Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1157 lines
40 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2014 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "protobuf.h"
// -----------------------------------------------------------------------------
// Parsing.
// -----------------------------------------------------------------------------
#define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs)
// Creates a handlerdata that simply contains the offset for this field.
static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) {
size_t* hd_ofs = ALLOC(size_t);
*hd_ofs = ofs;
upb_handlers_addcleanup(h, hd_ofs, free);
return hd_ofs;
}
typedef struct {
size_t ofs;
const upb_msgdef *md;
} submsg_handlerdata_t;
// Creates a handlerdata that contains offset and submessage type information.
static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs,
const upb_fielddef* f) {
submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t);
hd->ofs = ofs;
hd->md = upb_fielddef_msgsubdef(f);
upb_handlers_addcleanup(h, hd, free);
return hd;
}
typedef struct {
size_t ofs; // union data slot
size_t case_ofs; // oneof_case field
uint32_t oneof_case_num; // oneof-case number to place in oneof_case field
const upb_msgdef *md; // msgdef, for oneof submessage handler
} oneof_handlerdata_t;
static const void *newoneofhandlerdata(upb_handlers *h,
uint32_t ofs,
uint32_t case_ofs,
const upb_fielddef *f) {
oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t);
hd->ofs = ofs;
hd->case_ofs = case_ofs;
// We reuse the field tag number as a oneof union discriminant tag. Note that
// we don't expose these numbers to the user, so the only requirement is that
// we have some unique ID for each union case/possibility. The field tag
// numbers are already present and are easy to use so there's no reason to
// create a separate ID space. In addition, using the field tag number here
// lets us easily look up the field in the oneof accessor.
hd->oneof_case_num = upb_fielddef_number(f);
if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) {
hd->md = upb_fielddef_msgsubdef(f);
} else {
hd->md = NULL;
}
upb_handlers_addcleanup(h, hd, free);
return hd;
}
// A handler that starts a repeated field. Gets the Repeated*Field instance for
// this field (such an instance always exists even in an empty message).
static void *startseq_handler(void* closure, const void* hd) {
MessageHeader* msg = closure;
const size_t *ofs = hd;
return (void*)DEREF(msg, *ofs, VALUE);
}
// Handlers that append primitive values to a repeated field.
#define DEFINE_APPEND_HANDLER(type, ctype) \
static bool append##type##_handler(void *closure, const void *hd, \
ctype val) { \
VALUE ary = (VALUE)closure; \
RepeatedField_push_native(ary, &val); \
return true; \
}
DEFINE_APPEND_HANDLER(bool, bool)
DEFINE_APPEND_HANDLER(int32, int32_t)
DEFINE_APPEND_HANDLER(uint32, uint32_t)
DEFINE_APPEND_HANDLER(float, float)
DEFINE_APPEND_HANDLER(int64, int64_t)
DEFINE_APPEND_HANDLER(uint64, uint64_t)
DEFINE_APPEND_HANDLER(double, double)
// Appends a string to a repeated field.
static void* appendstr_handler(void *closure,
const void *hd,
size_t size_hint) {
VALUE ary = (VALUE)closure;
VALUE str = rb_str_new2("");
rb_enc_associate(str, kRubyStringUtf8Encoding);
RepeatedField_push(ary, str);
return (void*)str;
}
// Appends a 'bytes' string to a repeated field.
static void* appendbytes_handler(void *closure,
const void *hd,
size_t size_hint) {
VALUE ary = (VALUE)closure;
VALUE str = rb_str_new2("");
rb_enc_associate(str, kRubyString8bitEncoding);
RepeatedField_push(ary, str);
return (void*)str;
}
// Sets a non-repeated string field in a message.
static void* str_handler(void *closure,
const void *hd,
size_t size_hint) {
MessageHeader* msg = closure;
const size_t *ofs = hd;
VALUE str = rb_str_new2("");
rb_enc_associate(str, kRubyStringUtf8Encoding);
DEREF(msg, *ofs, VALUE) = str;
return (void*)str;
}
// Sets a non-repeated 'bytes' field in a message.
static void* bytes_handler(void *closure,
const void *hd,
size_t size_hint) {
MessageHeader* msg = closure;
const size_t *ofs = hd;
VALUE str = rb_str_new2("");
rb_enc_associate(str, kRubyString8bitEncoding);
DEREF(msg, *ofs, VALUE) = str;
return (void*)str;
}
static size_t stringdata_handler(void* closure, const void* hd,
const char* str, size_t len,
const upb_bufhandle* handle) {
VALUE rb_str = (VALUE)closure;
rb_str_cat(rb_str, str, len);
return len;
}
// Appends a submessage to a repeated field (a regular Ruby array for now).
static void *appendsubmsg_handler(void *closure, const void *hd) {
VALUE ary = (VALUE)closure;
const submsg_handlerdata_t *submsgdata = hd;
VALUE subdesc =
get_def_obj((void*)submsgdata->md);
VALUE subklass = Descriptor_msgclass(subdesc);
VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass);
RepeatedField_push(ary, submsg_rb);
MessageHeader* submsg;
TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
return submsg;
}
// Sets a non-repeated submessage field in a message.
static void *submsg_handler(void *closure, const void *hd) {
MessageHeader* msg = closure;
const submsg_handlerdata_t* submsgdata = hd;
VALUE subdesc =
get_def_obj((void*)submsgdata->md);
VALUE subklass = Descriptor_msgclass(subdesc);
if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) {
DEREF(msg, submsgdata->ofs, VALUE) =
rb_class_new_instance(0, NULL, subklass);
}
VALUE submsg_rb = DEREF(msg, submsgdata->ofs, VALUE);
MessageHeader* submsg;
TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
return submsg;
}
// Handler data for startmap/endmap handlers.
typedef struct {
size_t ofs;
upb_fieldtype_t key_field_type;
upb_fieldtype_t value_field_type;
// We know that we can hold this reference because the handlerdata has the
// same lifetime as the upb_handlers struct, and the upb_handlers struct holds
// a reference to the upb_msgdef, which in turn has references to its subdefs.
const upb_def* value_field_subdef;
} map_handlerdata_t;
// Temporary frame for map parsing: at the beginning of a map entry message, a
// submsg handler allocates a frame to hold (i) a reference to the Map object
// into which this message will be inserted and (ii) storage slots to
// temporarily hold the key and value for this map entry until the end of the
// submessage. When the submessage ends, another handler is called to insert the
// value into the map.
typedef struct {
VALUE map;
char key_storage[NATIVE_SLOT_MAX_SIZE];
char value_storage[NATIVE_SLOT_MAX_SIZE];
} map_parse_frame_t;
// Handler to begin a map entry: allocates a temporary frame. This is the
// 'startsubmsg' handler on the msgdef that contains the map field.
static void *startmapentry_handler(void *closure, const void *hd) {
MessageHeader* msg = closure;
const map_handlerdata_t* mapdata = hd;
VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE);
map_parse_frame_t* frame = ALLOC(map_parse_frame_t);
frame->map = map_rb;
native_slot_init(mapdata->key_field_type, &frame->key_storage);
native_slot_init(mapdata->value_field_type, &frame->value_storage);
return frame;
}
// Handler to end a map entry: inserts the value defined during the message into
// the map. This is the 'endmsg' handler on the map entry msgdef.
static bool endmap_handler(void *closure, const void *hd, upb_status* s) {
map_parse_frame_t* frame = closure;
const map_handlerdata_t* mapdata = hd;
VALUE key = native_slot_get(
mapdata->key_field_type, Qnil,
&frame->key_storage);
VALUE value_field_typeclass = Qnil;
if (mapdata->value_field_type == UPB_TYPE_MESSAGE ||
mapdata->value_field_type == UPB_TYPE_ENUM) {
value_field_typeclass = get_def_obj(mapdata->value_field_subdef);
}
VALUE value = native_slot_get(
mapdata->value_field_type, value_field_typeclass,
&frame->value_storage);
Map_index_set(frame->map, key, value);
free(frame);
return true;
}
// Allocates a new map_handlerdata_t given the map entry message definition. If
// the offset of the field within the parent message is also given, that is
// added to the handler data as well. Note that this is called *twice* per map
// field: once in the parent message handler setup when setting the startsubmsg
// handler and once in the map entry message handler setup when setting the
// key/value and endmsg handlers. The reason is that there is no easy way to
// pass the handlerdata down to the sub-message handler setup.
static map_handlerdata_t* new_map_handlerdata(
size_t ofs,
const upb_msgdef* mapentry_def,
Descriptor* desc) {
map_handlerdata_t* hd = ALLOC(map_handlerdata_t);
hd->ofs = ofs;
const upb_fielddef* key_field = upb_msgdef_itof(mapentry_def,
MAP_KEY_FIELD);
assert(key_field != NULL);
hd->key_field_type = upb_fielddef_type(key_field);
const upb_fielddef* value_field = upb_msgdef_itof(mapentry_def,
MAP_VALUE_FIELD);
assert(value_field != NULL);
hd->value_field_type = upb_fielddef_type(value_field);
hd->value_field_subdef = upb_fielddef_subdef(value_field);
return hd;
}
// Handlers that set primitive values in oneofs.
#define DEFINE_ONEOF_HANDLER(type, ctype) \
static bool oneof##type##_handler(void *closure, const void *hd, \
ctype val) { \
const oneof_handlerdata_t *oneofdata = hd; \
DEREF(closure, oneofdata->case_ofs, uint32_t) = \
oneofdata->oneof_case_num; \
DEREF(closure, oneofdata->ofs, ctype) = val; \
return true; \
}
DEFINE_ONEOF_HANDLER(bool, bool)
DEFINE_ONEOF_HANDLER(int32, int32_t)
DEFINE_ONEOF_HANDLER(uint32, uint32_t)
DEFINE_ONEOF_HANDLER(float, float)
DEFINE_ONEOF_HANDLER(int64, int64_t)
DEFINE_ONEOF_HANDLER(uint64, uint64_t)
DEFINE_ONEOF_HANDLER(double, double)
#undef DEFINE_ONEOF_HANDLER
// Handlers for strings in a oneof.
static void *oneofstr_handler(void *closure,
const void *hd,
size_t size_hint) {
MessageHeader* msg = closure;
const oneof_handlerdata_t *oneofdata = hd;
VALUE str = rb_str_new2("");
rb_enc_associate(str, kRubyStringUtf8Encoding);
DEREF(msg, oneofdata->case_ofs, uint32_t) =
oneofdata->oneof_case_num;
DEREF(msg, oneofdata->ofs, VALUE) = str;
return (void*)str;
}
static void *oneofbytes_handler(void *closure,
const void *hd,
size_t size_hint) {
MessageHeader* msg = closure;
const oneof_handlerdata_t *oneofdata = hd;
VALUE str = rb_str_new2("");
rb_enc_associate(str, kRubyString8bitEncoding);
DEREF(msg, oneofdata->case_ofs, uint32_t) =
oneofdata->oneof_case_num;
DEREF(msg, oneofdata->ofs, VALUE) = str;
return (void*)str;
}
// Handler for a submessage field in a oneof.
static void *oneofsubmsg_handler(void *closure,
const void *hd) {
MessageHeader* msg = closure;
const oneof_handlerdata_t *oneofdata = hd;
uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t);
VALUE subdesc =
get_def_obj((void*)oneofdata->md);
VALUE subklass = Descriptor_msgclass(subdesc);
if (oldcase != oneofdata->oneof_case_num ||
DEREF(msg, oneofdata->ofs, VALUE) == Qnil) {
DEREF(msg, oneofdata->ofs, VALUE) =
rb_class_new_instance(0, NULL, subklass);
}
// Set the oneof case *after* allocating the new class instance -- otherwise,
// if the Ruby GC is invoked as part of a call into the VM, it might invoke
// our mark routines, and our mark routines might see the case value
// indicating a VALUE is present and expect a valid VALUE. See comment in
// layout_set() for more detail: basically, the change to the value and the
// case must be atomic w.r.t. the Ruby VM.
DEREF(msg, oneofdata->case_ofs, uint32_t) =
oneofdata->oneof_case_num;
VALUE submsg_rb = DEREF(msg, oneofdata->ofs, VALUE);
MessageHeader* submsg;
TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg);
return submsg;
}
// Set up handlers for a repeated field.
static void add_handlers_for_repeated_field(upb_handlers *h,
const upb_fielddef *f,
size_t offset) {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
upb_handlers_setstartseq(h, f, startseq_handler, &attr);
upb_handlerattr_uninit(&attr);
switch (upb_fielddef_type(f)) {
#define SET_HANDLER(utype, ltype) \
case utype: \
upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \
break;
SET_HANDLER(UPB_TYPE_BOOL, bool);
SET_HANDLER(UPB_TYPE_INT32, int32);
SET_HANDLER(UPB_TYPE_UINT32, uint32);
SET_HANDLER(UPB_TYPE_ENUM, int32);
SET_HANDLER(UPB_TYPE_FLOAT, float);
SET_HANDLER(UPB_TYPE_INT64, int64);
SET_HANDLER(UPB_TYPE_UINT64, uint64);
SET_HANDLER(UPB_TYPE_DOUBLE, double);
#undef SET_HANDLER
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
upb_handlers_setstartstr(h, f, is_bytes ?
appendbytes_handler : appendstr_handler,
NULL);
upb_handlers_setstring(h, f, stringdata_handler, NULL);
break;
}
case UPB_TYPE_MESSAGE: {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f));
upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr);
upb_handlerattr_uninit(&attr);
break;
}
}
}
// Set up handlers for a singular field.
static void add_handlers_for_singular_field(upb_handlers *h,
const upb_fielddef *f,
size_t offset) {
switch (upb_fielddef_type(f)) {
case UPB_TYPE_BOOL:
case UPB_TYPE_INT32:
case UPB_TYPE_UINT32:
case UPB_TYPE_ENUM:
case UPB_TYPE_FLOAT:
case UPB_TYPE_INT64:
case UPB_TYPE_UINT64:
case UPB_TYPE_DOUBLE:
upb_shim_set(h, f, offset, -1);
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset));
upb_handlers_setstartstr(h, f,
is_bytes ? bytes_handler : str_handler,
&attr);
upb_handlers_setstring(h, f, stringdata_handler, &attr);
upb_handlerattr_uninit(&attr);
break;
}
case UPB_TYPE_MESSAGE: {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f));
upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr);
upb_handlerattr_uninit(&attr);
break;
}
}
}
// Adds handlers to a map field.
static void add_handlers_for_mapfield(upb_handlers* h,
const upb_fielddef* fielddef,
size_t offset,
Descriptor* desc) {
const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef);
map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc);
upb_handlers_addcleanup(h, hd, free);
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, hd);
upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr);
upb_handlerattr_uninit(&attr);
}
// Adds handlers to a map-entry msgdef.
static void add_handlers_for_mapentry(const upb_msgdef* msgdef,
upb_handlers* h,
Descriptor* desc) {
const upb_fielddef* key_field = map_entry_key(msgdef);
const upb_fielddef* value_field = map_entry_value(msgdef);
map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc);
upb_handlers_addcleanup(h, hd, free);
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(&attr, hd);
upb_handlers_setendmsg(h, endmap_handler, &attr);
add_handlers_for_singular_field(
h, key_field,
offsetof(map_parse_frame_t, key_storage));
add_handlers_for_singular_field(
h, value_field,
offsetof(map_parse_frame_t, value_storage));
}
// Set up handlers for a oneof field.
static void add_handlers_for_oneof_field(upb_handlers *h,
const upb_fielddef *f,
size_t offset,
size_t oneof_case_offset) {
upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER;
upb_handlerattr_sethandlerdata(
&attr, newoneofhandlerdata(h, offset, oneof_case_offset, f));
switch (upb_fielddef_type(f)) {
#define SET_HANDLER(utype, ltype) \
case utype: \
upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \
break;
SET_HANDLER(UPB_TYPE_BOOL, bool);
SET_HANDLER(UPB_TYPE_INT32, int32);
SET_HANDLER(UPB_TYPE_UINT32, uint32);
SET_HANDLER(UPB_TYPE_ENUM, int32);
SET_HANDLER(UPB_TYPE_FLOAT, float);
SET_HANDLER(UPB_TYPE_INT64, int64);
SET_HANDLER(UPB_TYPE_UINT64, uint64);
SET_HANDLER(UPB_TYPE_DOUBLE, double);
#undef SET_HANDLER
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES: {
bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES;
upb_handlers_setstartstr(h, f, is_bytes ?
oneofbytes_handler : oneofstr_handler,
&attr);
upb_handlers_setstring(h, f, stringdata_handler, NULL);
break;
}
case UPB_TYPE_MESSAGE: {
upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr);
break;
}
}
upb_handlerattr_uninit(&attr);
}
static void add_handlers_for_message(const void *closure, upb_handlers *h) {
const upb_msgdef* msgdef = upb_handlers_msgdef(h);
Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef));
// If this is a mapentry message type, set up a special set of handlers and
// bail out of the normal (user-defined) message type handling.
if (upb_msgdef_mapentry(msgdef)) {
add_handlers_for_mapentry(msgdef, h, desc);
return;
}
// Ensure layout exists. We may be invoked to create handlers for a given
// message if we are included as a submsg of another message type before our
// class is actually built, so to work around this, we just create the layout
// (and handlers, in the class-building function) on-demand.
if (desc->layout == NULL) {
desc->layout = create_layout(desc->msgdef);
}
upb_msg_field_iter i;
for (upb_msg_field_begin(&i, desc->msgdef);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
const upb_fielddef *f = upb_msg_iter_field(&i);
size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset +
sizeof(MessageHeader);
if (upb_fielddef_containingoneof(f)) {
size_t oneof_case_offset =
desc->layout->fields[upb_fielddef_index(f)].case_offset +
sizeof(MessageHeader);
add_handlers_for_oneof_field(h, f, offset, oneof_case_offset);
} else if (is_map_field(f)) {
add_handlers_for_mapfield(h, f, offset, desc);
} else if (upb_fielddef_isseq(f)) {
add_handlers_for_repeated_field(h, f, offset);
} else {
add_handlers_for_singular_field(h, f, offset);
}
}
}
// Creates upb handlers for populating a message.
static const upb_handlers *new_fill_handlers(Descriptor* desc,
const void* owner) {
// TODO(cfallin, haberman): once upb gets a caching/memoization layer for
// handlers, reuse subdef handlers so that e.g. if we already parse
// B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to
// parse A-with-field-of-type-B-with-field-of-type-C.
return upb_handlers_newfrozen(desc->msgdef, owner,
add_handlers_for_message, NULL);
}
// Constructs the handlers for filling a message's data into an in-memory
// object.
const upb_handlers* get_fill_handlers(Descriptor* desc) {
if (!desc->fill_handlers) {
desc->fill_handlers =
new_fill_handlers(desc, &desc->fill_handlers);
}
return desc->fill_handlers;
}
// Constructs the upb decoder method for parsing messages of this type.
// This is called from the message class creation code.
const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc,
const void* owner) {
const upb_handlers* handlers = get_fill_handlers(desc);
upb_pbdecodermethodopts opts;
upb_pbdecodermethodopts_init(&opts, handlers);
const upb_pbdecodermethod *ret = upb_pbdecodermethod_new(&opts, owner);
return ret;
}
static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) {
if (desc->fill_method == NULL) {
desc->fill_method = new_fillmsg_decodermethod(
desc, &desc->fill_method);
}
return desc->fill_method;
}
// Stack-allocated context during an encode/decode operation. Contains the upb
// environment and its stack-based allocator, an initial buffer for allocations
// to avoid malloc() when possible, and a template for Ruby exception messages
// if any error occurs.
#define STACK_ENV_STACKBYTES 4096
typedef struct {
upb_env env;
upb_seededalloc alloc;
const char* ruby_error_template;
char allocbuf[STACK_ENV_STACKBYTES];
} stackenv;
static void stackenv_init(stackenv* se, const char* errmsg);
static void stackenv_uninit(stackenv* se);
// Callback invoked by upb if any error occurs during parsing or serialization.
static bool env_error_func(void* ud, const upb_status* status) {
stackenv* se = ud;
// Free the env -- rb_raise will longjmp up the stack past the encode/decode
// function so it would not otherwise have been freed.
stackenv_uninit(se);
rb_raise(rb_eRuntimeError, se->ruby_error_template,
upb_status_errmsg(status));
// Never reached: rb_raise() always longjmp()s up the stack, past all of our
// code, back to Ruby.
return false;
}
static void stackenv_init(stackenv* se, const char* errmsg) {
se->ruby_error_template = errmsg;
upb_env_init(&se->env);
upb_seededalloc_init(&se->alloc, &se->allocbuf, STACK_ENV_STACKBYTES);
upb_env_setallocfunc(
&se->env, upb_seededalloc_getallocfunc(&se->alloc), &se->alloc);
upb_env_seterrorfunc(&se->env, env_error_func, se);
}
static void stackenv_uninit(stackenv* se) {
upb_env_uninit(&se->env);
upb_seededalloc_uninit(&se->alloc);
}
/*
* call-seq:
* MessageClass.decode(data) => message
*
* Decodes the given data (as a string containing bytes in protocol buffers wire
* format) under the interpretration given by this message class's definition
* and returns a message object with the corresponding field values.
*/
VALUE Message_decode(VALUE klass, VALUE data) {
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
Descriptor* desc = ruby_to_Descriptor(descriptor);
VALUE msgklass = Descriptor_msgclass(descriptor);
if (TYPE(data) != T_STRING) {
rb_raise(rb_eArgError, "Expected string for binary protobuf data.");
}
VALUE msg_rb = rb_class_new_instance(0, NULL, msgklass);
MessageHeader* msg;
TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
const upb_pbdecodermethod* method = msgdef_decodermethod(desc);
const upb_handlers* h = upb_pbdecodermethod_desthandlers(method);
stackenv se;
stackenv_init(&se, "Error occurred during parsing: %s");
upb_sink sink;
upb_sink_reset(&sink, h, msg);
upb_pbdecoder* decoder =
upb_pbdecoder_create(&se.env, method, &sink);
upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
upb_pbdecoder_input(decoder));
stackenv_uninit(&se);
return msg_rb;
}
/*
* call-seq:
* MessageClass.decode_json(data) => message
*
* Decodes the given data (as a string containing bytes in protocol buffers wire
* format) under the interpretration given by this message class's definition
* and returns a message object with the corresponding field values.
*/
VALUE Message_decode_json(VALUE klass, VALUE data) {
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
Descriptor* desc = ruby_to_Descriptor(descriptor);
VALUE msgklass = Descriptor_msgclass(descriptor);
if (TYPE(data) != T_STRING) {
rb_raise(rb_eArgError, "Expected string for JSON data.");
}
// TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to
// convert, because string handlers pass data directly to message string
// fields.
VALUE msg_rb = rb_class_new_instance(0, NULL, msgklass);
MessageHeader* msg;
TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
stackenv se;
stackenv_init(&se, "Error occurred during parsing: %s");
upb_sink sink;
upb_sink_reset(&sink, get_fill_handlers(desc), msg);
upb_json_parser* parser = upb_json_parser_create(&se.env, &sink);
upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data),
upb_json_parser_input(parser));
stackenv_uninit(&se);
return msg_rb;
}
// -----------------------------------------------------------------------------
// Serializing.
// -----------------------------------------------------------------------------
//
// The code below also comes from upb's prototype Ruby binding, developed by
// haberman@.
/* stringsink *****************************************************************/
// This should probably be factored into a common upb component.
typedef struct {
upb_byteshandler handler;
upb_bytessink sink;
char *ptr;
size_t len, size;
} stringsink;
static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) {
stringsink *sink = _sink;
sink->len = 0;
return sink;
}
static size_t stringsink_string(void *_sink, const void *hd, const char *ptr,
size_t len, const upb_bufhandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
stringsink *sink = _sink;
size_t new_size = sink->size;
while (sink->len + len > new_size) {
new_size *= 2;
}
if (new_size != sink->size) {
sink->ptr = realloc(sink->ptr, new_size);
sink->size = new_size;
}
memcpy(sink->ptr + sink->len, ptr, len);
sink->len += len;
return len;
}
void stringsink_init(stringsink *sink) {
upb_byteshandler_init(&sink->handler);
upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL);
upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL);
upb_bytessink_reset(&sink->sink, &sink->handler, sink);
sink->size = 32;
sink->ptr = malloc(sink->size);
sink->len = 0;
}
void stringsink_uninit(stringsink *sink) {
free(sink->ptr);
}
/* msgvisitor *****************************************************************/
// TODO: If/when we support proto2 semantics in addition to the current proto3
// semantics, which means that we have true field presence, we will want to
// modify msgvisitor so that it emits all present fields rather than all
// non-default-value fields.
//
// Likewise, when implementing JSON serialization, we may need to have a
// 'verbose' mode that outputs all fields and a 'concise' mode that outputs only
// those with non-default values.
static void putmsg(VALUE msg, const Descriptor* desc,
upb_sink *sink, int depth);
static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) {
upb_selector_t ret;
bool ok = upb_handlers_getselector(f, type, &ret);
UPB_ASSERT_VAR(ok, ok);
return ret;
}
static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) {
if (str == Qnil) return;
assert(BUILTIN_TYPE(str) == RUBY_T_STRING);
upb_sink subsink;
// Ensure that the string has the correct encoding. We also check at field-set
// time, but the user may have mutated the string object since then.
native_slot_validate_string_encoding(upb_fielddef_type(f), str);
upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str),
&subsink);
upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str),
RSTRING_LEN(str), NULL);
upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR));
}
static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink,
int depth) {
if (submsg == Qnil) return;
upb_sink subsink;
VALUE descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned);
Descriptor* subdesc = ruby_to_Descriptor(descriptor);
upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink);
putmsg(submsg, subdesc, &subsink, depth + 1);
upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG));
}
static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink,
int depth) {
if (ary == Qnil) return;
upb_sink subsink;
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
upb_fieldtype_t type = upb_fielddef_type(f);
upb_selector_t sel = 0;
if (upb_fielddef_isprimitive(f)) {
sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
}
int size = NUM2INT(RepeatedField_length(ary));
for (int i = 0; i < size; i++) {
void* memory = RepeatedField_index_native(ary, i);
switch (type) {
#define T(upbtypeconst, upbtype, ctype) \
case upbtypeconst: \
upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory)); \
break;
T(UPB_TYPE_FLOAT, float, float)
T(UPB_TYPE_DOUBLE, double, double)
T(UPB_TYPE_BOOL, bool, int8_t)
case UPB_TYPE_ENUM:
T(UPB_TYPE_INT32, int32, int32_t)
T(UPB_TYPE_UINT32, uint32, uint32_t)
T(UPB_TYPE_INT64, int64, int64_t)
T(UPB_TYPE_UINT64, uint64, uint64_t)
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
putstr(*((VALUE *)memory), f, &subsink);
break;
case UPB_TYPE_MESSAGE:
putsubmsg(*((VALUE *)memory), f, &subsink, depth);
break;
#undef T
}
}
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
}
static void put_ruby_value(VALUE value,
const upb_fielddef *f,
VALUE type_class,
int depth,
upb_sink *sink) {
upb_selector_t sel = 0;
if (upb_fielddef_isprimitive(f)) {
sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
}
switch (upb_fielddef_type(f)) {
case UPB_TYPE_INT32:
upb_sink_putint32(sink, sel, NUM2INT(value));
break;
case UPB_TYPE_INT64:
upb_sink_putint64(sink, sel, NUM2LL(value));
break;
case UPB_TYPE_UINT32:
upb_sink_putuint32(sink, sel, NUM2UINT(value));
break;
case UPB_TYPE_UINT64:
upb_sink_putuint64(sink, sel, NUM2ULL(value));
break;
case UPB_TYPE_FLOAT:
upb_sink_putfloat(sink, sel, NUM2DBL(value));
break;
case UPB_TYPE_DOUBLE:
upb_sink_putdouble(sink, sel, NUM2DBL(value));
break;
case UPB_TYPE_ENUM: {
if (TYPE(value) == T_SYMBOL) {
value = rb_funcall(type_class, rb_intern("resolve"), 1, value);
}
upb_sink_putint32(sink, sel, NUM2INT(value));
break;
}
case UPB_TYPE_BOOL:
upb_sink_putbool(sink, sel, value == Qtrue);
break;
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
putstr(value, f, sink);
break;
case UPB_TYPE_MESSAGE:
putsubmsg(value, f, sink, depth);
}
}
static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink,
int depth) {
if (map == Qnil) return;
Map* self = ruby_to_Map(map);
upb_sink subsink;
upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink);
assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE);
const upb_fielddef* key_field = map_field_key(f);
const upb_fielddef* value_field = map_field_value(f);
Map_iter it;
for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) {
VALUE key = Map_iter_key(&it);
VALUE value = Map_iter_value(&it);
upb_sink entry_sink;
upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG),
&entry_sink);
upb_sink_startmsg(&entry_sink);
put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink);
put_ruby_value(value, value_field, self->value_type_class, depth + 1,
&entry_sink);
upb_status status;
upb_sink_endmsg(&entry_sink, &status);
upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG));
}
upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ));
}
static void putmsg(VALUE msg_rb, const Descriptor* desc,
upb_sink *sink, int depth) {
upb_sink_startmsg(sink);
// Protect against cycles (possible because users may freely reassign message
// and repeated fields) by imposing a maximum recursion depth.
if (depth > ENCODE_MAX_NESTING) {
rb_raise(rb_eRuntimeError,
"Maximum recursion depth exceeded during encoding.");
}
MessageHeader* msg;
TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg);
upb_msg_field_iter i;
for (upb_msg_field_begin(&i, desc->msgdef);
!upb_msg_field_done(&i);
upb_msg_field_next(&i)) {
upb_fielddef *f = upb_msg_iter_field(&i);
uint32_t offset =
desc->layout->fields[upb_fielddef_index(f)].offset +
sizeof(MessageHeader);
if (upb_fielddef_containingoneof(f)) {
uint32_t oneof_case_offset =
desc->layout->fields[upb_fielddef_index(f)].case_offset +
sizeof(MessageHeader);
// For a oneof, check that this field is actually present -- skip all the
// below if not.
if (DEREF(msg, oneof_case_offset, uint32_t) !=
upb_fielddef_number(f)) {
continue;
}
// Otherwise, fall through to the appropriate singular-field handler
// below.
}
if (is_map_field(f)) {
VALUE map = DEREF(msg, offset, VALUE);
if (map != Qnil) {
putmap(map, f, sink, depth);
}
} else if (upb_fielddef_isseq(f)) {
VALUE ary = DEREF(msg, offset, VALUE);
if (ary != Qnil) {
putary(ary, f, sink, depth);
}
} else if (upb_fielddef_isstring(f)) {
VALUE str = DEREF(msg, offset, VALUE);
if (RSTRING_LEN(str) > 0) {
putstr(str, f, sink);
}
} else if (upb_fielddef_issubmsg(f)) {
putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth);
} else {
upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f));
#define T(upbtypeconst, upbtype, ctype, default_value) \
case upbtypeconst: { \
ctype value = DEREF(msg, offset, ctype); \
if (value != default_value) { \
upb_sink_put##upbtype(sink, sel, value); \
} \
} \
break;
switch (upb_fielddef_type(f)) {
T(UPB_TYPE_FLOAT, float, float, 0.0)
T(UPB_TYPE_DOUBLE, double, double, 0.0)
T(UPB_TYPE_BOOL, bool, uint8_t, 0)
case UPB_TYPE_ENUM:
T(UPB_TYPE_INT32, int32, int32_t, 0)
T(UPB_TYPE_UINT32, uint32, uint32_t, 0)
T(UPB_TYPE_INT64, int64, int64_t, 0)
T(UPB_TYPE_UINT64, uint64, uint64_t, 0)
case UPB_TYPE_STRING:
case UPB_TYPE_BYTES:
case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error.");
}
#undef T
}
}
upb_status status;
upb_sink_endmsg(sink, &status);
}
static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) {
if (desc->pb_serialize_handlers == NULL) {
desc->pb_serialize_handlers =
upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers);
}
return desc->pb_serialize_handlers;
}
static const upb_handlers* msgdef_json_serialize_handlers(Descriptor* desc) {
if (desc->json_serialize_handlers == NULL) {
desc->json_serialize_handlers =
upb_json_printer_newhandlers(
desc->msgdef, &desc->json_serialize_handlers);
}
return desc->json_serialize_handlers;
}
/*
* call-seq:
* MessageClass.encode(msg) => bytes
*
* Encodes the given message object to its serialized form in protocol buffers
* wire format.
*/
VALUE Message_encode(VALUE klass, VALUE msg_rb) {
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
Descriptor* desc = ruby_to_Descriptor(descriptor);
stringsink sink;
stringsink_init(&sink);
const upb_handlers* serialize_handlers =
msgdef_pb_serialize_handlers(desc);
stackenv se;
stackenv_init(&se, "Error occurred during encoding: %s");
upb_pb_encoder* encoder =
upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink);
putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0);
VALUE ret = rb_str_new(sink.ptr, sink.len);
stackenv_uninit(&se);
stringsink_uninit(&sink);
return ret;
}
/*
* call-seq:
* MessageClass.encode_json(msg) => json_string
*
* Encodes the given message object into its serialized JSON representation.
*/
VALUE Message_encode_json(VALUE klass, VALUE msg_rb) {
VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned);
Descriptor* desc = ruby_to_Descriptor(descriptor);
stringsink sink;
stringsink_init(&sink);
const upb_handlers* serialize_handlers =
msgdef_json_serialize_handlers(desc);
stackenv se;
stackenv_init(&se, "Error occurred during encoding: %s");
upb_json_printer* printer =
upb_json_printer_create(&se.env, serialize_handlers, &sink.sink);
putmsg(msg_rb, desc, upb_json_printer_input(printer), 0);
VALUE ret = rb_str_new(sink.ptr, sink.len);
stackenv_uninit(&se);
stringsink_uninit(&sink);
return ret;
}