previously-added extension with
* this number */
upb_Message_Extension* _upb_Message_GetOrCreateExtension(
upb_Message* msg, const upb_MiniTable_Extension* ext, upb_Arena* arena);
/* Returns an array of extensions for this message. Note: the array is
* ordered in reverse relative to the order of creation. */
const upb_Message_Extension* _upb_Message_Getexts(const upb_Message* msg,
size_t* count);
/* Returns an extension for the given field number, or NULL if no extension
* exists for this field number. */
const upb_Message_Extension* _upb_Message_Getext(
const upb_Message* msg, const upb_MiniTable_Extension* ext);
void _upb_Message_Clearext(upb_Message* msg,
const upb_MiniTable_Extension* ext);
/** Hasbit access *************************************************************/
UPB_INLINE bool _upb_hasbit(const upb_Message* msg, size_t idx) {
return (*UPB_PTR_AT(msg, idx / 8, const char) & (1 << (idx % 8))) != 0;
}
UPB_INLINE void _upb_sethas(const upb_Message* msg, size_t idx) {
(*UPB_PTR_AT(msg, idx / 8, char)) |= (char)(1 << (idx % 8));
}
UPB_INLINE void _upb_clearhas(const upb_Message* msg, size_t idx) {
(*UPB_PTR_AT(msg, idx / 8, char)) &= (char)(~(1 << (idx % 8)));
}
UPB_INLINE size_t _upb_Message_Hasidx(const upb_MiniTable_Field* f) {
UPB_ASSERT(f->presence > 0);
return f->presence;
}
UPB_INLINE bool _upb_hasbit_field(const upb_Message* msg,
const upb_MiniTable_Field* f) {
return _upb_hasbit(msg, _upb_Message_Hasidx(f));
}
UPB_INLINE void _upb_sethas_field(const upb_Message* msg,
const upb_MiniTable_Field* f) {
_upb_sethas(msg, _upb_Message_Hasidx(f));
}
UPB_INLINE void _upb_clearhas_field(const upb_Message* msg,
const upb_MiniTable_Field* f) {
_upb_clearhas(msg, _upb_Message_Hasidx(f));
}
/** Oneof case access *********************************************************/
UPB_INLINE uint32_t* _upb_oneofcase(upb_Message* msg, size_t case_ofs) {
return UPB_PTR_AT(msg, case_ofs, uint32_t);
}
UPB_INLINE uint32_t _upb_getoneofcase(const void* msg, size_t case_ofs) {
return *UPB_PTR_AT(msg, case_ofs, uint32_t);
}
UPB_INLINE size_t _upb_oneofcase_ofs(const upb_MiniTable_Field* f) {
UPB_ASSERT(f->presence < 0);
return ~(ptrdiff_t)f->presence;
}
UPB_INLINE uint32_t* _upb_oneofcase_field(upb_Message* msg,
const upb_MiniTable_Field* f) {
return _upb_oneofcase(msg, _upb_oneofcase_ofs(f));
}
UPB_INLINE uint32_t _upb_getoneofcase_field(const upb_Message* msg,
const upb_MiniTable_Field* f) {
return _upb_getoneofcase(msg, _upb_oneofcase_ofs(f));
}
UPB_INLINE bool _upb_has_submsg_nohasbit(const upb_Message* msg, size_t ofs) {
return *UPB_PTR_AT(msg, ofs, const upb_Message*) != NULL;
}
/** upb_Map *******************************************************************/
/* Right now we use strmaps for everything. We'll likely want to use
* integer-specific maps for integer-keyed maps.*/
struct upb_Map {
/* Size of key and val, based on the map type. Strings are represented as '0'
* because they must be handled specially. */
char key_size;
char val_size;
upb_strtable table;
};
/* Map entries aren't actually stored, they are only used during parsing. For
* parsing, it helps a lot if all map entry messages have the same layout.
* The compiler and def.c must ensure that all map entries have this layout. */
typedef struct {
upb_Message_Internal internal;
union {
upb_StringView str; /* For str/bytes. */
upb_value val; /* For all other types. */
} k;
union {
upb_StringView str; /* For str/bytes. */
upb_value val; /* For all other types. */
} v;
} upb_MapEntry;
/* Creates a new map on the given arena with this key/value type. */
upb_Map* _upb_Map_New(upb_Arena* a, size_t key_size, size_t value_size);
/* Converting between internal table representation and user values.
*
* _upb_map_tokey() and _upb_map_fromkey() are inverses.
* _upb_map_tovalue() and _upb_map_fromvalue() are inverses.
*
* These functions account for the fact that strings are treated differently
* from other types when stored in a map.
*/
UPB_INLINE upb_StringView _upb_map_tokey(const void* key, size_t size) {
if (size == UPB_MAPTYPE_STRING) {
return *(upb_StringView*)key;
} else {
return upb_StringView_FromDataAndSize((const char*)key, size);
}
}
UPB_INLINE void _upb_map_fromkey(upb_StringView key, void* out, size_t size) {
if (size == UPB_MAPTYPE_STRING) {
memcpy(out, &key, sizeof(key));
} else {
memcpy(out, key.data, size);
}
}
UPB_INLINE bool _upb_map_tovalue(const void* val, size_t size,
upb_value* msgval, upb_Arena* a) {
if (size == UPB_MAPTYPE_STRING) {
upb_StringView* strp = (upb_StringView*)upb_Arena_Malloc(a, sizeof(*strp));
if (!strp) return false;
*strp = *(upb_StringView*)val;
*msgval = upb_value_ptr(strp);
} else {
memcpy(msgval, val, size);
}
return true;
}
UPB_INLINE void _upb_map_fromvalue(upb_value val, void* out, size_t size) {
if (size == UPB_MAPTYPE_STRING) {
const upb_StringView* strp = (const upb_StringView*)upb_value_getptr(val);
memcpy(out, strp, sizeof(upb_StringView));
} else {
memcpy(out, &val, size);
}
}
/* Map operations, shared by reflection and generated code. */
UPB_INLINE size_t _upb_Map_Size(const upb_Map* map) {
return map->table.t.count;
}
UPB_INLINE bool _upb_Map_Get(const upb_Map* map, const void* key,
size_t key_size, void* val, size_t val_size) {
upb_value tabval;
upb_StringView k = _upb_map_tokey(key, key_size);
bool ret = upb_strtable_lookup2(&map->table, k.data, k.size, &tabval);
if (ret && val) {
_upb_map_fromvalue(tabval, val, val_size);
}
return ret;
}
UPB_INLINE void* _upb_map_next(const upb_Map* map, size_t* iter) {
upb_strtable_iter it;
it.t = &map->table;
it.index = *iter;
upb_strtable_next(&it);
*iter = it.index;
if (upb_strtable_done(&it)) return NULL;
return (void*)str_tabent(&it);
}
typedef enum {
// LINT.IfChange
_kUpb_MapInsertStatus_Inserted = 0,
_kUpb_MapInsertStatus_Replaced = 1,
_kUpb_MapInsertStatus_OutOfMemory = 2,
// LINT.ThenChange(//depot/google3/third_party/upb/upb/map.h)
} _upb_MapInsertStatus;
UPB_INLINE _upb_MapInsertStatus _upb_Map_Insert(upb_Map* map, const void* key,
size_t key_size, void* val,
size_t val_size, upb_Arena* a) {
upb_StringView strkey = _upb_map_tokey(key, key_size);
upb_value tabval = {0};
if (!_upb_map_tovalue(val, val_size, &tabval, a)) {
return _kUpb_MapInsertStatus_OutOfMemory;
}
/* TODO(haberman): add overwrite operation to minimize number of lookups. */
bool removed =
upb_strtable_remove2(&map->table, strkey.data, strkey.size, NULL);
if (!upb_strtable_insert(&map->table, strkey.data, strkey.size, tabval, a)) {
return _kUpb_MapInsertStatus_OutOfMemory;
}
return removed ? _kUpb_MapInsertStatus_Replaced
: _kUpb_MapInsertStatus_Inserted;
}
UPB_INLINE bool _upb_Map_Delete(upb_Map* map, const void* key,
size_t key_size) {
upb_StringView k = _upb_map_tokey(key, key_size);
return upb_strtable_remove2(&map->table, k.data, k.size, NULL);
}
UPB_INLINE void _upb_Map_Clear(upb_Map* map) {
upb_strtable_clear(&map->table);
}
/* Message map operations, these get the map from the message first. */
UPB_INLINE size_t _upb_msg_map_size(const upb_Message* msg, size_t ofs) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
return map ? _upb_Map_Size(map) : 0;
}
UPB_INLINE bool _upb_msg_map_get(const upb_Message* msg, size_t ofs,
const void* key, size_t key_size, void* val,
size_t val_size) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
if (!map) return false;
return _upb_Map_Get(map, key, key_size, val, val_size);
}
UPB_INLINE void* _upb_msg_map_next(const upb_Message* msg, size_t ofs,
size_t* iter) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
if (!map) return NULL;
return _upb_map_next(map, iter);
}
UPB_INLINE bool _upb_msg_map_set(upb_Message* msg, size_t ofs, const void* key,
size_t key_size, void* val, size_t val_size,
upb_Arena* arena) {
upb_Map** map = UPB_PTR_AT(msg, ofs, upb_Map*);
if (!*map) {
*map = _upb_Map_New(arena, key_size, val_size);
}
return _upb_Map_Insert(*map, key, key_size, val, val_size, arena) !=
_kUpb_MapInsertStatus_OutOfMemory;
}
UPB_INLINE bool _upb_msg_map_delete(upb_Message* msg, size_t ofs,
const void* key, size_t key_size) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
if (!map) return false;
return _upb_Map_Delete(map, key, key_size);
}
UPB_INLINE void _upb_msg_map_clear(upb_Message* msg, size_t ofs) {
upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*);
if (!map) return;
_upb_Map_Clear(map);
}
/* Accessing map key/value from a pointer, used by generated code only. */
UPB_INLINE void _upb_msg_map_key(const void* msg, void* key, size_t size) {
const upb_tabent* ent = (const upb_tabent*)msg;
uint32_t u32len;
upb_StringView k;
k.data = upb_tabstr(ent->key, &u32len);
k.size = u32len;
_upb_map_fromkey(k, key, size);
}
UPB_INLINE void _upb_msg_map_value(const void* msg, void* val, size_t size) {
const upb_tabent* ent = (const upb_tabent*)msg;
upb_value v = {ent->val.val};
_upb_map_fromvalue(v, val, size);
}
UPB_INLINE void _upb_msg_map_set_value(void* msg, const void* val,
size_t size) {
upb_tabent* ent = (upb_tabent*)msg;
/* This is like _upb_map_tovalue() except the entry already exists so we can
* reuse the allocated upb_StringView for string fields. */
if (size == UPB_MAPTYPE_STRING) {
upb_StringView* strp = (upb_StringView*)(uintptr_t)ent->val.val;
memcpy(strp, val, sizeof(*strp));
} else {
memcpy(&ent->val.val, val, size);
}
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#include "upb/port_undef.inc"
#endif /* UPB_MSG_INT_H_ */