Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

275 lines
11 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2010-2011 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Routines for reading and writing message data to an in-memory structure,
* similar to a C struct.
*
* upb does not define one single message object that everyone must use.
* Rather it defines an abstract interface for reading and writing members
* of a message object, and all of the parsers and serializers use this
* abstract interface. This allows upb's parsers and serializers to be used
* regardless of what memory management scheme or synchronization model the
* application is using.
*
* A standard set of accessors is provided for doing simple reads and writes at
* a known offset into the message. These accessors should be used when
* possible, because they are specially optimized -- for example, the JIT can
* recognize them and emit specialized code instead of having to call the
* function at all. The application can substitute its own accessors when the
* standard accessors are not suitable.
*/
#ifndef UPB_MSG_H
#define UPB_MSG_H
#include <stdlib.h>
#include "upb/def.h"
#include "upb/handlers.h"
#ifdef __cplusplus
extern "C" {
#endif
/* upb_accessor ***************************************************************/
// A upb_accessor is a table of function pointers for doing reads and writes
// for one specific upb_fielddef. Each field has a separate accessor, which
// lives in the fielddef.
typedef bool upb_has_reader(void *m, upb_value fval);
typedef upb_value upb_value_reader(void *m, upb_value fval);
typedef void *upb_seqbegin_handler(void *s);
typedef void *upb_seqnext_handler(void *s, void *iter);
typedef upb_value upb_seqget_handler(void *iter);
INLINE bool upb_seq_done(void *iter) { return iter == NULL; }
typedef struct _upb_accessor_vtbl {
// Writers. These take an fval as a parameter because the callbacks are used
// as upb_handlers, but the fval is always the fielddef for that field.
upb_startfield_handler *appendseq; // Repeated fields only.
upb_startfield_handler *appendsubmsg; // Submsg fields (repeated or no).
upb_value_handler *set; // Scalar fields (repeated or no).
// Readers.
upb_has_reader *has;
upb_value_reader *get;
upb_seqbegin_handler *seqbegin;
upb_seqnext_handler *seqnext;
upb_seqget_handler *seqget;
} upb_accessor_vtbl;
// Registers handlers for writing into a message of the given type.
upb_mhandlers *upb_accessors_reghandlers(upb_handlers *h, upb_msgdef *m);
// Returns an stdmsg accessor for the given fielddef.
upb_accessor_vtbl *upb_stdmsg_accessor(upb_fielddef *f);
/* upb_msg/upb_seq ************************************************************/
// upb_msg and upb_seq allow for generic access to a message through its
// accessor vtable. Note that these do *not* allow you to create, destroy, or
// take references on the objects -- these operations are specifically outside
// the scope of what the accessors define.
// Clears all hasbits.
// TODO: Add a separate function for setting primitive values back to their
// defaults (but not strings, submessages, or arrays).
void upb_msg_clear(void *msg, upb_msgdef *md);
// Could add a method that recursively clears submessages, strings, and
// arrays if desired. This could be a win if you wanted to merge without
// needing hasbits, because during parsing you would never clear submessages
// or arrays. Also this could be desired to provide proto2 operations on
// generated messages.
INLINE bool upb_msg_has(void *m, upb_fielddef *f) {
return f->accessor && f->accessor->has(m, f->fval);
}
// May only be called for fields that have accessors.
INLINE upb_value upb_msg_get(void *m, upb_fielddef *f) {
assert(f->accessor);
return f->accessor->get(m, f->fval);
}
INLINE void upb_msg_set(void *m, upb_fielddef *f, upb_value val) {
assert(f->accessor);
f->accessor->set(m, f->fval, val);
}
INLINE void *upb_seq_begin(void *s, upb_fielddef *f) {
assert(f->accessor);
return f->accessor->seqbegin(s);
}
INLINE void *upb_seq_next(void *s, void *iter, upb_fielddef *f) {
assert(f->accessor);
assert(!upb_seq_done(iter));
return f->accessor->seqnext(s, iter);
}
INLINE upb_value upb_seq_get(void *iter, upb_fielddef *f) {
assert(f->accessor);
assert(!upb_seq_done(iter));
return f->accessor->seqget(iter);
}
/* upb_msgvisitor *************************************************************/
// A upb_msgvisitor reads data from an in-memory structure using its accessors,
// pushing the results to a given set of upb_handlers.
// TODO: not yet implemented.
typedef struct {
upb_fhandlers *fh;
upb_fielddef *f;
uint16_t msgindex; // Only when upb_issubmsg(f).
} upb_msgvisitor_field;
typedef struct {
upb_msgvisitor_field *fields;
int fields_len;
} upb_msgvisitor_msg;
typedef struct {
uint16_t msgindex;
uint16_t fieldindex;
uint32_t arrayindex; // UINT32_MAX if not an array frame.
} upb_msgvisitor_frame;
typedef struct {
upb_msgvisitor_msg *messages;
int messages_len;
upb_dispatcher dispatcher;
} upb_msgvisitor;
// Initializes a msgvisitor that will push data from messages of the given
// msgdef to the given set of handlers.
void upb_msgvisitor_init(upb_msgvisitor *v, upb_msgdef *md, upb_handlers *h);
void upb_msgvisitor_uninit(upb_msgvisitor *v);
void upb_msgvisitor_reset(upb_msgvisitor *v, void *m);
void upb_msgvisitor_visit(upb_msgvisitor *v, upb_status *status);
/* Standard writers. **********************************************************/
// Allocates a new stdmsg.
void *upb_stdmsg_new(upb_msgdef *md);
// Recursively frees any strings or submessages that the message refers to.
void upb_stdmsg_free(void *m, upb_msgdef *md);
// "hasbit" must be <= UPB_MAX_FIELDS. If it is <0, this field has no hasbit.
upb_value upb_stdmsg_packfval(int16_t hasbit, uint16_t value_offset);
upb_value upb_stdmsg_packfval_subm(int16_t hasbit, uint16_t value_offset,
uint16_t subm_size, uint8_t subm_setbytes);
// Value writers for every in-memory type: write the data to a known offset
// from the closure "c" and set the hasbit (if any).
// TODO: can we get away with having only one for int64, uint64, double, etc?
// The main thing in the way atm is that the upb_value is strongly typed.
// in debug mode.
upb_flow_t upb_stdmsg_setint64(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setint32(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setuint64(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setuint32(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setdouble(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setfloat(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setbool(void *c, upb_value fval, upb_value val);
// Value writers for repeated fields: the closure points to a standard array
// struct, appends the value to the end of the array, resizing with realloc()
// if necessary.
typedef struct {
char *ptr;
uint32_t len; // Number of elements present.
uint32_t size; // Number of elements allocated.
} upb_stdarray;
upb_flow_t upb_stdmsg_setint64_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setint32_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setuint64_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setuint32_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setdouble_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setfloat_r(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setbool_r(void *c, upb_value fval, upb_value val);
// Writers for C strings (NULL-terminated): we can find a char* at a known
// offset from the closure "c". Calls realloc() on the pointer to allocate
// the memory (TODO: investigate whether checking malloc_usable_size() would
// be cheaper than realloc()). Also sets the hasbit, if any.
//
// Since the string is NULL terminated and does not store an explicit length,
// these are not suitable for binary data that can contain NULLs.
upb_flow_t upb_stdmsg_setcstr(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setcstr_r(void *c, upb_value fval, upb_value val);
// Writers for length-delimited strings: we explicitly store the length, so
// the data can contain NULLs. Stores the data using upb_stdarray
// which is located at a known offset from the closure "c" (note that it
// is included inline rather than pointed to). Also sets the hasbit, if any.
upb_flow_t upb_stdmsg_setstr(void *c, upb_value fval, upb_value val);
upb_flow_t upb_stdmsg_setstr_r(void *c, upb_value fval, upb_value val);
// Writers for startseq and startmsg which allocate (or reuse, if possible)
// a sub data structure (upb_stdarray or a submessage, respectively),
// setting the hasbit. If the hasbit is already set, the existing data
// structure is used verbatim. If the hasbit is not already set, the pointer
// is checked for NULL. If it is NULL, a new substructure is allocated,
// cleared, and used. If it is not NULL, the existing substructure is
// cleared and reused.
//
// If there is no hasbit, we always behave as if the hasbit was not set,
// so any existing data for this array or submessage is cleared. In most
// cases this will be fine since each array or non-repeated submessage should
// occur at most once in the stream. But if the client is using "concatenation
// as merging", it will want to make sure hasbits are allocated so merges can
// happen appropriately.
//
// If there was a demand for the behavior that absence of a hasbit acts as if
// the bit was always set, we could provide that also. But Clear() would need
// to act recursively, which is less efficient since it requires an extra pass
// over the tree.
upb_sflow_t upb_stdmsg_startseq(void *c, upb_value fval);
upb_sflow_t upb_stdmsg_startsubmsg(void *c, upb_value fval);
upb_sflow_t upb_stdmsg_startsubmsg_r(void *c, upb_value fval);
/* Standard readers. **********************************************************/
bool upb_stdmsg_has(void *c, upb_value fval);
void *upb_stdmsg_seqbegin(void *c);
upb_value upb_stdmsg_getint64(void *c, upb_value fval);
upb_value upb_stdmsg_getint32(void *c, upb_value fval);
upb_value upb_stdmsg_getuint64(void *c, upb_value fval);
upb_value upb_stdmsg_getuint32(void *c, upb_value fval);
upb_value upb_stdmsg_getdouble(void *c, upb_value fval);
upb_value upb_stdmsg_getfloat(void *c, upb_value fval);
upb_value upb_stdmsg_getbool(void *c, upb_value fval);
upb_value upb_stdmsg_getptr(void *c, upb_value fval);
void *upb_stdmsg_8byte_seqnext(void *c, void *iter);
void *upb_stdmsg_4byte_seqnext(void *c, void *iter);
void *upb_stdmsg_1byte_seqnext(void *c, void *iter);
upb_value upb_stdmsg_seqgetint64(void *c);
upb_value upb_stdmsg_seqgetint32(void *c);
upb_value upb_stdmsg_seqgetuint64(void *c);
upb_value upb_stdmsg_seqgetuint32(void *c);
upb_value upb_stdmsg_seqgetdouble(void *c);
upb_value upb_stdmsg_seqgetfloat(void *c);
upb_value upb_stdmsg_seqgetbool(void *c);
upb_value upb_stdmsg_seqgetptr(void *c);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif