Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
991 lines
29 KiB
991 lines
29 KiB
/* |
|
* upb - a minimalist implementation of protocol buffers. |
|
* |
|
* Copyright (c) 2014 Google Inc. See LICENSE for details. |
|
* Author: Josh Haberman <jhaberman@gmail.com> |
|
* |
|
* A parser that uses the Ragel State Machine Compiler to generate |
|
* the finite automata. |
|
* |
|
* Ragel only natively handles regular languages, but we can manually |
|
* program it a bit to handle context-free languages like JSON, by using |
|
* the "fcall" and "fret" constructs. |
|
* |
|
* This parser can handle the basics, but needs several things to be fleshed |
|
* out: |
|
* |
|
* - handling of unicode escape sequences (including high surrogate pairs). |
|
* - properly check and report errors for unknown fields, stack overflow, |
|
* improper array nesting (or lack of nesting). |
|
* - handling of base64 sequences with padding characters. |
|
* - handling of push-back (non-success returns from sink functions). |
|
* - handling of keys/escape-sequences/etc that span input buffers. |
|
*/ |
|
|
|
#include <stdio.h> |
|
#include <stdint.h> |
|
#include <assert.h> |
|
#include <string.h> |
|
#include <stdlib.h> |
|
#include <errno.h> |
|
|
|
#include "upb/json/parser.h" |
|
|
|
#define PARSER_CHECK_RETURN(x) if (!(x)) return false |
|
|
|
// Used to signal that a capture has been suspended. |
|
static char suspend_capture; |
|
|
|
static upb_selector_t getsel_for_handlertype(upb_json_parser *p, |
|
upb_handlertype_t type) { |
|
upb_selector_t sel; |
|
bool ok = upb_handlers_getselector(p->top->f, type, &sel); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return sel; |
|
} |
|
|
|
static upb_selector_t parser_getsel(upb_json_parser *p) { |
|
return getsel_for_handlertype( |
|
p, upb_handlers_getprimitivehandlertype(p->top->f)); |
|
} |
|
|
|
static bool check_stack(upb_json_parser *p) { |
|
if ((p->top + 1) == p->limit) { |
|
upb_status_seterrmsg(p->status, "Nesting too deep"); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// There are GCC/Clang built-ins for overflow checking which we could start |
|
// using if there was any performance benefit to it. |
|
|
|
static bool checked_add(size_t a, size_t b, size_t *c) { |
|
if (SIZE_MAX - a < b) return false; |
|
*c = a + b; |
|
return true; |
|
} |
|
|
|
static size_t saturating_multiply(size_t a, size_t b) { |
|
// size_t is unsigned, so this is defined behavior even on overflow. |
|
size_t ret = a * b; |
|
if (b != 0 && ret / b != a) { |
|
ret = SIZE_MAX; |
|
} |
|
return ret; |
|
} |
|
|
|
|
|
/* Base64 decoding ************************************************************/ |
|
|
|
// TODO(haberman): make this streaming. |
|
|
|
static const signed char b64table[] = { |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, |
|
52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, |
|
60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, |
|
-1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, |
|
07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, |
|
15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, |
|
23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, |
|
-1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, |
|
33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, |
|
41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, |
|
49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1, |
|
-1, -1, -1, -1, -1, -1, -1, -1 |
|
}; |
|
|
|
// Returns the table value sign-extended to 32 bits. Knowing that the upper |
|
// bits will be 1 for unrecognized characters makes it easier to check for |
|
// this error condition later (see below). |
|
int32_t b64lookup(unsigned char ch) { return b64table[ch]; } |
|
|
|
// Returns true if the given character is not a valid base64 character or |
|
// padding. |
|
bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; } |
|
|
|
static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr, |
|
size_t len) { |
|
const char *limit = ptr + len; |
|
for (; ptr < limit; ptr += 4) { |
|
if (limit - ptr < 4) { |
|
upb_status_seterrf(p->status, |
|
"Base64 input for bytes field not a multiple of 4: %s", |
|
upb_fielddef_name(p->top->f)); |
|
return false; |
|
} |
|
|
|
uint32_t val = b64lookup(ptr[0]) << 18 | |
|
b64lookup(ptr[1]) << 12 | |
|
b64lookup(ptr[2]) << 6 | |
|
b64lookup(ptr[3]); |
|
|
|
// Test the upper bit; returns true if any of the characters returned -1. |
|
if (val & 0x80000000) { |
|
goto otherchar; |
|
} |
|
|
|
char output[3]; |
|
output[0] = val >> 16; |
|
output[1] = (val >> 8) & 0xff; |
|
output[2] = val & 0xff; |
|
upb_sink_putstring(&p->top->sink, sel, output, 3, NULL); |
|
} |
|
return true; |
|
|
|
otherchar: |
|
if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) || |
|
nonbase64(ptr[3]) ) { |
|
upb_status_seterrf(p->status, |
|
"Non-base64 characters in bytes field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
return false; |
|
} if (ptr[2] == '=') { |
|
// Last group contains only two input bytes, one output byte. |
|
if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') { |
|
goto badpadding; |
|
} |
|
|
|
uint32_t val = b64lookup(ptr[0]) << 18 | |
|
b64lookup(ptr[1]) << 12; |
|
|
|
assert(!(val & 0x80000000)); |
|
char output = val >> 16; |
|
upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL); |
|
return true; |
|
} else { |
|
// Last group contains only three input bytes, two output bytes. |
|
if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') { |
|
goto badpadding; |
|
} |
|
|
|
uint32_t val = b64lookup(ptr[0]) << 18 | |
|
b64lookup(ptr[1]) << 12 | |
|
b64lookup(ptr[2]) << 6; |
|
|
|
char output[2]; |
|
output[0] = val >> 16; |
|
output[1] = (val >> 8) & 0xff; |
|
upb_sink_putstring(&p->top->sink, sel, output, 2, NULL); |
|
return true; |
|
} |
|
|
|
badpadding: |
|
upb_status_seterrf(p->status, |
|
"Incorrect base64 padding for field: %s (%.*s)", |
|
upb_fielddef_name(p->top->f), |
|
4, ptr); |
|
return false; |
|
} |
|
|
|
|
|
/* Accumulate buffer **********************************************************/ |
|
|
|
// Functionality for accumulating a buffer. |
|
// |
|
// Some parts of the parser need an entire value as a contiguous string. For |
|
// example, to look up a member name in a hash table, or to turn a string into |
|
// a number, the relevant library routines need the input string to be in |
|
// contiguous memory, even if the value spanned two or more buffers in the |
|
// input. These routines handle that. |
|
// |
|
// In the common case we can just point to the input buffer to get this |
|
// contiguous string and avoid any actual copy. So we optimistically begin |
|
// this way. But there are a few cases where we must instead copy into a |
|
// separate buffer: |
|
// |
|
// 1. The string was not contiguous in the input (it spanned buffers). |
|
// |
|
// 2. The string included escape sequences that need to be interpreted to get |
|
// the true value in a contiguous buffer. |
|
|
|
static void assert_accumulate_empty(upb_json_parser *p) { |
|
UPB_UNUSED(p); |
|
assert(p->accumulated == NULL); |
|
assert(p->accumulated_len == 0); |
|
} |
|
|
|
static void accumulate_clear(upb_json_parser *p) { |
|
p->accumulated = NULL; |
|
p->accumulated_len = 0; |
|
} |
|
|
|
// Used internally by accumulate_append(). |
|
static bool accumulate_realloc(upb_json_parser *p, size_t need) { |
|
size_t new_size = UPB_MAX(p->accumulate_buf_size, 128); |
|
while (new_size < need) { |
|
new_size = saturating_multiply(new_size, 2); |
|
} |
|
|
|
void *mem = realloc(p->accumulate_buf, new_size); |
|
if (!mem) { |
|
upb_status_seterrmsg(p->status, "Out of memory allocating buffer."); |
|
return false; |
|
} |
|
|
|
p->accumulate_buf = mem; |
|
p->accumulate_buf_size = new_size; |
|
return true; |
|
} |
|
|
|
// Logically appends the given data to the append buffer. |
|
// If "can_alias" is true, we will try to avoid actually copying, but the buffer |
|
// must be valid until the next accumulate_append() call (if any). |
|
static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len, |
|
bool can_alias) { |
|
if (!p->accumulated && can_alias) { |
|
p->accumulated = buf; |
|
p->accumulated_len = len; |
|
return true; |
|
} |
|
|
|
size_t need; |
|
if (!checked_add(p->accumulated_len, len, &need)) { |
|
upb_status_seterrmsg(p->status, "Integer overflow."); |
|
return false; |
|
} |
|
|
|
if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) { |
|
return false; |
|
} |
|
|
|
if (p->accumulated != p->accumulate_buf) { |
|
memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len); |
|
p->accumulated = p->accumulate_buf; |
|
} |
|
|
|
memcpy(p->accumulate_buf + p->accumulated_len, buf, len); |
|
p->accumulated_len += len; |
|
return true; |
|
} |
|
|
|
// Returns a pointer to the data accumulated since the last accumulate_clear() |
|
// call, and writes the length to *len. This with point either to the input |
|
// buffer or a temporary accumulate buffer. |
|
static const char *accumulate_getptr(upb_json_parser *p, size_t *len) { |
|
assert(p->accumulated); |
|
*len = p->accumulated_len; |
|
return p->accumulated; |
|
} |
|
|
|
|
|
/* Mult-part text data ********************************************************/ |
|
|
|
// When we have text data in the input, it can often come in multiple segments. |
|
// For example, there may be some raw string data followed by an escape |
|
// sequence. The two segments are processed with different logic. Also buffer |
|
// seams in the input can cause multiple segments. |
|
// |
|
// As we see segments, there are two main cases for how we want to process them: |
|
// |
|
// 1. we want to push the captured input directly to string handlers. |
|
// |
|
// 2. we need to accumulate all the parts into a contiguous buffer for further |
|
// processing (field name lookup, string->number conversion, etc). |
|
|
|
// This is the set of states for p->multipart_state. |
|
enum { |
|
// We are not currently processing multipart data. |
|
MULTIPART_INACTIVE = 0, |
|
|
|
// We are processing multipart data by accumulating it into a contiguous |
|
// buffer. |
|
MULTIPART_ACCUMULATE = 1, |
|
|
|
// We are processing multipart data by pushing each part directly to the |
|
// current string handlers. |
|
MULTIPART_PUSHEAGERLY = 2 |
|
}; |
|
|
|
// Start a multi-part text value where we accumulate the data for processing at |
|
// the end. |
|
static void multipart_startaccum(upb_json_parser *p) { |
|
assert_accumulate_empty(p); |
|
assert(p->multipart_state == MULTIPART_INACTIVE); |
|
p->multipart_state = MULTIPART_ACCUMULATE; |
|
} |
|
|
|
// Start a multi-part text value where we immediately push text data to a string |
|
// value with the given selector. |
|
static void multipart_start(upb_json_parser *p, upb_selector_t sel) { |
|
assert_accumulate_empty(p); |
|
assert(p->multipart_state == MULTIPART_INACTIVE); |
|
p->multipart_state = MULTIPART_PUSHEAGERLY; |
|
p->string_selector = sel; |
|
} |
|
|
|
static bool multipart_text(upb_json_parser *p, const char *buf, size_t len, |
|
bool can_alias) { |
|
switch (p->multipart_state) { |
|
case MULTIPART_INACTIVE: |
|
upb_status_seterrmsg( |
|
p->status, "Internal error: unexpected state MULTIPART_INACTIVE"); |
|
return false; |
|
|
|
case MULTIPART_ACCUMULATE: |
|
if (!accumulate_append(p, buf, len, can_alias)) { |
|
return false; |
|
} |
|
break; |
|
|
|
case MULTIPART_PUSHEAGERLY: { |
|
const upb_bufhandle *handle = can_alias ? p->handle : NULL; |
|
upb_sink_putstring(&p->top->sink, p->string_selector, buf, len, handle); |
|
break; |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
// Note: this invalidates the accumulate buffer! Call only after reading its |
|
// contents. |
|
static void multipart_end(upb_json_parser *p) { |
|
assert(p->multipart_state != MULTIPART_INACTIVE); |
|
p->multipart_state = MULTIPART_INACTIVE; |
|
accumulate_clear(p); |
|
} |
|
|
|
|
|
/* Input capture **************************************************************/ |
|
|
|
// Functionality for capturing a region of the input as text. Gracefully |
|
// handles the case where a buffer seam occurs in the middle of the captured |
|
// region. |
|
|
|
static void capture_begin(upb_json_parser *p, const char *ptr) { |
|
assert(p->multipart_state != MULTIPART_INACTIVE); |
|
assert(p->capture == NULL); |
|
p->capture = ptr; |
|
} |
|
|
|
static bool capture_end(upb_json_parser *p, const char *ptr) { |
|
assert(p->capture); |
|
if (multipart_text(p, p->capture, ptr - p->capture, true)) { |
|
p->capture = NULL; |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
} |
|
|
|
// This is called at the end of each input buffer (ie. when we have hit a |
|
// buffer seam). If we are in the middle of capturing the input, this |
|
// processes the unprocessed capture region. |
|
static void capture_suspend(upb_json_parser *p, const char **ptr) { |
|
if (!p->capture) return; |
|
|
|
if (multipart_text(p, p->capture, *ptr - p->capture, false)) { |
|
// We use this as a signal that we were in the middle of capturing, and |
|
// that capturing should resume at the beginning of the next buffer. |
|
// |
|
// We can't use *ptr here, because we have no guarantee that this pointer |
|
// will be valid when we resume (if the underlying memory is freed, then |
|
// using the pointer at all, even to compare to NULL, is likely undefined |
|
// behavior). |
|
p->capture = &suspend_capture; |
|
} else { |
|
// Need to back up the pointer to the beginning of the capture, since |
|
// we were not able to actually preserve it. |
|
*ptr = p->capture; |
|
} |
|
} |
|
|
|
static void capture_resume(upb_json_parser *p, const char *ptr) { |
|
if (p->capture) { |
|
assert(p->capture == &suspend_capture); |
|
p->capture = ptr; |
|
} |
|
} |
|
|
|
|
|
/* Callbacks from the parser **************************************************/ |
|
|
|
// These are the functions called directly from the parser itself. |
|
// We define these in the same order as their declarations in the parser. |
|
|
|
static char escape_char(char in) { |
|
switch (in) { |
|
case 'r': return '\r'; |
|
case 't': return '\t'; |
|
case 'n': return '\n'; |
|
case 'f': return '\f'; |
|
case 'b': return '\b'; |
|
case '/': return '/'; |
|
case '"': return '"'; |
|
case '\\': return '\\'; |
|
default: |
|
assert(0); |
|
return 'x'; |
|
} |
|
} |
|
|
|
static bool escape(upb_json_parser *p, const char *ptr) { |
|
char ch = escape_char(*ptr); |
|
return multipart_text(p, &ch, 1, false); |
|
} |
|
|
|
static void start_hex(upb_json_parser *p) { |
|
p->digit = 0; |
|
} |
|
|
|
static void hexdigit(upb_json_parser *p, const char *ptr) { |
|
char ch = *ptr; |
|
|
|
p->digit <<= 4; |
|
|
|
if (ch >= '0' && ch <= '9') { |
|
p->digit += (ch - '0'); |
|
} else if (ch >= 'a' && ch <= 'f') { |
|
p->digit += ((ch - 'a') + 10); |
|
} else { |
|
assert(ch >= 'A' && ch <= 'F'); |
|
p->digit += ((ch - 'A') + 10); |
|
} |
|
} |
|
|
|
static bool end_hex(upb_json_parser *p) { |
|
uint32_t codepoint = p->digit; |
|
|
|
// emit the codepoint as UTF-8. |
|
char utf8[3]; // support \u0000 -- \uFFFF -- need only three bytes. |
|
int length = 0; |
|
if (codepoint <= 0x7F) { |
|
utf8[0] = codepoint; |
|
length = 1; |
|
} else if (codepoint <= 0x07FF) { |
|
utf8[1] = (codepoint & 0x3F) | 0x80; |
|
codepoint >>= 6; |
|
utf8[0] = (codepoint & 0x1F) | 0xC0; |
|
length = 2; |
|
} else /* codepoint <= 0xFFFF */ { |
|
utf8[2] = (codepoint & 0x3F) | 0x80; |
|
codepoint >>= 6; |
|
utf8[1] = (codepoint & 0x3F) | 0x80; |
|
codepoint >>= 6; |
|
utf8[0] = (codepoint & 0x0F) | 0xE0; |
|
length = 3; |
|
} |
|
// TODO(haberman): Handle high surrogates: if codepoint is a high surrogate |
|
// we have to wait for the next escape to get the full code point). |
|
|
|
return multipart_text(p, utf8, length, false); |
|
} |
|
|
|
static void start_text(upb_json_parser *p, const char *ptr) { |
|
capture_begin(p, ptr); |
|
} |
|
|
|
static bool end_text(upb_json_parser *p, const char *ptr) { |
|
return capture_end(p, ptr); |
|
} |
|
|
|
static void start_number(upb_json_parser *p, const char *ptr) { |
|
multipart_startaccum(p); |
|
capture_begin(p, ptr); |
|
} |
|
|
|
static bool end_number(upb_json_parser *p, const char *ptr) { |
|
if (!capture_end(p, ptr)) { |
|
return false; |
|
} |
|
|
|
// strtol() and friends unfortunately do not support specifying the length of |
|
// the input string, so we need to force a copy into a NULL-terminated buffer. |
|
if (!multipart_text(p, "\0", 1, false)) { |
|
return false; |
|
} |
|
|
|
size_t len; |
|
const char *buf = accumulate_getptr(p, &len); |
|
const char *myend = buf + len - 1; // One for NULL. |
|
char *end; |
|
|
|
switch (upb_fielddef_type(p->top->f)) { |
|
case UPB_TYPE_ENUM: |
|
case UPB_TYPE_INT32: { |
|
long val = strtol(p->accumulated, &end, 0); |
|
if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putint32(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_INT64: { |
|
long long val = strtoll(p->accumulated, &end, 0); |
|
if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putint64(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_UINT32: { |
|
unsigned long val = strtoul(p->accumulated, &end, 0); |
|
if (val > UINT32_MAX || errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putuint32(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_UINT64: { |
|
unsigned long long val = strtoull(p->accumulated, &end, 0); |
|
if (val > UINT64_MAX || errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putuint64(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_DOUBLE: { |
|
double val = strtod(p->accumulated, &end); |
|
if (errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putdouble(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
case UPB_TYPE_FLOAT: { |
|
float val = strtof(p->accumulated, &end); |
|
if (errno == ERANGE || end != myend) |
|
goto err; |
|
else |
|
upb_sink_putfloat(&p->top->sink, parser_getsel(p), val); |
|
break; |
|
} |
|
default: |
|
assert(false); |
|
} |
|
|
|
multipart_end(p); |
|
return true; |
|
|
|
err: |
|
upb_status_seterrf(p->status, "error parsing number: %s", buf); |
|
multipart_end(p); |
|
return false; |
|
} |
|
|
|
static bool parser_putbool(upb_json_parser *p, bool val) { |
|
if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) { |
|
upb_status_seterrf(p->status, |
|
"Boolean value specified for non-bool field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
return false; |
|
} |
|
|
|
bool ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val); |
|
UPB_ASSERT_VAR(ok, ok); |
|
return true; |
|
} |
|
|
|
static bool start_stringval(upb_json_parser *p) { |
|
assert(p->top->f); |
|
|
|
if (upb_fielddef_isstring(p->top->f)) { |
|
if (!check_stack(p)) return false; |
|
|
|
// Start a new parser frame: parser frames correspond one-to-one with |
|
// handler frames, and string events occur in a sub-frame. |
|
upb_jsonparser_frame *inner = p->top + 1; |
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); |
|
upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink); |
|
inner->m = p->top->m; |
|
inner->f = p->top->f; |
|
p->top = inner; |
|
|
|
if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) { |
|
// For STRING fields we push data directly to the handlers as it is |
|
// parsed. We don't do this yet for BYTES fields, because our base64 |
|
// decoder is not streaming. |
|
// |
|
// TODO(haberman): make base64 decoding streaming also. |
|
multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING)); |
|
return true; |
|
} else { |
|
multipart_startaccum(p); |
|
return true; |
|
} |
|
} else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) { |
|
// No need to push a frame -- symbolic enum names in quotes remain in the |
|
// current parser frame. |
|
// |
|
// Enum string values must accumulate so we can look up the value in a table |
|
// once it is complete. |
|
multipart_startaccum(p); |
|
return true; |
|
} else { |
|
upb_status_seterrf(p->status, |
|
"String specified for non-string/non-enum field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
return false; |
|
} |
|
} |
|
|
|
static bool end_stringval(upb_json_parser *p) { |
|
bool ok = true; |
|
|
|
switch (upb_fielddef_type(p->top->f)) { |
|
case UPB_TYPE_BYTES: |
|
if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING), |
|
p->accumulated, p->accumulated_len)) { |
|
return false; |
|
} |
|
// Fall through. |
|
|
|
case UPB_TYPE_STRING: { |
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); |
|
upb_sink_endstr(&p->top->sink, sel); |
|
p->top--; |
|
break; |
|
} |
|
|
|
case UPB_TYPE_ENUM: { |
|
// Resolve enum symbolic name to integer value. |
|
const upb_enumdef *enumdef = |
|
(const upb_enumdef*)upb_fielddef_subdef(p->top->f); |
|
|
|
size_t len; |
|
const char *buf = accumulate_getptr(p, &len); |
|
|
|
int32_t int_val = 0; |
|
ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val); |
|
|
|
if (ok) { |
|
upb_selector_t sel = parser_getsel(p); |
|
upb_sink_putint32(&p->top->sink, sel, int_val); |
|
} else { |
|
upb_status_seterrf(p->status, "Enum value unknown: '%.*s'", len, buf); |
|
} |
|
|
|
break; |
|
} |
|
|
|
default: |
|
assert(false); |
|
upb_status_seterrmsg(p->status, "Internal error in JSON decoder"); |
|
ok = false; |
|
break; |
|
} |
|
|
|
multipart_end(p); |
|
return ok; |
|
} |
|
|
|
static void start_member(upb_json_parser *p) { |
|
assert(!p->top->f); |
|
multipart_startaccum(p); |
|
} |
|
|
|
static bool end_member(upb_json_parser *p) { |
|
assert(!p->top->f); |
|
size_t len; |
|
const char *buf = accumulate_getptr(p, &len); |
|
|
|
const upb_fielddef *f = upb_msgdef_ntof(p->top->m, buf, len); |
|
|
|
if (!f) { |
|
// TODO(haberman): Ignore unknown fields if requested/configured to do so. |
|
upb_status_seterrf(p->status, "No such field: %.*s\n", (int)len, buf); |
|
return false; |
|
} |
|
|
|
p->top->f = f; |
|
multipart_end(p); |
|
|
|
return true; |
|
} |
|
|
|
static void clear_member(upb_json_parser *p) { p->top->f = NULL; } |
|
|
|
static bool start_subobject(upb_json_parser *p) { |
|
assert(p->top->f); |
|
|
|
if (!upb_fielddef_issubmsg(p->top->f)) { |
|
upb_status_seterrf(p->status, |
|
"Object specified for non-message/group field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
return false; |
|
} |
|
|
|
if (!check_stack(p)) return false; |
|
|
|
upb_jsonparser_frame *inner = p->top + 1; |
|
|
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); |
|
upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); |
|
inner->m = upb_fielddef_msgsubdef(p->top->f); |
|
inner->f = NULL; |
|
p->top = inner; |
|
|
|
return true; |
|
} |
|
|
|
static void end_subobject(upb_json_parser *p) { |
|
p->top--; |
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG); |
|
upb_sink_endsubmsg(&p->top->sink, sel); |
|
} |
|
|
|
static bool start_array(upb_json_parser *p) { |
|
assert(p->top->f); |
|
|
|
if (!upb_fielddef_isseq(p->top->f)) { |
|
upb_status_seterrf(p->status, |
|
"Array specified for non-repeated field: %s", |
|
upb_fielddef_name(p->top->f)); |
|
return false; |
|
} |
|
|
|
if (!check_stack(p)) return false; |
|
|
|
upb_jsonparser_frame *inner = p->top + 1; |
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); |
|
upb_sink_startseq(&p->top->sink, sel, &inner->sink); |
|
inner->m = p->top->m; |
|
inner->f = p->top->f; |
|
p->top = inner; |
|
|
|
return true; |
|
} |
|
|
|
static void end_array(upb_json_parser *p) { |
|
assert(p->top > p->stack); |
|
|
|
p->top--; |
|
upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); |
|
upb_sink_endseq(&p->top->sink, sel); |
|
} |
|
|
|
static void start_object(upb_json_parser *p) { |
|
upb_sink_startmsg(&p->top->sink); |
|
} |
|
|
|
static void end_object(upb_json_parser *p) { |
|
upb_status status; |
|
upb_sink_endmsg(&p->top->sink, &status); |
|
} |
|
|
|
|
|
#define CHECK_RETURN_TOP(x) if (!(x)) goto error |
|
|
|
|
|
/* The actual parser **********************************************************/ |
|
|
|
// What follows is the Ragel parser itself. The language is specified in Ragel |
|
// and the actions call our C functions above. |
|
// |
|
// Ragel has an extensive set of functionality, and we use only a small part of |
|
// it. There are many action types but we only use a few: |
|
// |
|
// ">" -- transition into a machine |
|
// "%" -- transition out of a machine |
|
// "@" -- transition into a final state of a machine. |
|
// |
|
// "@" transitions are tricky because a machine can transition into a final |
|
// state repeatedly. But in some cases we know this can't happen, for example |
|
// a string which is delimited by a final '"' can only transition into its |
|
// final state once, when the closing '"' is seen. |
|
|
|
%%{ |
|
machine json; |
|
|
|
ws = space*; |
|
|
|
integer = "0" | /[1-9]/ /[0-9]/*; |
|
decimal = "." /[0-9]/+; |
|
exponent = /[eE]/ /[+\-]/? /[0-9]/+; |
|
|
|
number_machine := |
|
("-"? integer decimal? exponent?) |
|
<: any >{ fhold; fret; }; |
|
number = /[0-9\-]/ >{ fhold; fcall number_machine; }; |
|
|
|
text = |
|
/[^\\"]/+ |
|
>{ start_text(parser, p); } |
|
%{ CHECK_RETURN_TOP(end_text(parser, p)); } |
|
; |
|
|
|
unicode_char = |
|
"\\u" |
|
/[0-9A-Fa-f]/{4} |
|
>{ start_hex(parser); } |
|
${ hexdigit(parser, p); } |
|
%{ CHECK_RETURN_TOP(end_hex(parser)); } |
|
; |
|
|
|
escape_char = |
|
"\\" |
|
/[rtbfn"\/\\]/ |
|
>{ CHECK_RETURN_TOP(escape(parser, p)); } |
|
; |
|
|
|
string_machine := |
|
(text | unicode_char | escape_char)** |
|
'"' |
|
@{ fhold; fret; } |
|
; |
|
|
|
string = '"' @{ fcall string_machine; } '"'; |
|
|
|
value2 = ^(space | "]" | "}") >{ fhold; fcall value_machine; } ; |
|
|
|
member = |
|
ws |
|
string |
|
>{ start_member(parser); } |
|
@{ CHECK_RETURN_TOP(end_member(parser)); } |
|
ws ":" ws |
|
value2 |
|
%{ clear_member(parser); } |
|
ws; |
|
|
|
object = |
|
"{" |
|
ws |
|
>{ start_object(parser); } |
|
(member ("," member)*)? |
|
"}" |
|
>{ end_object(parser); } |
|
; |
|
|
|
element = ws value2 ws; |
|
array = |
|
"[" |
|
>{ CHECK_RETURN_TOP(start_array(parser)); } |
|
ws |
|
(element ("," element)*)? |
|
"]" |
|
>{ end_array(parser); } |
|
; |
|
|
|
value = |
|
number |
|
>{ start_number(parser, p); } |
|
%{ CHECK_RETURN_TOP(end_number(parser, p)); } |
|
| string |
|
>{ CHECK_RETURN_TOP(start_stringval(parser)); } |
|
@{ CHECK_RETURN_TOP(end_stringval(parser)); } |
|
| "true" |
|
%{ CHECK_RETURN_TOP(parser_putbool(parser, true)); } |
|
| "false" |
|
%{ CHECK_RETURN_TOP(parser_putbool(parser, false)); } |
|
| "null" |
|
%{ /* null value */ } |
|
| object |
|
>{ CHECK_RETURN_TOP(start_subobject(parser)); } |
|
%{ end_subobject(parser); } |
|
| array; |
|
|
|
value_machine := |
|
value |
|
<: any >{ fhold; fret; } ; |
|
|
|
main := ws object ws; |
|
}%% |
|
|
|
%% write data; |
|
|
|
size_t parse(void *closure, const void *hd, const char *buf, size_t size, |
|
const upb_bufhandle *handle) { |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
upb_json_parser *parser = closure; |
|
parser->handle = handle; |
|
|
|
// Variables used by Ragel's generated code. |
|
int cs = parser->current_state; |
|
int *stack = parser->parser_stack; |
|
int top = parser->parser_top; |
|
|
|
const char *p = buf; |
|
const char *pe = buf + size; |
|
|
|
capture_resume(parser, buf); |
|
|
|
%% write exec; |
|
|
|
if (p != pe) { |
|
upb_status_seterrf(parser->status, "Parse error at %s\n", p); |
|
} else { |
|
capture_suspend(parser, &p); |
|
} |
|
|
|
error: |
|
// Save parsing state back to parser. |
|
parser->current_state = cs; |
|
parser->parser_top = top; |
|
|
|
return p - buf; |
|
} |
|
|
|
bool end(void *closure, const void *hd) { |
|
UPB_UNUSED(closure); |
|
UPB_UNUSED(hd); |
|
return true; |
|
} |
|
|
|
|
|
/* Public API *****************************************************************/ |
|
|
|
void upb_json_parser_init(upb_json_parser *p, upb_status *status) { |
|
p->limit = p->stack + UPB_JSON_MAX_DEPTH; |
|
p->accumulate_buf = NULL; |
|
p->accumulate_buf_size = 0; |
|
upb_byteshandler_init(&p->input_handler_); |
|
upb_byteshandler_setstring(&p->input_handler_, parse, NULL); |
|
upb_byteshandler_setendstr(&p->input_handler_, end, NULL); |
|
upb_bytessink_reset(&p->input_, &p->input_handler_, p); |
|
p->status = status; |
|
} |
|
|
|
void upb_json_parser_uninit(upb_json_parser *p) { |
|
upb_byteshandler_uninit(&p->input_handler_); |
|
free(p->accumulate_buf); |
|
} |
|
|
|
void upb_json_parser_reset(upb_json_parser *p) { |
|
p->top = p->stack; |
|
p->top->f = NULL; |
|
|
|
int cs; |
|
int top; |
|
// Emit Ragel initialization of the parser. |
|
%% write init; |
|
p->current_state = cs; |
|
p->parser_top = top; |
|
accumulate_clear(p); |
|
p->multipart_state = MULTIPART_INACTIVE; |
|
p->capture = NULL; |
|
} |
|
|
|
void upb_json_parser_resetoutput(upb_json_parser *p, upb_sink *sink) { |
|
upb_json_parser_reset(p); |
|
upb_sink_reset(&p->top->sink, sink->handlers, sink->closure); |
|
p->top->m = upb_handlers_msgdef(sink->handlers); |
|
p->accumulated = NULL; |
|
} |
|
|
|
upb_bytessink *upb_json_parser_input(upb_json_parser *p) { |
|
return &p->input_; |
|
}
|
|
|