Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

575 lines
19 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* There are a few printf's strewn throughout this file, uncommenting them
* can be useful for debugging.
*/
#include "upb/table.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
static const double MAX_LOAD = 0.85;
// The minimum percentage of an array part that we will allow. This is a
// speed/memory-usage tradeoff (though it's not straightforward because of
// cache effects). The lower this is, the more memory we'll use.
static const double MIN_DENSITY = 0.1;
static uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed);
/* Base table (shared code) ***************************************************/
static uint32_t upb_table_size(const upb_table *t) { return 1 << t->size_lg2; }
static size_t upb_table_entrysize(const upb_table *t) { return t->entry_size; }
static size_t upb_table_valuesize(const upb_table *t) { return t->value_size; }
void upb_table_init(upb_table *t, uint32_t size, uint16_t entry_size) {
t->count = 0;
t->entry_size = entry_size;
t->size_lg2 = 1;
while(upb_table_size(t) < size) t->size_lg2++;
size_t bytes = upb_table_size(t) * t->entry_size;
t->mask = upb_table_size(t) - 1;
t->entries = malloc(bytes);
}
void upb_table_free(upb_table *t) { free(t->entries); }
/* upb_inttable ***************************************************************/
static upb_inttable_entry *intent(const upb_inttable *t, int32_t i) {
//printf("looking up int entry %d, size of entry: %d\n", i, t->t.entry_size);
return UPB_INDEX(t->t.entries, i, t->t.entry_size);
}
static uint32_t upb_inttable_hashtablesize(const upb_inttable *t) {
return upb_table_size(&t->t);
}
void upb_inttable_sizedinit(upb_inttable *t, uint32_t arrsize, uint32_t hashsize,
uint16_t value_size) {
size_t entsize = _upb_inttable_entrysize(value_size);
upb_table_init(&t->t, hashsize, entsize);
for (uint32_t i = 0; i < upb_table_size(&t->t); i++) {
upb_inttable_entry *e = intent(t, i);
e->hdr.key = 0;
e->hdr.next = UPB_END_OF_CHAIN;
e->val.has_entry = 0;
}
t->t.value_size = value_size;
// Always make the array part at least 1 long, so that we know key 0
// won't be in the hash part (which lets us speed up that code path).
t->array_size = UPB_MAX(1, arrsize);
t->array = malloc(upb_table_valuesize(&t->t) * t->array_size);
t->array_count = 0;
for (uint32_t i = 0; i < t->array_size; i++) {
upb_inttable_value *val = UPB_INDEX(t->array, i, upb_table_valuesize(&t->t));
val->has_entry = false;
}
}
void upb_inttable_init(upb_inttable *t, uint32_t hashsize, uint16_t value_size) {
upb_inttable_sizedinit(t, 0, hashsize, value_size);
}
void upb_inttable_free(upb_inttable *t) {
upb_table_free(&t->t);
free(t->array);
}
static uint32_t empty_intbucket(upb_inttable *table)
{
// TODO: does it matter that this is biased towards the front of the table?
for(uint32_t i = 0; i < upb_inttable_hashtablesize(table); i++) {
upb_inttable_entry *e = intent(table, i);
if(!e->val.has_entry) return i;
}
assert(false);
return 0;
}
// The insert routines have a lot more code duplication between int/string
// variants than I would like, but there's just a bit too much that varies to
// parameterize them.
static void intinsert(upb_inttable *t, uint32_t key, const void *val) {
assert(upb_inttable_lookup(t, key) == NULL);
upb_inttable_value *table_val;
if (_upb_inttable_isarrkey(t, key)) {
table_val = UPB_INDEX(t->array, key, upb_table_valuesize(&t->t));
t->array_count++;
//printf("Inserting key %d to Array part! %p\n", key, table_val);
} else {
t->t.count++;
uint32_t bucket = _upb_inttable_bucket(t, key);
upb_inttable_entry *table_e = intent(t, bucket);
//printf("Hash part! Inserting into bucket %d?\n", bucket);
if(table_e->val.has_entry) { /* Collision. */
//printf("Collision!\n");
if(bucket == _upb_inttable_bucket(t, table_e->hdr.key)) {
/* Existing element is in its main posisiton. Find an empty slot to
* place our new element and append it to this key's chain. */
uint32_t empty_bucket = empty_intbucket(t);
while (table_e->hdr.next != UPB_END_OF_CHAIN)
table_e = intent(t, table_e->hdr.next);
table_e->hdr.next = empty_bucket;
table_e = intent(t, empty_bucket);
} else {
/* Existing element is not in its main position. Move it to an empty
* slot and put our element in its main position. */
uint32_t empty_bucket = empty_intbucket(t);
uint32_t evictee_bucket = _upb_inttable_bucket(t, table_e->hdr.key);
memcpy(intent(t, empty_bucket), table_e, t->t.entry_size); /* copies next */
upb_inttable_entry *evictee_e = intent(t, evictee_bucket);
while(1) {
assert(evictee_e->val.has_entry);
assert(evictee_e->hdr.next != UPB_END_OF_CHAIN);
if(evictee_e->hdr.next == bucket) {
evictee_e->hdr.next = empty_bucket;
break;
}
evictee_e = intent(t, evictee_e->hdr.next);
}
/* table_e remains set to our mainpos. */
}
}
//printf("Inserting! to:%p, copying to: %p\n", table_e, &table_e->val);
table_val = &table_e->val;
table_e->hdr.key = key;
table_e->hdr.next = UPB_END_OF_CHAIN;
}
memcpy(table_val, val, upb_table_valuesize(&t->t));
table_val->has_entry = true;
assert(upb_inttable_lookup(t, key) == table_val);
}
// Insert all elements from src into dest. Caller ensures that a resize will
// not be necessary.
static void upb_inttable_insertall(upb_inttable *dst, upb_inttable *src) {
for(upb_inttable_iter i = upb_inttable_begin(src); !upb_inttable_done(i);
i = upb_inttable_next(src, i)) {
//printf("load check: %d %d\n", upb_table_count(&dst->t), upb_inttable_hashtablesize(dst));
assert((double)(upb_table_count(&dst->t)) /
upb_inttable_hashtablesize(dst) <= MAX_LOAD);
intinsert(dst, upb_inttable_iter_key(i), upb_inttable_iter_value(i));
}
}
void upb_inttable_insert(upb_inttable *t, uint32_t key, const void *val) {
if((double)(t->t.count + 1) / upb_inttable_hashtablesize(t) > MAX_LOAD) {
//printf("RESIZE!\n");
// Need to resize. Allocate new table with double the size of however many
// elements we have now, add old elements to it. We create the new hash
// table without an array part, even if the old table had an array part.
// If/when the user calls upb_inttable_compact() again, we'll create an
// array part then.
upb_inttable new_table;
//printf("Old table count=%d, size=%d\n", upb_inttable_count(t), upb_inttable_hashtablesize(t));
upb_inttable_init(&new_table, upb_inttable_count(t)*2, upb_table_valuesize(&t->t));
upb_inttable_insertall(&new_table, t);
upb_inttable_free(t);
*t = new_table;
}
intinsert(t, key, val);
}
void upb_inttable_compact(upb_inttable *t) {
// Find the largest array part we can that satisfies the MIN_DENSITY
// definition. For now we just count down powers of two.
uint32_t largest_key = 0;
for(upb_inttable_iter i = upb_inttable_begin(t); !upb_inttable_done(i);
i = upb_inttable_next(t, i)) {
largest_key = UPB_MAX(largest_key, upb_inttable_iter_key(i));
}
int lg2_array = 0;
while ((1UL << lg2_array) < largest_key) ++lg2_array;
++lg2_array; // Undo the first iteration.
size_t array_size;
int array_count = 0;
while (lg2_array > 0) {
array_size = (1 << --lg2_array);
//printf("Considering size %d (btw, our table has %d things total)\n", array_size, upb_inttable_count(t));
if ((double)upb_inttable_count(t) / array_size < MIN_DENSITY) {
// Even if 100% of the keys were in the array pary, an array of this
// size would not be dense enough.
continue;
}
array_count = 0;
for(upb_inttable_iter i = upb_inttable_begin(t); !upb_inttable_done(i);
i = upb_inttable_next(t, i)) {
if (upb_inttable_iter_key(i) < array_size)
array_count++;
}
//printf("There would be %d things in that array\n", array_count);
if ((double)array_count / array_size >= MIN_DENSITY) break;
}
upb_inttable new_table;
int hash_size = (upb_inttable_count(t) - array_count + 1) / MAX_LOAD;
//printf("array_count: %d, array_size: %d, hash_size: %d, table size: %d\n", array_count, array_size, hash_size, upb_inttable_count(t));
upb_inttable_sizedinit(&new_table, array_size, hash_size,
upb_table_valuesize(&t->t));
//printf("For %d things, using array size=%d, hash_size = %d\n", upb_inttable_count(t), array_size, hash_size);
upb_inttable_insertall(&new_table, t);
upb_inttable_free(t);
*t = new_table;
}
upb_inttable_iter upb_inttable_begin(const upb_inttable *t) {
upb_inttable_iter iter = {-1, NULL, true}; // -1 will overflow to 0 on the first iteration.
return upb_inttable_next(t, iter);
}
upb_inttable_iter upb_inttable_next(const upb_inttable *t,
upb_inttable_iter iter) {
const size_t hdrsize = sizeof(upb_inttable_header);
const size_t entsize = upb_table_entrysize(&t->t);
if (iter.array_part) {
while (++iter.key < t->array_size) {
//printf("considering value %d\n", iter.key);
iter.value = UPB_INDEX(t->array, iter.key, t->t.value_size);
if (iter.value->has_entry) return iter;
}
//printf("Done with array part!\n");
iter.array_part = false;
// Point to the value of the table[-1] entry.
iter.value = UPB_INDEX(intent(t, -1), 1, hdrsize);
}
void *end = intent(t, upb_inttable_hashtablesize(t));
// Point to the entry for the value that was previously in iter.
upb_inttable_entry *e = UPB_INDEX(iter.value, -1, hdrsize);
do {
e = UPB_INDEX(e, 1, entsize);
//printf("considering value %p (val: %p)\n", e, &e->val);
if(e == end) {
//printf("No values.\n");
iter.value = NULL;
return iter;
}
} while(!e->val.has_entry);
//printf("USING VALUE! %p\n", e);
iter.key = e->hdr.key;
iter.value = &e->val;
return iter;
}
/* upb_strtable ***************************************************************/
static upb_strtable_entry *strent(const upb_strtable *t, int32_t i) {
//fprintf(stderr, "i: %d, table_size: %d\n", i, upb_table_size(&t->t));
assert(i <= (int32_t)upb_table_size(&t->t));
return UPB_INDEX(t->t.entries, i, t->t.entry_size);
}
static uint32_t upb_strtable_size(const upb_strtable *t) {
return upb_table_size(&t->t);
}
void upb_strtable_init(upb_strtable *t, uint32_t size, uint16_t valuesize) {
t->t.value_size = valuesize;
size_t entsize = upb_align_up(sizeof(upb_strtable_header) + valuesize, 8);
upb_table_init(&t->t, size, entsize);
for (uint32_t i = 0; i < upb_table_size(&t->t); i++) {
upb_strtable_entry *e = strent(t, i);
e->hdr.key = NULL;
e->hdr.next = UPB_END_OF_CHAIN;
}
}
void upb_strtable_free(upb_strtable *t) {
// Free keys from the strtable.
upb_strtable_iter i;
for(upb_strtable_begin(&i, t); !upb_strtable_done(&i); upb_strtable_next(&i))
free((char*)upb_strtable_iter_key(&i));
upb_table_free(&t->t);
}
static uint32_t strtable_bucket(const upb_strtable *t, const char *key) {
uint32_t hash = MurmurHash2(key, strlen(key), 0);
return (hash & t->t.mask);
}
void *upb_strtable_lookup(const upb_strtable *t, const char *key) {
uint32_t bucket = strtable_bucket(t, key);
upb_strtable_entry *e;
do {
e = strent(t, bucket);
if(e->hdr.key && strcmp(e->hdr.key, key) == 0) return &e->val;
} while((bucket = e->hdr.next) != UPB_END_OF_CHAIN);
return NULL;
}
void *upb_strtable_lookupl(const upb_strtable *t, const char *key, size_t len) {
// TODO: improve.
char key2[len+1];
memcpy(key2, key, len);
key2[len] = '\0';
return upb_strtable_lookup(t, key2);
}
static uint32_t empty_strbucket(upb_strtable *table) {
// TODO: does it matter that this is biased towards the front of the table?
for(uint32_t i = 0; i < upb_strtable_size(table); i++) {
upb_strtable_entry *e = strent(table, i);
if(!e->hdr.key) return i;
}
assert(false);
return 0;
}
static void strinsert(upb_strtable *t, const char *key, const void *val) {
assert(upb_strtable_lookup(t, key) == NULL);
t->t.count++;
uint32_t bucket = strtable_bucket(t, key);
upb_strtable_entry *table_e = strent(t, bucket);
if(table_e->hdr.key) { /* Collision. */
if(bucket == strtable_bucket(t, table_e->hdr.key)) {
/* Existing element is in its main posisiton. Find an empty slot to
* place our new element and append it to this key's chain. */
uint32_t empty_bucket = empty_strbucket(t);
while (table_e->hdr.next != UPB_END_OF_CHAIN)
table_e = strent(t, table_e->hdr.next);
table_e->hdr.next = empty_bucket;
table_e = strent(t, empty_bucket);
} else {
/* Existing element is not in its main position. Move it to an empty
* slot and put our element in its main position. */
uint32_t empty_bucket = empty_strbucket(t);
uint32_t evictee_bucket = strtable_bucket(t, table_e->hdr.key);
memcpy(strent(t, empty_bucket), table_e, t->t.entry_size); /* copies next */
upb_strtable_entry *evictee_e = strent(t, evictee_bucket);
while(1) {
assert(evictee_e->hdr.key);
assert(evictee_e->hdr.next != UPB_END_OF_CHAIN);
if(evictee_e->hdr.next == bucket) {
evictee_e->hdr.next = empty_bucket;
break;
}
evictee_e = strent(t, evictee_e->hdr.next);
}
/* table_e remains set to our mainpos. */
}
}
//fprintf(stderr, "val: %p\n", val);
//fprintf(stderr, "val size: %d\n", t->t.value_size);
memcpy(&table_e->val, val, t->t.value_size);
table_e->hdr.key = strdup(key);
table_e->hdr.next = UPB_END_OF_CHAIN;
//fprintf(stderr, "Looking up, string=%s...\n", key);
assert(upb_strtable_lookup(t, key) == &table_e->val);
//printf("Yay!\n");
}
void upb_strtable_insert(upb_strtable *t, const char *key, const void *val) {
if((double)(t->t.count + 1) / upb_strtable_size(t) > MAX_LOAD) {
// Need to resize. New table of double the size, add old elements to it.
//printf("RESIZE!!\n");
upb_strtable new_table;
upb_strtable_init(&new_table, upb_strtable_size(t)*2, t->t.value_size);
upb_strtable_iter i;
upb_strtable_begin(&i, t);
for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
strinsert(&new_table,
upb_strtable_iter_key(&i),
upb_strtable_iter_value(&i));
}
upb_strtable_free(t);
*t = new_table;
}
strinsert(t, key, val);
}
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) {
i->e = strent(t, -1);
i->t = t;
upb_strtable_next(i);
}
void upb_strtable_next(upb_strtable_iter *i) {
upb_strtable_entry *end = strent(i->t, upb_strtable_size(i->t));
upb_strtable_entry *cur = i->e;
do {
cur = (void*)((char*)cur + i->t->t.entry_size);
if(cur == end) { i->e = NULL; return; }
} while(cur->hdr.key == NULL);
i->e = cur;
}
#ifdef UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHash2, by Austin Appleby (released as public domain).
// Reformatted and C99-ified by Joshua Haberman.
// Note - This code makes a few assumptions about how your machine behaves -
// 1. We can read a 4-byte value from any address without crashing
// 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t
// And it has a few limitations -
// 1. It will not work incrementally.
// 2. It will not produce the same results on little-endian and big-endian
// machines.
static uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed)
{
// 'm' and 'r' are mixing constants generated offline.
// They're not really 'magic', they just happen to work well.
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
// Initialize the hash to a 'random' value
uint32_t h = seed ^ len;
// Mix 4 bytes at a time into the hash
const uint8_t * data = (const uint8_t *)key;
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
k *= m;
k ^= k >> r;
k *= m;
h *= m;
h ^= k;
data += 4;
len -= 4;
}
// Handle the last few bytes of the input array
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
// Do a few final mixes of the hash to ensure the last few
// bytes are well-incorporated.
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
#else // !UPB_UNALIGNED_READS_OK
//-----------------------------------------------------------------------------
// MurmurHashAligned2, by Austin Appleby
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer
// on certain platforms.
// Performance will be lower than MurmurHash2
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; }
static uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed)
{
const uint32_t m = 0x5bd1e995;
const int32_t r = 24;
const uint8_t * data = (const uint8_t *)key;
uint32_t h = seed ^ len;
uint8_t align = (uintptr_t)data & 3;
if(align && (len >= 4)) {
// Pre-load the temp registers
uint32_t t = 0, d = 0;
switch(align) {
case 1: t |= data[2] << 16;
case 2: t |= data[1] << 8;
case 3: t |= data[0];
}
t <<= (8 * align);
data += 4-align;
len -= 4-align;
int32_t sl = 8 * (4-align);
int32_t sr = 8 * align;
// Mix
while(len >= 4) {
d = *(uint32_t *)data;
t = (t >> sr) | (d << sl);
uint32_t k = t;
MIX(h,k,m);
t = d;
data += 4;
len -= 4;
}
// Handle leftover data in temp registers
d = 0;
if(len >= align) {
switch(align) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
}
uint32_t k = (t >> sr) | (d << sl);
MIX(h,k,m);
data += align;
len -= align;
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
} else {
switch(len) {
case 3: d |= data[2] << 16;
case 2: d |= data[1] << 8;
case 1: d |= data[0];
case 0: h ^= (t >> sr) | (d << sl); h *= m;
}
}
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
} else {
while(len >= 4) {
uint32_t k = *(uint32_t *)data;
MIX(h,k,m);
data += 4;
len -= 4;
}
//----------
// Handle tail bytes
switch(len) {
case 3: h ^= data[2] << 16;
case 2: h ^= data[1] << 8;
case 1: h ^= data[0]; h *= m;
};
h ^= h >> 13;
h *= m;
h ^= h >> 15;
return h;
}
}
#undef MIX
#endif // UPB_UNALIGNED_READS_OK