Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

7487 lines
295 KiB

// Amalgamated source file
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Defs are upb's internal representation of the constructs that can appear
* in a .proto file:
*
* - upb_msgdef: describes a "message" construct.
* - upb_fielddef: describes a message field.
* - upb_enumdef: describes an enum.
* (TODO: definitions of services).
*
* Like upb_refcounted objects, defs are mutable only until frozen, and are
* only thread-safe once frozen.
*
* This is a mixed C/C++ interface that offers a full API to both languages.
* See the top-level README for more information.
*/
#ifndef UPB_DEF_H_
#define UPB_DEF_H_
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* A refcounting scheme that supports circular refs. It accomplishes this by
* partitioning the set of objects into groups such that no cycle spans groups;
* we can then reference-count the group as a whole and ignore refs within the
* group. When objects are mutable, these groups are computed very
* conservatively; we group any objects that have ever had a link between them.
* When objects are frozen, we compute strongly-connected components which
* allows us to be precise and only group objects that are actually cyclic.
*
* This is a mixed C/C++ interface that offers a full API to both languages.
* See the top-level README for more information.
*/
#ifndef UPB_REFCOUNTED_H_
#define UPB_REFCOUNTED_H_
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* This header is INTERNAL-ONLY! Its interfaces are not public or stable!
* This file defines very fast int->upb_value (inttable) and string->upb_value
* (strtable) hash tables.
*
* The table uses chained scatter with Brent's variation (inspired by the Lua
* implementation of hash tables). The hash function for strings is Austin
* Appleby's "MurmurHash."
*
* The inttable uses uintptr_t as its key, which guarantees it can be used to
* store pointers or integers of at least 32 bits (upb isn't really useful on
* systems where sizeof(void*) < 4).
*
* The table must be homogenous (all values of the same type). In debug
* mode, we check this on insert and lookup.
*/
#ifndef UPB_TABLE_H_
#define UPB_TABLE_H_
#include <assert.h>
#include <stdint.h>
#include <string.h>
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* This file contains shared definitions that are widely used across upb.
*
* This is a mixed C/C++ interface that offers a full API to both languages.
* See the top-level README for more information.
*/
#ifndef UPB_H_
#define UPB_H_
#include <assert.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
// inline if possible, emit standalone code if required.
#ifdef __cplusplus
#define UPB_INLINE inline
#else
#define UPB_INLINE static inline
#endif
#if __STDC_VERSION__ >= 199901L
#define UPB_C99
#endif
#if ((defined(__cplusplus) && __cplusplus >= 201103L) || \
defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11)
#define UPB_CXX11
#endif
#ifdef UPB_CXX11
#include <type_traits>
#define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
class_name(const class_name&) = delete; \
void operator=(const class_name&) = delete;
#define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
class_name() = delete; \
~class_name() = delete; \
/* Friend Pointer<T> so it can access base class. */ \
friend class Pointer<full_class_name>; \
friend class Pointer<const full_class_name>; \
UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
#define UPB_ASSERT_STDLAYOUT(type) \
static_assert(std::is_standard_layout<type>::value, \
#type " must be standard layout");
#else // !defined(UPB_CXX11)
#define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \
class_name(const class_name&); \
void operator=(const class_name&);
#define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \
class_name(); \
~class_name(); \
/* Friend Pointer<T> so it can access base class. */ \
friend class Pointer<full_class_name>; \
friend class Pointer<const full_class_name>; \
UPB_DISALLOW_COPY_AND_ASSIGN(class_name)
#define UPB_ASSERT_STDLAYOUT(type)
#endif
#ifdef __cplusplus
#define UPB_PRIVATE_FOR_CPP private:
#define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname;
#define UPB_BEGIN_EXTERN_C extern "C" {
#define UPB_END_EXTERN_C }
#define UPB_DEFINE_STRUCT0(cname, members) members;
#define UPB_DEFINE_STRUCT(cname, cbase, members) \
public: \
cbase* base() { return &base_; } \
const cbase* base() const { return &base_; } \
\
private: \
cbase base_; \
members;
#define UPB_DEFINE_CLASS0(cppname, cppmethods, members) \
class cppname { \
cppmethods \
members \
}; \
UPB_ASSERT_STDLAYOUT(cppname);
#define UPB_DEFINE_CLASS1(cppname, cppbase, cppmethods, members) \
UPB_DEFINE_CLASS0(cppname, cppmethods, members) \
namespace upb { \
template <> \
class Pointer<cppname> : public PointerBase<cppname, cppbase> { \
public: \
explicit Pointer(cppname* ptr) : PointerBase(ptr) {} \
}; \
template <> \
class Pointer<const cppname> \
: public PointerBase<const cppname, const cppbase> { \
public: \
explicit Pointer(const cppname* ptr) : PointerBase(ptr) {} \
}; \
}
#define UPB_DEFINE_CLASS2(cppname, cppbase, cppbase2, cppmethods, members) \
UPB_DEFINE_CLASS0(cppname, UPB_QUOTE(cppmethods), members) \
namespace upb { \
template <> \
class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \
public: \
explicit Pointer(cppname* ptr) : PointerBase2(ptr) {} \
}; \
template <> \
class Pointer<const cppname> \
: public PointerBase2<const cppname, const cppbase, const cppbase2> { \
public: \
explicit Pointer(const cppname* ptr) : PointerBase2(ptr) {} \
}; \
}
#else // !defined(__cplusplus)
#define UPB_PRIVATE_FOR_CPP
#define UPB_DECLARE_TYPE(cppname, cname) \
struct cname; \
typedef struct cname cname;
#define UPB_BEGIN_EXTERN_C
#define UPB_END_EXTERN_C
#define UPB_DEFINE_STRUCT0(cname, members) \
struct cname { \
members; \
};
#define UPB_DEFINE_STRUCT(cname, cbase, members) \
struct cname { \
cbase base; \
members; \
};
#define UPB_DEFINE_CLASS0(cppname, cppmethods, members) members
#define UPB_DEFINE_CLASS1(cppname, cppbase, cppmethods, members) members
#define UPB_DEFINE_CLASS2(cppname, cppbase, cppbase2, cppmethods, members) \
members
#endif // defined(__cplusplus)
#ifdef __GNUC__
#define UPB_NORETURN __attribute__((__noreturn__))
#else
#define UPB_NORETURN
#endif
#define UPB_MAX(x, y) ((x) > (y) ? (x) : (y))
#define UPB_MIN(x, y) ((x) < (y) ? (x) : (y))
#define UPB_UNUSED(var) (void)var
// Code with commas confuses the preprocessor when passed as arguments, whether
// C++ type names with commas (eg. Foo<int, int>) or code blocks that declare
// variables (ie. int foo, bar).
#define UPB_QUOTE(...) __VA_ARGS__
// For asserting something about a variable when the variable is not used for
// anything else. This prevents "unused variable" warnings when compiling in
// debug mode.
#define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate)
// Generic function type.
typedef void upb_func();
/* Casts **********************************************************************/
// Upcasts for C. For downcasts see the definitions of the subtypes.
#define UPB_UPCAST(obj) (&(obj)->base)
#define UPB_UPCAST2(obj) UPB_UPCAST(UPB_UPCAST(obj))
#ifdef __cplusplus
// Downcasts for C++. We can't use C++ inheritance directly and maintain
// compatibility with C. So our inheritance is undeclared in C++.
// Specializations of these casting functions are defined for appropriate type
// pairs, and perform the necessary checks.
//
// Example:
// upb::Def* def = <...>;
// upb::MessageDef* = upb::dyn_cast<upb::MessageDef*>(def);
namespace upb {
// Casts to a direct subclass. The caller must know that cast is correct; an
// incorrect cast will throw an assertion failure in debug mode.
template<class To, class From> To down_cast(From* f);
// Casts to a direct subclass. If the class does not actually match the given
// subtype, returns NULL.
template<class To, class From> To dyn_cast(From* f);
// Pointer<T> is a simple wrapper around a T*. It is only constructed for
// upcast() below, and its sole purpose is to be implicitly convertable to T* or
// pointers to base classes, just as a pointer would be in regular C++ if the
// inheritance were directly expressed as C++ inheritance.
template <class T> class Pointer;
// Casts to any base class, or the type itself (ie. can be a no-op).
template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); }
template <class T, class Base>
class PointerBase {
public:
explicit PointerBase(T* ptr) : ptr_(ptr) {}
operator T*() { return ptr_; }
operator Base*() { return ptr_->base(); }
private:
T* ptr_;
};
template <class T, class Base, class Base2>
class PointerBase2 : public PointerBase<T, Base> {
public:
explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {}
operator Base2*() { return Pointer<Base>(*this); }
};
}
#endif
/* upb::reffed_ptr ************************************************************/
#ifdef __cplusplus
#include <algorithm> // For std::swap().
namespace upb {
// Provides RAII semantics for upb refcounted objects. Each reffed_ptr owns a
// ref on whatever object it points to (if any).
template <class T> class reffed_ptr {
public:
reffed_ptr() : ptr_(NULL) {}
// If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor.
template <class U>
reffed_ptr(U* val, const void* ref_donor = NULL)
: ptr_(upb::upcast(val)) {
if (ref_donor) {
assert(ptr_);
ptr_->DonateRef(ref_donor, this);
} else if (ptr_) {
ptr_->Ref(this);
}
}
template <class U>
reffed_ptr(const reffed_ptr<U>& other)
: ptr_(upb::upcast(other.get())) {
if (ptr_) ptr_->Ref(this);
}
~reffed_ptr() { if (ptr_) ptr_->Unref(this); }
template <class U>
reffed_ptr& operator=(const reffed_ptr<U>& other) {
reset(other.get());
return *this;
}
reffed_ptr& operator=(const reffed_ptr& other) {
reset(other.get());
return *this;
}
// TODO(haberman): add C++11 move construction/assignment for greater
// efficiency.
void swap(reffed_ptr& other) {
if (ptr_ == other.ptr_) {
return;
}
if (ptr_) ptr_->DonateRef(this, &other);
if (other.ptr_) other.ptr_->DonateRef(&other, this);
std::swap(ptr_, other.ptr_);
}
T& operator*() const {
assert(ptr_);
return *ptr_;
}
T* operator->() const {
assert(ptr_);
return ptr_;
}
T* get() const { return ptr_; }
// If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor.
template <class U>
void reset(U* ptr = NULL, const void* ref_donor = NULL) {
reffed_ptr(ptr, ref_donor).swap(*this);
}
template <class U>
reffed_ptr<U> down_cast() {
return reffed_ptr<U>(upb::down_cast<U*>(get()));
}
template <class U>
reffed_ptr<U> dyn_cast() {
return reffed_ptr<U>(upb::dyn_cast<U*>(get()));
}
// Plain release() is unsafe; if we were the only owner, it would leak the
// object. Instead we provide this:
T* ReleaseTo(const void* new_owner) {
T* ret = NULL;
ptr_->DonateRef(this, new_owner);
std::swap(ret, ptr_);
return ret;
}
private:
T* ptr_;
};
} // namespace upb
#endif // __cplusplus
/* upb::Status ****************************************************************/
#ifdef __cplusplus
namespace upb {
class ErrorSpace;
class Status;
}
#endif
UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace);
UPB_DECLARE_TYPE(upb::Status, upb_status);
// The maximum length of an error message before it will get truncated.
#define UPB_STATUS_MAX_MESSAGE 128
// An error callback function is used to report errors from some component.
// The function can return "true" to indicate that the component should try
// to recover and proceed, but this is not always possible.
typedef bool upb_errcb_t(void *closure, const upb_status* status);
UPB_DEFINE_CLASS0(upb::ErrorSpace,
,
UPB_DEFINE_STRUCT0(upb_errorspace,
const char *name;
// Should the error message in the status object according to this code.
void (*set_message)(upb_status* status, int code);
));
// Object representing a success or failure status.
// It owns no resources and allocates no memory, so it should work
// even in OOM situations.
UPB_DEFINE_CLASS0(upb::Status,
public:
Status();
// Returns true if there is no error.
bool ok() const;
// Optional error space and code, useful if the caller wants to
// programmatically check the specific kind of error.
ErrorSpace* error_space();
int code() const;
const char *error_message() const;
// The error message will be truncated if it is longer than
// UPB_STATUS_MAX_MESSAGE-4.
void SetErrorMessage(const char* msg);
void SetFormattedErrorMessage(const char* fmt, ...);
// If there is no error message already, this will use the ErrorSpace to
// populate the error message for this code. The caller can still call
// SetErrorMessage() to give a more specific message.
void SetErrorCode(ErrorSpace* space, int code);
// Resets the status to a successful state with no message.
void Clear();
void CopyFrom(const Status& other);
private:
UPB_DISALLOW_COPY_AND_ASSIGN(Status);
,
UPB_DEFINE_STRUCT0(upb_status,
bool ok_;
// Specific status code defined by some error space (optional).
int code_;
upb_errorspace *error_space_;
// Error message; NULL-terminated.
char msg[UPB_STATUS_MAX_MESSAGE];
));
#define UPB_STATUS_INIT {true, 0, NULL, {0}}
#ifdef __cplusplus
extern "C" {
#endif
// The returned string is invalidated by any other call into the status.
const char *upb_status_errmsg(const upb_status *status);
bool upb_ok(const upb_status *status);
upb_errorspace *upb_status_errspace(const upb_status *status);
int upb_status_errcode(const upb_status *status);
// Any of the functions that write to a status object allow status to be NULL,
// to support use cases where the function's caller does not care about the
// status message.
void upb_status_clear(upb_status *status);
void upb_status_seterrmsg(upb_status *status, const char *msg);
void upb_status_seterrf(upb_status *status, const char *fmt, ...);
void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args);
void upb_status_seterrcode(upb_status *status, upb_errorspace *space, int code);
void upb_status_copy(upb_status *to, const upb_status *from);
#ifdef __cplusplus
} // extern "C"
namespace upb {
// C++ Wrappers
inline Status::Status() { Clear(); }
inline bool Status::ok() const { return upb_ok(this); }
inline const char* Status::error_message() const {
return upb_status_errmsg(this);
}
inline void Status::SetErrorMessage(const char* msg) {
upb_status_seterrmsg(this, msg);
}
inline void Status::SetFormattedErrorMessage(const char* fmt, ...) {
va_list args;
va_start(args, fmt);
upb_status_vseterrf(this, fmt, args);
va_end(args);
}
inline void Status::SetErrorCode(ErrorSpace* space, int code) {
upb_status_seterrcode(this, space, code);
}
inline void Status::Clear() { upb_status_clear(this); }
inline void Status::CopyFrom(const Status& other) {
upb_status_copy(this, &other);
}
} // namespace upb
#endif
#endif /* UPB_H_ */
#ifdef __cplusplus
extern "C" {
#endif
/* upb_value ******************************************************************/
// A tagged union (stored untagged inside the table) so that we can check that
// clients calling table accessors are correctly typed without having to have
// an explosion of accessors.
typedef enum {
UPB_CTYPE_INT32 = 1,
UPB_CTYPE_INT64 = 2,
UPB_CTYPE_UINT32 = 3,
UPB_CTYPE_UINT64 = 4,
UPB_CTYPE_BOOL = 5,
UPB_CTYPE_CSTR = 6,
UPB_CTYPE_PTR = 7,
UPB_CTYPE_CONSTPTR = 8,
UPB_CTYPE_FPTR = 9,
} upb_ctype_t;
typedef union {
int32_t int32;
int64_t int64;
uint64_t uint64;
uint32_t uint32;
bool _bool;
char *cstr;
void *ptr;
const void *constptr;
upb_func *fptr;
} _upb_value;
typedef struct {
_upb_value val;
#ifndef NDEBUG
// In debug mode we carry the value type around also so we can check accesses
// to be sure the right member is being read.
upb_ctype_t ctype;
#endif
} upb_value;
#ifdef UPB_C99
#define UPB_VALUE_INIT(v, member) {.member = v}
#endif
#define UPB__VALUE_INIT_NONE UPB_VALUE_INIT(NULL, ptr)
#ifdef NDEBUG
#define SET_TYPE(dest, val) UPB_UNUSED(val)
#define UPB_VALUE_INIT_NONE {UPB__VALUE_INIT_NONE}
#else
#define SET_TYPE(dest, val) dest = val
// Non-existent type, all reads will fail.
#define UPB_VALUE_INIT_NONE {UPB__VALUE_INIT_NONE, -1}
#endif
#define UPB_VALUE_INIT_INT32(v) UPB_VALUE_INIT(v, int32)
#define UPB_VALUE_INIT_INT64(v) UPB_VALUE_INIT(v, int64)
#define UPB_VALUE_INIT_UINT32(v) UPB_VALUE_INIT(v, uint32)
#define UPB_VALUE_INIT_UINT64(v) UPB_VALUE_INIT(v, uint64)
#define UPB_VALUE_INIT_BOOL(v) UPB_VALUE_INIT(v, _bool)
#define UPB_VALUE_INIT_CSTR(v) UPB_VALUE_INIT(v, cstr)
#define UPB_VALUE_INIT_PTR(v) UPB_VALUE_INIT(v, ptr)
#define UPB_VALUE_INIT_CONSTPTR(v) UPB_VALUE_INIT(v, constptr)
#define UPB_VALUE_INIT_FPTR(v) UPB_VALUE_INIT(v, fptr)
// Like strdup(), which isn't always available since it's not ANSI C.
char *upb_strdup(const char *s);
// Variant that works with a length-delimited rather than NULL-delimited string,
// as supported by strtable.
char *upb_strdup2(const char *s, size_t len);
UPB_INLINE void _upb_value_setval(upb_value *v, _upb_value val,
upb_ctype_t ctype) {
v->val = val;
SET_TYPE(v->ctype, ctype);
}
UPB_INLINE upb_value _upb_value_val(_upb_value val, upb_ctype_t ctype) {
upb_value ret;
_upb_value_setval(&ret, val, ctype);
return ret;
}
// For each value ctype, define the following set of functions:
//
// // Get/set an int32 from a upb_value.
// int32_t upb_value_getint32(upb_value val);
// void upb_value_setint32(upb_value *val, int32_t cval);
//
// // Construct a new upb_value from an int32.
// upb_value upb_value_int32(int32_t val);
#define FUNCS(name, membername, type_t, proto_type) \
UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \
val->val.uint64 = 0; \
SET_TYPE(val->ctype, proto_type); \
val->val.membername = cval; \
} \
UPB_INLINE upb_value upb_value_ ## name(type_t val) { \
upb_value ret; \
upb_value_set ## name(&ret, val); \
return ret; \
} \
UPB_INLINE type_t upb_value_get ## name(upb_value val) { \
assert(val.ctype == proto_type); \
return val.val.membername; \
}
FUNCS(int32, int32, int32_t, UPB_CTYPE_INT32);
FUNCS(int64, int64, int64_t, UPB_CTYPE_INT64);
FUNCS(uint32, uint32, uint32_t, UPB_CTYPE_UINT32);
FUNCS(uint64, uint64, uint64_t, UPB_CTYPE_UINT64);
FUNCS(bool, _bool, bool, UPB_CTYPE_BOOL);
FUNCS(cstr, cstr, char*, UPB_CTYPE_CSTR);
FUNCS(ptr, ptr, void*, UPB_CTYPE_PTR);
FUNCS(constptr, constptr, const void*, UPB_CTYPE_CONSTPTR);
FUNCS(fptr, fptr, upb_func*, UPB_CTYPE_FPTR);
#undef FUNCS
/* upb_table ******************************************************************/
typedef union {
uintptr_t num;
struct {
// We own this. NULL-terminated but may also contain binary data; see
// explicit length below.
// TODO: move the length to the start of the string in order to reduce
// tabkey's size (to one machine word) in a way that supports static
// initialization.
const char *str;
size_t length;
} s;
} upb_tabkey;
#define UPB_TABKEY_NUM(n) {n}
#ifdef UPB_C99
// Given that |s| is a string literal, sizeof(s) gives us a
// compile-time-constant strlen(). We must ensure that this works for static
// data initializers.
#define UPB_TABKEY_STR(strval) { .s = { .str = strval, \
.length = sizeof(strval) - 1 } }
#endif
// TODO(haberman): C++
#define UPB_TABKEY_NONE {0}
typedef struct _upb_tabent {
upb_tabkey key;
_upb_value val;
// Internal chaining. This is const so we can create static initializers for
// tables. We cast away const sometimes, but *only* when the containing
// upb_table is known to be non-const. This requires a bit of care, but
// the subtlety is confined to table.c.
const struct _upb_tabent *next;
} upb_tabent;
typedef struct {
size_t count; // Number of entries in the hash part.
size_t mask; // Mask to turn hash value -> bucket.
upb_ctype_t ctype; // Type of all values.
uint8_t size_lg2; // Size of the hash table part is 2^size_lg2 entries.
// Hash table entries.
// Making this const isn't entirely accurate; what we really want is for it to
// have the same const-ness as the table it's inside. But there's no way to
// declare that in C. So we have to make it const so that we can statically
// initialize const hash tables. Then we cast away const when we have to.
const upb_tabent *entries;
} upb_table;
typedef struct {
upb_table t;
} upb_strtable;
#define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \
{{count, mask, ctype, size_lg2, entries}}
typedef struct {
upb_table t; // For entries that don't fit in the array part.
const _upb_value *array; // Array part of the table. See const note above.
size_t array_size; // Array part size.
size_t array_count; // Array part number of elements.
} upb_inttable;
#define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \
{{count, mask, ctype, size_lg2, ent}, a, asize, acount}
#define UPB_EMPTY_INTTABLE_INIT(ctype) \
UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0)
#define UPB_ARRAY_EMPTYVAL -1
#define UPB_ARRAY_EMPTYENT UPB_VALUE_INIT_INT64(UPB_ARRAY_EMPTYVAL)
UPB_INLINE size_t upb_table_size(const upb_table *t) {
if (t->size_lg2 == 0)
return 0;
else
return 1 << t->size_lg2;
}
// Internal-only functions, in .h file only out of necessity.
UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) {
return e->key.num == 0;
}
// Used by some of the unit tests for generic hashing functionality.
uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed);
UPB_INLINE upb_tabkey upb_intkey(uintptr_t key) {
upb_tabkey k;
k.num = key;
return k;
}
UPB_INLINE uint32_t upb_inthash(uintptr_t key) {
return (uint32_t)key;
}
static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) {
return t->entries + (hash & t->mask);
}
UPB_INLINE bool upb_arrhas(_upb_value v) {
return v.uint64 != (uint64_t)UPB_ARRAY_EMPTYVAL;
}
// Initialize and uninitialize a table, respectively. If memory allocation
// failed, false is returned that the table is uninitialized.
bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype);
bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype);
void upb_inttable_uninit(upb_inttable *table);
void upb_strtable_uninit(upb_strtable *table);
// Returns the number of values in the table.
size_t upb_inttable_count(const upb_inttable *t);
UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) {
return t->t.count;
}
// Inserts the given key into the hashtable with the given value. The key must
// not already exist in the hash table. For string tables, the key must be
// NULL-terminated, and the table will make an internal copy of the key.
// Inttables must not insert a value of UINTPTR_MAX.
//
// If a table resize was required but memory allocation failed, false is
// returned and the table is unchanged.
bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val);
bool upb_strtable_insert2(upb_strtable *t, const char *key, size_t len,
upb_value val);
// For NULL-terminated strings.
UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key,
upb_value val) {
return upb_strtable_insert2(t, key, strlen(key), val);
}
// Looks up key in this table, returning "true" if the key was found.
// If v is non-NULL, copies the value for this key into *v.
bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v);
bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len,
upb_value *v);
// For NULL-terminated strings.
UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key,
upb_value *v) {
return upb_strtable_lookup2(t, key, strlen(key), v);
}
// Removes an item from the table. Returns true if the remove was successful,
// and stores the removed item in *val if non-NULL.
bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val);
bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len,
upb_value *val);
// For NULL-terminated strings.
UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key,
upb_value *v) {
return upb_strtable_remove2(t, key, strlen(key), v);
}
// Updates an existing entry in an inttable. If the entry does not exist,
// returns false and does nothing. Unlike insert/remove, this does not
// invalidate iterators.
bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val);
// Handy routines for treating an inttable like a stack. May not be mixed with
// other insert/remove calls.
bool upb_inttable_push(upb_inttable *t, upb_value val);
upb_value upb_inttable_pop(upb_inttable *t);
// Convenience routines for inttables with pointer keys.
bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val);
bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val);
bool upb_inttable_lookupptr(
const upb_inttable *t, const void *key, upb_value *val);
// Optimizes the table for the current set of entries, for both memory use and
// lookup time. Client should call this after all entries have been inserted;
// inserting more entries is legal, but will likely require a table resize.
void upb_inttable_compact(upb_inttable *t);
// A special-case inlinable version of the lookup routine for 32-bit integers.
UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key,
upb_value *v) {
*v = upb_value_int32(0); // Silence compiler warnings.
if (key < t->array_size) {
_upb_value arrval = t->array[key];
if (upb_arrhas(arrval)) {
_upb_value_setval(v, arrval, t->t.ctype);
return true;
} else {
return false;
}
} else {
const upb_tabent *e;
if (t->t.entries == NULL) return false;
for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) {
if ((uint32_t)e->key.num == key) {
_upb_value_setval(v, e->val, t->t.ctype);
return true;
}
if (e->next == NULL) return false;
}
}
}
// Exposed for testing only.
bool upb_strtable_resize(upb_strtable *t, size_t size_lg2);
/* Iterators ******************************************************************/
// Iterators for int and string tables. We are subject to some kind of unusual
// design constraints:
//
// For high-level languages:
// - we must be able to guarantee that we don't crash or corrupt memory even if
// the program accesses an invalidated iterator.
//
// For C++11 range-based for:
// - iterators must be copyable
// - iterators must be comparable
// - it must be possible to construct an "end" value.
//
// Iteration order is undefined.
//
// Modifying the table invalidates iterators. upb_{str,int}table_done() is
// guaranteed to work even on an invalidated iterator, as long as the table it
// is iterating over has not been freed. Calling next() or accessing data from
// an invalidated iterator yields unspecified elements from the table, but it is
// guaranteed not to crash and to return real table elements (except when done()
// is true).
/* upb_strtable_iter **********************************************************/
// upb_strtable_iter i;
// upb_strtable_begin(&i, t);
// for(; !upb_strtable_done(&i); upb_strtable_next(&i)) {
// const char *key = upb_strtable_iter_key(&i);
// const upb_value val = upb_strtable_iter_value(&i);
// // ...
// }
typedef struct {
const upb_strtable *t;
size_t index;
} upb_strtable_iter;
void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t);
void upb_strtable_next(upb_strtable_iter *i);
bool upb_strtable_done(const upb_strtable_iter *i);
const char *upb_strtable_iter_key(upb_strtable_iter *i);
size_t upb_strtable_iter_keylength(upb_strtable_iter *i);
upb_value upb_strtable_iter_value(const upb_strtable_iter *i);
void upb_strtable_iter_setdone(upb_strtable_iter *i);
bool upb_strtable_iter_isequal(const upb_strtable_iter *i1,
const upb_strtable_iter *i2);
/* upb_inttable_iter **********************************************************/
// upb_inttable_iter i;
// upb_inttable_begin(&i, t);
// for(; !upb_inttable_done(&i); upb_inttable_next(&i)) {
// uintptr_t key = upb_inttable_iter_key(&i);
// upb_value val = upb_inttable_iter_value(&i);
// // ...
// }
typedef struct {
const upb_inttable *t;
size_t index;
bool array_part;
} upb_inttable_iter;
void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t);
void upb_inttable_next(upb_inttable_iter *i);
bool upb_inttable_done(const upb_inttable_iter *i);
uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i);
upb_value upb_inttable_iter_value(const upb_inttable_iter *i);
void upb_inttable_iter_setdone(upb_inttable_iter *i);
bool upb_inttable_iter_isequal(const upb_inttable_iter *i1,
const upb_inttable_iter *i2);
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* UPB_TABLE_H_ */
// Reference tracking will check ref()/unref() operations to make sure the
// ref ownership is correct. Where possible it will also make tools like
// Valgrind attribute ref leaks to the code that took the leaked ref, not
// the code that originally created the object.
//
// Enabling this requires the application to define upb_lock()/upb_unlock()
// functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE).
#ifndef NDEBUG
#define UPB_DEBUG_REFS
#endif
#ifdef __cplusplus
namespace upb { class RefCounted; }
#endif
UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted);
struct upb_refcounted_vtbl;
UPB_DEFINE_CLASS0(upb::RefCounted,
public:
// Returns true if the given object is frozen.
bool IsFrozen() const;
// Increases the ref count, the new ref is owned by "owner" which must not
// already own a ref (and should not itself be a refcounted object if the ref
// could possibly be circular; see below).
// Thread-safe iff "this" is frozen.
void Ref(const void *owner) const;
// Release a ref that was acquired from upb_refcounted_ref() and collects any
// objects it can.
void Unref(const void *owner) const;
// Moves an existing ref from "from" to "to", without changing the overall
// ref count. DonateRef(foo, NULL, owner) is the same as Ref(foo, owner),
// but "to" may not be NULL.
void DonateRef(const void *from, const void *to) const;
// Verifies that a ref to the given object is currently held by the given
// owner. Only effective in UPB_DEBUG_REFS builds.
void CheckRef(const void *owner) const;
private:
UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted);
,
UPB_DEFINE_STRUCT0(upb_refcounted,
// A single reference count shared by all objects in the group.
uint32_t *group;
// A singly-linked list of all objects in the group.
upb_refcounted *next;
// Table of function pointers for this type.
const struct upb_refcounted_vtbl *vtbl;
// Maintained only when mutable, this tracks the number of refs (but not
// ref2's) to this object. *group should be the sum of all individual_count
// in the group.
uint32_t individual_count;
bool is_frozen;
#ifdef UPB_DEBUG_REFS
upb_inttable *refs; // Maps owner -> trackedref for incoming refs.
upb_inttable *ref2s; // Set of targets for outgoing ref2s.
#endif
));
UPB_BEGIN_EXTERN_C // {
// It is better to use tracked refs when possible, for the extra debugging
// capability. But if this is not possible (because you don't have easy access
// to a stable pointer value that is associated with the ref), you can pass
// UPB_UNTRACKED_REF instead.
extern const void *UPB_UNTRACKED_REF;
// Native C API.
bool upb_refcounted_isfrozen(const upb_refcounted *r);
void upb_refcounted_ref(const upb_refcounted *r, const void *owner);
void upb_refcounted_unref(const upb_refcounted *r, const void *owner);
void upb_refcounted_donateref(
const upb_refcounted *r, const void *from, const void *to);
void upb_refcounted_checkref(const upb_refcounted *r, const void *owner);
// Internal-to-upb Interface ///////////////////////////////////////////////////
typedef void upb_refcounted_visit(const upb_refcounted *r,
const upb_refcounted *subobj,
void *closure);
struct upb_refcounted_vtbl {
// Must visit all subobjects that are currently ref'd via upb_refcounted_ref2.
// Must be longjmp()-safe.
void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c);
// Must free the object and release all references to other objects.
void (*free)(upb_refcounted *r);
};
// Initializes the refcounted with a single ref for the given owner. Returns
// false if memory could not be allocated.
bool upb_refcounted_init(upb_refcounted *r,
const struct upb_refcounted_vtbl *vtbl,
const void *owner);
// Adds a ref from one refcounted object to another ("from" must not already
// own a ref). These refs may be circular; cycles will be collected correctly
// (if conservatively). These refs do not need to be freed in from's free()
// function.
void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from);
// Removes a ref that was acquired from upb_refcounted_ref2(), and collects any
// object it can. This is only necessary when "from" no longer points to "r",
// and not from from's "free" function.
void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from);
#define upb_ref2(r, from) \
upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from)
#define upb_unref2(r, from) \
upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from)
// Freezes all mutable object reachable by ref2() refs from the given roots.
// This will split refcounting groups into precise SCC groups, so that
// refcounting of frozen objects can be more aggressive. If memory allocation
// fails, or if more than 2**31 mutable objects are reachable from "roots", or
// if the maximum depth of the graph exceeds "maxdepth", false is returned and
// the objects are unchanged.
//
// After this operation succeeds, the objects are frozen/const, and may not be
// used through non-const pointers. In particular, they may not be passed as
// the second parameter of upb_refcounted_{ref,unref}2(). On the upside, all
// operations on frozen refcounteds are threadsafe, and objects will be freed
// at the precise moment that they become unreachable.
//
// Caller must own refs on each object in the "roots" list.
bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s,
int maxdepth);
// Shared by all compiled-in refcounted objects.
extern uint32_t static_refcount;
UPB_END_EXTERN_C // }
#ifdef UPB_DEBUG_REFS
#define UPB_REFCOUNT_INIT(refs, ref2s) \
{&static_refcount, NULL, NULL, 0, true, refs, ref2s}
#else
#define UPB_REFCOUNT_INIT(refs, ref2s) {&static_refcount, NULL, NULL, 0, true}
#endif
#ifdef __cplusplus
// C++ Wrappers.
namespace upb {
inline bool RefCounted::IsFrozen() const {
return upb_refcounted_isfrozen(this);
}
inline void RefCounted::Ref(const void *owner) const {
upb_refcounted_ref(this, owner);
}
inline void RefCounted::Unref(const void *owner) const {
upb_refcounted_unref(this, owner);
}
inline void RefCounted::DonateRef(const void *from, const void *to) const {
upb_refcounted_donateref(this, from, to);
}
inline void RefCounted::CheckRef(const void *owner) const {
upb_refcounted_checkref(this, owner);
}
} // namespace upb
#endif
#endif // UPB_REFCOUNT_H_
#ifdef __cplusplus
#include <cstring>
#include <string>
#include <vector>
namespace upb {
class Def;
class EnumDef;
class FieldDef;
class MessageDef;
}
#endif
UPB_DECLARE_TYPE(upb::Def, upb_def);
UPB_DECLARE_TYPE(upb::EnumDef, upb_enumdef);
UPB_DECLARE_TYPE(upb::FieldDef, upb_fielddef);
UPB_DECLARE_TYPE(upb::MessageDef, upb_msgdef);
// Maximum field number allowed for FieldDefs. This is an inherent limit of the
// protobuf wire format.
#define UPB_MAX_FIELDNUMBER ((1 << 29) - 1)
// The maximum message depth that the type graph can have. This is a resource
// limit for the C stack since we sometimes need to recursively traverse the
// graph. Cycles are ok; the traversal will stop when it detects a cycle, but
// we must hit the cycle before the maximum depth is reached.
//
// If having a single static limit is too inflexible, we can add another variant
// of Def::Freeze that allows specifying this as a parameter.
#define UPB_MAX_MESSAGE_DEPTH 64
/* upb::Def: base class for defs *********************************************/
// All the different kind of defs we support. These correspond 1:1 with
// declarations in a .proto file.
typedef enum {
UPB_DEF_MSG,
UPB_DEF_FIELD,
UPB_DEF_ENUM,
UPB_DEF_SERVICE, // Not yet implemented.
UPB_DEF_ANY = -1, // Wildcard for upb_symtab_get*()
} upb_deftype_t;
// The base class of all defs. Its base is upb::RefCounted (use upb::upcast()
// to convert).
UPB_DEFINE_CLASS1(upb::Def, upb::RefCounted,
public:
typedef upb_deftype_t Type;
Def* Dup(const void *owner) const;
// Functionality from upb::RefCounted.
bool IsFrozen() const;
void Ref(const void* owner) const;
void Unref(const void* owner) const;
void DonateRef(const void* from, const void* to) const;
void CheckRef(const void* owner) const;
Type def_type() const;
// "fullname" is the def's fully-qualified name (eg. foo.bar.Message).
const char *full_name() const;
// The def must be mutable. Caller retains ownership of fullname. Defs are
// not required to have a name; if a def has no name when it is frozen, it
// will remain an anonymous def. On failure, returns false and details in "s"
// if non-NULL.
bool set_full_name(const char* fullname, upb::Status* s);
bool set_full_name(const std::string &fullname, upb::Status* s);
// Freezes the given defs; this validates all constraints and marks the defs
// as frozen (read-only). "defs" may not contain any fielddefs, but fields
// of any msgdefs will be frozen.
//
// Symbolic references to sub-types and enum defaults must have already been
// resolved. Any mutable defs reachable from any of "defs" must also be in
// the list; more formally, "defs" must be a transitive closure of mutable
// defs.
//
// After this operation succeeds, the finalized defs must only be accessed
// through a const pointer!
static bool Freeze(Def* const* defs, int n, Status* status);
static bool Freeze(const std::vector<Def*>& defs, Status* status);
private:
UPB_DISALLOW_POD_OPS(Def, upb::Def);
,
UPB_DEFINE_STRUCT(upb_def, upb_refcounted,
const char *fullname;
upb_deftype_t type : 8;
// Used as a flag during the def's mutable stage. Must be false unless
// it is currently being used by a function on the stack. This allows
// us to easily determine which defs were passed into the function's
// current invocation.
bool came_from_user;
));
#define UPB_DEF_INIT(name, type, refs, ref2s) \
{ UPB_REFCOUNT_INIT(refs, ref2s), name, type, false }
UPB_BEGIN_EXTERN_C // {
// Native C API.
upb_def *upb_def_dup(const upb_def *def, const void *owner);
// From upb_refcounted.
bool upb_def_isfrozen(const upb_def *def);
void upb_def_ref(const upb_def *def, const void *owner);
void upb_def_unref(const upb_def *def, const void *owner);
void upb_def_donateref(const upb_def *def, const void *from, const void *to);
void upb_def_checkref(const upb_def *def, const void *owner);
upb_deftype_t upb_def_type(const upb_def *d);
const char *upb_def_fullname(const upb_def *d);
bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s);
bool upb_def_freeze(upb_def *const *defs, int n, upb_status *s);
UPB_END_EXTERN_C // }
/* upb::Def casts *************************************************************/
#ifdef __cplusplus
#define UPB_CPP_CASTS(cname, cpptype) \
namespace upb { \
template <> \
inline cpptype *down_cast<cpptype *, Def>(Def * def) { \
return upb_downcast_##cname##_mutable(def); \
} \
template <> \
inline cpptype *dyn_cast<cpptype *, Def>(Def * def) { \
return upb_dyncast_##cname##_mutable(def); \
} \
template <> \
inline const cpptype *down_cast<const cpptype *, const Def>( \
const Def *def) { \
return upb_downcast_##cname(def); \
} \
template <> \
inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \
return upb_dyncast_##cname(def); \
} \
template <> \
inline const cpptype *down_cast<const cpptype *, Def>(Def * def) { \
return upb_downcast_##cname(def); \
} \
template <> \
inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) { \
return upb_dyncast_##cname(def); \
} \
} // namespace upb
#else
#define UPB_CPP_CASTS(cname, cpptype)
#endif
// Dynamic casts, for determining if a def is of a particular type at runtime.
// Downcasts, for when some wants to assert that a def is of a particular type.
// These are only checked if we are building debug.
#define UPB_DEF_CASTS(lower, upper, cpptype) \
UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) { \
if (upb_def_type(def) != UPB_DEF_##upper) return NULL; \
return (upb_##lower *)def; \
} \
UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \
assert(upb_def_type(def) == UPB_DEF_##upper); \
return (const upb_##lower *)def; \
} \
UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) { \
return (upb_##lower *)upb_dyncast_##lower(def); \
} \
UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) { \
return (upb_##lower *)upb_downcast_##lower(def); \
} \
UPB_CPP_CASTS(lower, cpptype)
#define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members) \
UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, UPB_QUOTE(cppmethods), \
members) \
UPB_DEF_CASTS(lower, upper, cppname)
/* upb::FieldDef **************************************************************/
// The types a field can have. Note that this list is not identical to the
// types defined in descriptor.proto, which gives INT32 and SINT32 separate
// types (we distinguish the two with the "integer encoding" enum below).
typedef enum {
UPB_TYPE_FLOAT = 1,
UPB_TYPE_DOUBLE = 2,
UPB_TYPE_BOOL = 3,
UPB_TYPE_STRING = 4,
UPB_TYPE_BYTES = 5,
UPB_TYPE_MESSAGE = 6,
UPB_TYPE_ENUM = 7, // Enum values are int32.
UPB_TYPE_INT32 = 8,
UPB_TYPE_UINT32 = 9,
UPB_TYPE_INT64 = 10,
UPB_TYPE_UINT64 = 11,
} upb_fieldtype_t;
// The repeated-ness of each field; this matches descriptor.proto.
typedef enum {
UPB_LABEL_OPTIONAL = 1,
UPB_LABEL_REQUIRED = 2,
UPB_LABEL_REPEATED = 3,
} upb_label_t;
// How integers should be encoded in serializations that offer multiple
// integer encoding methods.
typedef enum {
UPB_INTFMT_VARIABLE = 1,
UPB_INTFMT_FIXED = 2,
UPB_INTFMT_ZIGZAG = 3, // Only for signed types (INT32/INT64).
} upb_intfmt_t;
// Descriptor types, as defined in descriptor.proto.
typedef enum {
UPB_DESCRIPTOR_TYPE_DOUBLE = 1,
UPB_DESCRIPTOR_TYPE_FLOAT = 2,
UPB_DESCRIPTOR_TYPE_INT64 = 3,
UPB_DESCRIPTOR_TYPE_UINT64 = 4,
UPB_DESCRIPTOR_TYPE_INT32 = 5,
UPB_DESCRIPTOR_TYPE_FIXED64 = 6,
UPB_DESCRIPTOR_TYPE_FIXED32 = 7,
UPB_DESCRIPTOR_TYPE_BOOL = 8,
UPB_DESCRIPTOR_TYPE_STRING = 9,
UPB_DESCRIPTOR_TYPE_GROUP = 10,
UPB_DESCRIPTOR_TYPE_MESSAGE = 11,
UPB_DESCRIPTOR_TYPE_BYTES = 12,
UPB_DESCRIPTOR_TYPE_UINT32 = 13,
UPB_DESCRIPTOR_TYPE_ENUM = 14,
UPB_DESCRIPTOR_TYPE_SFIXED32 = 15,
UPB_DESCRIPTOR_TYPE_SFIXED64 = 16,
UPB_DESCRIPTOR_TYPE_SINT32 = 17,
UPB_DESCRIPTOR_TYPE_SINT64 = 18,
} upb_descriptortype_t;
// A upb_fielddef describes a single field in a message. It is most often
// found as a part of a upb_msgdef, but can also stand alone to represent
// an extension.
//
// Its base class is upb::Def (use upb::upcast() to convert).
UPB_DEFINE_DEF(upb::FieldDef, fielddef, FIELD,
public:
typedef upb_fieldtype_t Type;
typedef upb_label_t Label;
typedef upb_intfmt_t IntegerFormat;
typedef upb_descriptortype_t DescriptorType;
// These return true if the given value is a valid member of the enumeration.
static bool CheckType(int32_t val);
static bool CheckLabel(int32_t val);
static bool CheckDescriptorType(int32_t val);
static bool CheckIntegerFormat(int32_t val);
// These convert to the given enumeration; they require that the value is
// valid.
static Type ConvertType(int32_t val);
static Label ConvertLabel(int32_t val);
static DescriptorType ConvertDescriptorType(int32_t val);
static IntegerFormat ConvertIntegerFormat(int32_t val);
// Returns NULL if memory allocation failed.
static reffed_ptr<FieldDef> New();
// Duplicates the given field, returning NULL if memory allocation failed.
// When a fielddef is duplicated, the subdef (if any) is made symbolic if it
// wasn't already. If the subdef is set but has no name (which is possible
// since msgdefs are not required to have a name) the new fielddef's subdef
// will be unset.
FieldDef* Dup(const void* owner) const;
// Functionality from upb::RefCounted.
bool IsFrozen() const;
void Ref(const void* owner) const;
void Unref(const void* owner) const;
void DonateRef(const void* from, const void* to) const;
void CheckRef(const void* owner) const;
// Functionality from upb::Def.
const char* full_name() const;
bool type_is_set() const; // Whether set_[descriptor_]type() has been called.
Type type() const; // Requires that type_is_set() == true.
Label label() const; // Defaults to UPB_LABEL_OPTIONAL.
const char* name() const; // NULL if uninitialized.
uint32_t number() const; // Returns 0 if uninitialized.
bool is_extension() const;
// For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false,
// indicates whether this field should have lazy parsing handlers that yield
// the unparsed string for the submessage.
//
// TODO(haberman): I think we want to move this into a FieldOptions container
// when we add support for custom options (the FieldOptions struct will
// contain both regular FieldOptions like "lazy" *and* custom options).
bool lazy() const;
// For non-string, non-submessage fields, this indicates whether binary
// protobufs are encoded in packed or non-packed format.
//
// TODO(haberman): see note above about putting options like this into a
// FieldOptions container.
bool packed() const;
// An integer that can be used as an index into an array of fields for
// whatever message this field belongs to. Guaranteed to be less than
// f->containing_type()->field_count(). May only be accessed once the def has
// been finalized.
int index() const;
// The MessageDef to which this field belongs.
//
// If this field has been added to a MessageDef, that message can be retrieved
// directly (this is always the case for frozen FieldDefs).
//
// If the field has not yet been added to a MessageDef, you can set the name
// of the containing type symbolically instead. This is mostly useful for
// extensions, where the extension is declared separately from the message.
const MessageDef* containing_type() const;
const char* containing_type_name();
// The field's type according to the enum in descriptor.proto. This is not
// the same as UPB_TYPE_*, because it distinguishes between (for example)
// INT32 and SINT32, whereas our "type" enum does not. This return of
// descriptor_type() is a function of type(), integer_format(), and
// is_tag_delimited(). Likewise set_descriptor_type() sets all three
// appropriately.
DescriptorType descriptor_type() const;
// Convenient field type tests.
bool IsSubMessage() const;
bool IsString() const;
bool IsSequence() const;
bool IsPrimitive() const;
// How integers are encoded. Only meaningful for integer types.
// Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes.
IntegerFormat integer_format() const;
// Whether a submessage field is tag-delimited or not (if false, then
// length-delimited). May only be set when type() == UPB_TYPE_MESSAGE.
bool is_tag_delimited() const;
// Returns the non-string default value for this fielddef, which may either
// be something the client set explicitly or the "default default" (0 for
// numbers, empty for strings). The field's type indicates the type of the
// returned value, except for enum fields that are still mutable.
//
// Requires that the given function matches the field's current type.
int64_t default_int64() const;
int32_t default_int32() const;
uint64_t default_uint64() const;
uint32_t default_uint32() const;
bool default_bool() const;
float default_float() const;
double default_double() const;
// The resulting string is always NULL-terminated. If non-NULL, the length
// will be stored in *len.
const char *default_string(size_t* len) const;
// For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either
// string or int32, and both of these methods will always return true.
//
// For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated.
// Enum defaults are unusual. They can be specified either as string or int32,
// but to be valid the enum must have that value as a member. And if no
// default is specified, the "default default" comes from the EnumDef.
//
// We allow reading the default as either an int32 or a string, but only if
// we have a meaningful value to report. We have a meaningful value if it was
// set explicitly, or if we could get the "default default" from the EnumDef.
// Also if you explicitly set the name and we find the number in the EnumDef
bool EnumHasStringDefault() const;
bool EnumHasInt32Default() const;
// Submessage and enum fields must reference a "subdef", which is the
// upb::MessageDef or upb::EnumDef that defines their type. Note that when
// the FieldDef is mutable it may not have a subdef *yet*, but this function
// still returns true to indicate that the field's type requires a subdef.
bool HasSubDef() const;
// Returns the enum or submessage def for this field, if any. The field's
// type must match (ie. you may only call enum_subdef() for fields where
// type() == UPB_TYPE_ENUM). Returns NULL if the subdef has not been set or
// is currently set symbolically.
const EnumDef* enum_subdef() const;
const MessageDef* message_subdef() const;
// Returns the generic subdef for this field. Requires that HasSubDef() (ie.
// only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields).
const Def* subdef() const;
// Returns the symbolic name of the subdef. If the subdef is currently set
// unresolved (ie. set symbolically) returns the symbolic name. If it has
// been resolved to a specific subdef, returns the name from that subdef.
const char* subdef_name() const;
//////////////////////////////////////////////////////////////////////////////
// Setters (non-const methods), only valid for mutable FieldDefs!
//////////////////////////////////////////////////////////////////////////////
bool set_full_name(const char* fullname, upb::Status* s);
bool set_full_name(const std::string& fullname, upb::Status* s);
// This may only be called if containing_type() == NULL (ie. the field has not
// been added to a message yet).
bool set_containing_type_name(const char *name, Status* status);
bool set_containing_type_name(const std::string& name, Status* status);
// Defaults to false. When we freeze, we ensure that this can only be true
// for length-delimited message fields. Prior to freezing this can be true or
// false with no restrictions.
void set_lazy(bool lazy);
// Defaults to true. Sets whether this field is encoded in packed format.
void set_packed(bool packed);
// "type" or "descriptor_type" MUST be set explicitly before the fielddef is
// finalized. These setters require that the enum value is valid; if the
// value did not come directly from an enum constant, the caller should
// validate it first with the functions above (CheckFieldType(), etc).
void set_type(Type type);
void set_label(Label label);
void set_descriptor_type(DescriptorType type);
void set_is_extension(bool is_extension);
// "number" and "name" must be set before the FieldDef is added to a
// MessageDef, and may not be set after that.
//
// "name" is the same as full_name()/set_full_name(), but since fielddefs
// most often use simple, non-qualified names, we provide this accessor
// also. Generally only extensions will want to think of this name as
// fully-qualified.
bool set_number(uint32_t number, upb::Status* s);
bool set_name(const char* name, upb::Status* s);
bool set_name(const std::string& name, upb::Status* s);
void set_integer_format(IntegerFormat format);
bool set_tag_delimited(bool tag_delimited, upb::Status* s);
// Sets default value for the field. The call must exactly match the type
// of the field. Enum fields may use either setint32 or setstring to set
// the default numerically or symbolically, respectively, but symbolic
// defaults must be resolved before finalizing (see ResolveEnumDefault()).
//
// Changing the type of a field will reset its default.
void set_default_int64(int64_t val);
void set_default_int32(int32_t val);
void set_default_uint64(uint64_t val);
void set_default_uint32(uint32_t val);
void set_default_bool(bool val);
void set_default_float(float val);
void set_default_double(double val);
bool set_default_string(const void *str, size_t len, Status *s);
bool set_default_string(const std::string &str, Status *s);
void set_default_cstr(const char *str, Status *s);
// Before a fielddef is frozen, its subdef may be set either directly (with a
// upb::Def*) or symbolically. Symbolic refs must be resolved before the
// containing msgdef can be frozen (see upb_resolve() above). upb always
// guarantees that any def reachable from a live def will also be kept alive.
//
// Both methods require that upb_hassubdef(f) (so the type must be set prior
// to calling these methods). Returns false if this is not the case, or if
// the given subdef is not of the correct type. The subdef is reset if the
// field's type is changed. The subdef can be set to NULL to clear it.
bool set_subdef(const Def* subdef, Status* s);
bool set_enum_subdef(const EnumDef* subdef, Status* s);
bool set_message_subdef(const MessageDef* subdef, Status* s);
bool set_subdef_name(const char* name, Status* s);
bool set_subdef_name(const std::string &name, Status* s);
private:
UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef);
,
UPB_DEFINE_STRUCT(upb_fielddef, upb_def,
union {
int64_t sint;
uint64_t uint;
double dbl;
float flt;
void *bytes;
} defaultval;
union {
const upb_msgdef *def; // If !msg_is_symbolic.
char *name; // If msg_is_symbolic.
} msg;
union {
const upb_def *def; // If !subdef_is_symbolic.
char *name; // If subdef_is_symbolic.
} sub; // The msgdef or enumdef for this field, if upb_hassubdef(f).
bool subdef_is_symbolic;
bool msg_is_symbolic;
bool default_is_string;
bool type_is_set_; // False until type is explicitly set.
bool is_extension_;
bool lazy_;
bool packed_;
upb_intfmt_t intfmt;
bool tagdelim;
upb_fieldtype_t type_;
upb_label_t label_;
uint32_t number_;
uint32_t selector_base; // Used to index into a upb::Handlers table.
uint32_t index_;
));
#define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy, \
packed, name, num, msgdef, subdef, selector_base, \
index, defaultval, refs, ref2s) \
{ \
UPB_DEF_INIT(name, UPB_DEF_FIELD, refs, ref2s), defaultval, {msgdef}, \
{subdef}, false, false, \
type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \
lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \
}
UPB_BEGIN_EXTERN_C // {
// Native C API.
upb_fielddef *upb_fielddef_new(const void *owner);
upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner);
// From upb_refcounted.
bool upb_fielddef_isfrozen(const upb_fielddef *f);
void upb_fielddef_ref(const upb_fielddef *f, const void *owner);
void upb_fielddef_unref(const upb_fielddef *f, const void *owner);
void upb_fielddef_donateref(const upb_fielddef *f, const void *from,
const void *to);
void upb_fielddef_checkref(const upb_fielddef *f, const void *owner);
// From upb_def.
const char *upb_fielddef_fullname(const upb_fielddef *f);
bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname,
upb_status *s);
bool upb_fielddef_typeisset(const upb_fielddef *f);
upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f);
upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f);
upb_label_t upb_fielddef_label(const upb_fielddef *f);
uint32_t upb_fielddef_number(const upb_fielddef *f);
const char *upb_fielddef_name(const upb_fielddef *f);
bool upb_fielddef_isextension(const upb_fielddef *f);
bool upb_fielddef_lazy(const upb_fielddef *f);
bool upb_fielddef_packed(const upb_fielddef *f);
const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f);
upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f);
const char *upb_fielddef_containingtypename(upb_fielddef *f);
upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f);
uint32_t upb_fielddef_index(const upb_fielddef *f);
bool upb_fielddef_istagdelim(const upb_fielddef *f);
bool upb_fielddef_issubmsg(const upb_fielddef *f);
bool upb_fielddef_isstring(const upb_fielddef *f);
bool upb_fielddef_isseq(const upb_fielddef *f);
bool upb_fielddef_isprimitive(const upb_fielddef *f);
int64_t upb_fielddef_defaultint64(const upb_fielddef *f);
int32_t upb_fielddef_defaultint32(const upb_fielddef *f);
uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f);
uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f);
bool upb_fielddef_defaultbool(const upb_fielddef *f);
float upb_fielddef_defaultfloat(const upb_fielddef *f);
double upb_fielddef_defaultdouble(const upb_fielddef *f);
const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len);
bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f);
bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f);
bool upb_fielddef_hassubdef(const upb_fielddef *f);
const upb_def *upb_fielddef_subdef(const upb_fielddef *f);
const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f);
const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f);
const char *upb_fielddef_subdefname(const upb_fielddef *f);
void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type);
void upb_fielddef_setdescriptortype(upb_fielddef *f, int type);
void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label);
bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s);
bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s);
bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name,
upb_status *s);
void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension);
void upb_fielddef_setlazy(upb_fielddef *f, bool lazy);
void upb_fielddef_setpacked(upb_fielddef *f, bool packed);
void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt);
void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim);
void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val);
void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val);
void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val);
void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val);
void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val);
void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val);
void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val);
bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len,
upb_status *s);
void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str,
upb_status *s);
bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef,
upb_status *s);
bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef,
upb_status *s);
bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef,
upb_status *s);
bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name,
upb_status *s);
bool upb_fielddef_checklabel(int32_t label);
bool upb_fielddef_checktype(int32_t type);
bool upb_fielddef_checkdescriptortype(int32_t type);
bool upb_fielddef_checkintfmt(int32_t fmt);
UPB_END_EXTERN_C // }
/* upb::MessageDef ************************************************************/
typedef upb_inttable_iter upb_msg_iter;
// Structure that describes a single .proto message type.
//
// Its base class is upb::Def (use upb::upcast() to convert).
UPB_DEFINE_DEF(upb::MessageDef, msgdef, MSG, UPB_QUOTE(
public:
// Returns NULL if memory allocation failed.
static reffed_ptr<MessageDef> New();
// Functionality from upb::RefCounted.
bool IsFrozen() const;
void Ref(const void* owner) const;
void Unref(const void* owner) const;
void DonateRef(const void* from, const void* to) const;
void CheckRef(const void* owner) const;
// Functionality from upb::Def.
const char* full_name() const;
bool set_full_name(const char* fullname, Status* s);
bool set_full_name(const std::string& fullname, Status* s);
// Call to freeze this MessageDef.
// WARNING: this will fail if this message has any unfrozen submessages!
// Messages with cycles must be frozen as a batch using upb::Def::Freeze().
bool Freeze(Status* s);
// The number of fields that belong to the MessageDef.
int field_count() const;
// Adds a field (upb_fielddef object) to a msgdef. Requires that the msgdef
// and the fielddefs are mutable. The fielddef's name and number must be
// set, and the message may not already contain any field with this name or
// number, and this fielddef may not be part of another message. In error
// cases false is returned and the msgdef is unchanged.
bool AddField(FieldDef* f, Status* s);
bool AddField(const reffed_ptr<FieldDef>& f, Status* s);
// These return NULL if the field is not found.
FieldDef* FindFieldByNumber(uint32_t number);
FieldDef* FindFieldByName(const char *name, size_t len);
const FieldDef* FindFieldByNumber(uint32_t number) const;
const FieldDef* FindFieldByName(const char* name, size_t len) const;
FieldDef* FindFieldByName(const char *name) {
return FindFieldByName(name, strlen(name));
}
const FieldDef* FindFieldByName(const char *name) const {
return FindFieldByName(name, strlen(name));
}
template <class T>
FieldDef* FindFieldByName(const T& str) {
return FindFieldByName(str.c_str(), str.size());
}
template <class T>
const FieldDef* FindFieldByName(const T& str) const {
return FindFieldByName(str.c_str(), str.size());
}
// Returns a new msgdef that is a copy of the given msgdef (and a copy of all
// the fields) but with any references to submessages broken and replaced
// with just the name of the submessage. Returns NULL if memory allocation
// failed.
//
// TODO(haberman): which is more useful, keeping fields resolved or
// unresolving them? If there's no obvious answer, Should this functionality
// just be moved into symtab.c?
MessageDef* Dup(const void* owner) const;
// Is this message a map entry?
void setmapentry(bool map_entry);
bool mapentry() const;
// Iteration over fields. The order is undefined.
class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> {
public:
explicit iterator(MessageDef* md);
static iterator end(MessageDef* md);
void operator++();
FieldDef* operator*() const;
bool operator!=(const iterator& other) const;
bool operator==(const iterator& other) const;
private:
upb_msg_iter iter_;
};
class const_iterator
: public std::iterator<std::forward_iterator_tag, const FieldDef*> {
public:
explicit const_iterator(const MessageDef* md);
static const_iterator end(const MessageDef* md);
void operator++();
const FieldDef* operator*() const;
bool operator!=(const const_iterator& other) const;
bool operator==(const const_iterator& other) const;
private:
upb_msg_iter iter_;
};
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
private:
UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef);
),
UPB_DEFINE_STRUCT(upb_msgdef, upb_def,
size_t selector_count;
uint32_t submsg_field_count;
// Tables for looking up fields by number and name.
upb_inttable itof; // int to field
upb_strtable ntof; // name to field
// Is this a map-entry message?
// TODO: set this flag properly for static descriptors; regenerate
// descriptor.upb.c.
bool map_entry;
// TODO(haberman): proper extension ranges (there can be multiple).
));
#define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \
refs, ref2s) \
{ \
UPB_DEF_INIT(name, UPB_DEF_MSG, refs, ref2s), selector_count, \
submsg_field_count, itof, ntof, false \
}
UPB_BEGIN_EXTERN_C // {
// Returns NULL if memory allocation failed.
upb_msgdef *upb_msgdef_new(const void *owner);
// From upb_refcounted.
bool upb_msgdef_isfrozen(const upb_msgdef *m);
void upb_msgdef_ref(const upb_msgdef *m, const void *owner);
void upb_msgdef_unref(const upb_msgdef *m, const void *owner);
void upb_msgdef_donateref(const upb_msgdef *m, const void *from,
const void *to);
void upb_msgdef_checkref(const upb_msgdef *m, const void *owner);
bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status);
// From upb_def.
const char *upb_msgdef_fullname(const upb_msgdef *m);
bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s);
upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner);
bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor,
upb_status *s);
// Field lookup in a couple of different variations:
// - itof = int to field
// - ntof = name to field
// - ntofz = name to field, null-terminated string.
const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i);
const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name,
size_t len);
int upb_msgdef_numfields(const upb_msgdef *m);
UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m,
const char *name) {
return upb_msgdef_ntof(m, name, strlen(name));
}
UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) {
return (upb_fielddef*)upb_msgdef_itof(m, i);
}
UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m,
const char *name, size_t len) {
return (upb_fielddef *)upb_msgdef_ntof(m, name, len);
}
void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry);
bool upb_msgdef_mapentry(const upb_msgdef *m);
// upb_msg_iter i;
// for(upb_msg_begin(&i, m); !upb_msg_done(&i); upb_msg_next(&i)) {
// upb_fielddef *f = upb_msg_iter_field(&i);
// // ...
// }
//
// For C we don't have separate iterators for const and non-const.
// It is the caller's responsibility to cast the upb_fielddef* to
// const if the upb_msgdef* is const.
void upb_msg_begin(upb_msg_iter *iter, const upb_msgdef *m);
void upb_msg_next(upb_msg_iter *iter);
bool upb_msg_done(const upb_msg_iter *iter);
upb_fielddef *upb_msg_iter_field(const upb_msg_iter *iter);
void upb_msg_iter_setdone(upb_msg_iter *iter);
UPB_END_EXTERN_C // }
/* upb::EnumDef ***************************************************************/
typedef upb_strtable_iter upb_enum_iter;
// Class that represents an enum. Its base class is upb::Def (convert with
// upb::upcast()).
UPB_DEFINE_DEF(upb::EnumDef, enumdef, ENUM,
public:
// Returns NULL if memory allocation failed.
static reffed_ptr<EnumDef> New();
// Functionality from upb::RefCounted.
bool IsFrozen() const;
void Ref(const void* owner) const;
void Unref(const void* owner) const;
void DonateRef(const void* from, const void* to) const;
void CheckRef(const void* owner) const;
// Functionality from upb::Def.
const char* full_name() const;
bool set_full_name(const char* fullname, Status* s);
bool set_full_name(const std::string& fullname, Status* s);
// Call to freeze this EnumDef.
bool Freeze(Status* s);
// The value that is used as the default when no field default is specified.
// If not set explicitly, the first value that was added will be used.
// The default value must be a member of the enum.
// Requires that value_count() > 0.
int32_t default_value() const;
// Sets the default value. If this value is not valid, returns false and an
// error message in status.
bool set_default_value(int32_t val, Status* status);
// Returns the number of values currently defined in the enum. Note that
// multiple names can refer to the same number, so this may be greater than
// the total number of unique numbers.
int value_count() const;
// Adds a single name/number pair to the enum. Fails if this name has
// already been used by another value.
bool AddValue(const char* name, int32_t num, Status* status);
bool AddValue(const std::string& name, int32_t num, Status* status);
// Lookups from name to integer, returning true if found.
bool FindValueByName(const char* name, int32_t* num) const;
// Finds the name corresponding to the given number, or NULL if none was
// found. If more than one name corresponds to this number, returns the
// first one that was added.
const char* FindValueByNumber(int32_t num) const;
// Returns a new EnumDef with all the same values. The new EnumDef will be
// owned by the given owner.
EnumDef* Dup(const void* owner) const;
// Iteration over name/value pairs. The order is undefined.
// Adding an enum val invalidates any iterators.
//
// TODO: make compatible with range-for, with elements as pairs?
class Iterator {
public:
explicit Iterator(const EnumDef*);
int32_t number();
const char *name();
bool Done();
void Next();
private:
upb_enum_iter iter_;
};
private:
UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef);
,
UPB_DEFINE_STRUCT(upb_enumdef, upb_def,
upb_strtable ntoi;
upb_inttable iton;
int32_t defaultval;
));
#define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \
{ UPB_DEF_INIT(name, UPB_DEF_ENUM, refs, ref2s), ntoi, iton, defaultval }
UPB_BEGIN_EXTERN_C // {
// Native C API.
upb_enumdef *upb_enumdef_new(const void *owner);
upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner);
// From upb_refcounted.
void upb_enumdef_unref(const upb_enumdef *e, const void *owner);
bool upb_enumdef_isfrozen(const upb_enumdef *e);
void upb_enumdef_ref(const upb_enumdef *e, const void *owner);
void upb_enumdef_donateref(const upb_enumdef *m, const void *from,
const void *to);
void upb_enumdef_checkref(const upb_enumdef *e, const void *owner);
bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status);
// From upb_def.
const char *upb_enumdef_fullname(const upb_enumdef *e);
bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname,
upb_status *s);
int32_t upb_enumdef_default(const upb_enumdef *e);
bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s);
int upb_enumdef_numvals(const upb_enumdef *e);
bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num,
upb_status *status);
// Enum lookups:
// - ntoi: look up a name with specified length.
// - ntoiz: look up a name provided as a null-terminated string.
// - iton: look up an integer, returning the name as a null-terminated string.
bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len,
int32_t *num);
UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e,
const char *name, int32_t *num) {
return upb_enumdef_ntoi(e, name, strlen(name), num);
}
const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num);
// upb_enum_iter i;
// for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) {
// // ...
// }
void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e);
void upb_enum_next(upb_enum_iter *iter);
bool upb_enum_done(upb_enum_iter *iter);
const char *upb_enum_iter_name(upb_enum_iter *iter);
int32_t upb_enum_iter_number(upb_enum_iter *iter);
UPB_END_EXTERN_C // }
#ifdef __cplusplus
UPB_INLINE const char* upb_safecstr(const std::string& str) {
assert(str.size() == std::strlen(str.c_str()));
return str.c_str();
}
// Inline C++ wrappers.
namespace upb {
inline Def* Def::Dup(const void* owner) const {
return upb_def_dup(this, owner);
}
inline bool Def::IsFrozen() const { return upb_def_isfrozen(this); }
inline void Def::Ref(const void* owner) const { upb_def_ref(this, owner); }
inline void Def::Unref(const void* owner) const { upb_def_unref(this, owner); }
inline void Def::DonateRef(const void* from, const void* to) const {
upb_def_donateref(this, from, to);
}
inline void Def::CheckRef(const void* owner) const {
upb_def_checkref(this, owner);
}
inline Def::Type Def::def_type() const { return upb_def_type(this); }
inline const char* Def::full_name() const { return upb_def_fullname(this); }
inline bool Def::set_full_name(const char* fullname, Status* s) {
return upb_def_setfullname(this, fullname, s);
}
inline bool Def::set_full_name(const std::string& fullname, Status* s) {
return upb_def_setfullname(this, upb_safecstr(fullname), s);
}
inline bool Def::Freeze(Def* const* defs, int n, Status* status) {
return upb_def_freeze(defs, n, status);
}
inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) {
return upb_def_freeze((Def* const*)&defs[0], defs.size(), status);
}
inline bool FieldDef::CheckType(int32_t val) {
return upb_fielddef_checktype(val);
}
inline bool FieldDef::CheckLabel(int32_t val) {
return upb_fielddef_checklabel(val);
}
inline bool FieldDef::CheckDescriptorType(int32_t val) {
return upb_fielddef_checkdescriptortype(val);
}
inline bool FieldDef::CheckIntegerFormat(int32_t val) {
return upb_fielddef_checkintfmt(val);
}
inline FieldDef::Type FieldDef::ConvertType(int32_t val) {
assert(CheckType(val));
return static_cast<FieldDef::Type>(val);
}
inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) {
assert(CheckLabel(val));
return static_cast<FieldDef::Label>(val);
}
inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) {
assert(CheckDescriptorType(val));
return static_cast<FieldDef::DescriptorType>(val);
}
inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) {
assert(CheckIntegerFormat(val));
return static_cast<FieldDef::IntegerFormat>(val);
}
inline reffed_ptr<FieldDef> FieldDef::New() {
upb_fielddef *f = upb_fielddef_new(&f);
return reffed_ptr<FieldDef>(f, &f);
}
inline FieldDef* FieldDef::Dup(const void* owner) const {
return upb_fielddef_dup(this, owner);
}
inline bool FieldDef::IsFrozen() const { return upb_fielddef_isfrozen(this); }
inline void FieldDef::Ref(const void* owner) const {
upb_fielddef_ref(this, owner);
}
inline void FieldDef::Unref(const void* owner) const {
upb_fielddef_unref(this, owner);
}
inline void FieldDef::DonateRef(const void* from, const void* to) const {
upb_fielddef_donateref(this, from, to);
}
inline void FieldDef::CheckRef(const void* owner) const {
upb_fielddef_checkref(this, owner);
}
inline const char* FieldDef::full_name() const {
return upb_fielddef_fullname(this);
}
inline bool FieldDef::set_full_name(const char* fullname, Status* s) {
return upb_fielddef_setfullname(this, fullname, s);
}
inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) {
return upb_fielddef_setfullname(this, upb_safecstr(fullname), s);
}
inline bool FieldDef::type_is_set() const {
return upb_fielddef_typeisset(this);
}
inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); }
inline FieldDef::DescriptorType FieldDef::descriptor_type() const {
return upb_fielddef_descriptortype(this);
}
inline FieldDef::Label FieldDef::label() const {
return upb_fielddef_label(this);
}
inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); }
inline const char* FieldDef::name() const { return upb_fielddef_name(this); }
inline bool FieldDef::is_extension() const {
return upb_fielddef_isextension(this);
}
inline bool FieldDef::lazy() const {
return upb_fielddef_lazy(this);
}
inline void FieldDef::set_lazy(bool lazy) {
upb_fielddef_setlazy(this, lazy);
}
inline bool FieldDef::packed() const {
return upb_fielddef_packed(this);
}
inline void FieldDef::set_packed(bool packed) {
upb_fielddef_setpacked(this, packed);
}
inline const MessageDef* FieldDef::containing_type() const {
return upb_fielddef_containingtype(this);
}
inline const char* FieldDef::containing_type_name() {
return upb_fielddef_containingtypename(this);
}
inline bool FieldDef::set_number(uint32_t number, Status* s) {
return upb_fielddef_setnumber(this, number, s);
}
inline bool FieldDef::set_name(const char *name, Status* s) {
return upb_fielddef_setname(this, name, s);
}
inline bool FieldDef::set_name(const std::string& name, Status* s) {
return upb_fielddef_setname(this, upb_safecstr(name), s);
}
inline bool FieldDef::set_containing_type_name(const char *name, Status* s) {
return upb_fielddef_setcontainingtypename(this, name, s);
}
inline bool FieldDef::set_containing_type_name(const std::string &name,
Status *s) {
return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s);
}
inline void FieldDef::set_type(upb_fieldtype_t type) {
upb_fielddef_settype(this, type);
}
inline void FieldDef::set_is_extension(bool is_extension) {
upb_fielddef_setisextension(this, is_extension);
}
inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) {
upb_fielddef_setdescriptortype(this, type);
}
inline void FieldDef::set_label(upb_label_t label) {
upb_fielddef_setlabel(this, label);
}
inline bool FieldDef::IsSubMessage() const {
return upb_fielddef_issubmsg(this);
}
inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); }
inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); }
inline int64_t FieldDef::default_int64() const {
return upb_fielddef_defaultint64(this);
}
inline int32_t FieldDef::default_int32() const {
return upb_fielddef_defaultint32(this);
}
inline uint64_t FieldDef::default_uint64() const {
return upb_fielddef_defaultuint64(this);
}
inline uint32_t FieldDef::default_uint32() const {
return upb_fielddef_defaultuint32(this);
}
inline bool FieldDef::default_bool() const {
return upb_fielddef_defaultbool(this);
}
inline float FieldDef::default_float() const {
return upb_fielddef_defaultfloat(this);
}
inline double FieldDef::default_double() const {
return upb_fielddef_defaultdouble(this);
}
inline const char* FieldDef::default_string(size_t* len) const {
return upb_fielddef_defaultstr(this, len);
}
inline void FieldDef::set_default_int64(int64_t value) {
upb_fielddef_setdefaultint64(this, value);
}
inline void FieldDef::set_default_int32(int32_t value) {
upb_fielddef_setdefaultint32(this, value);
}
inline void FieldDef::set_default_uint64(uint64_t value) {
upb_fielddef_setdefaultuint64(this, value);
}
inline void FieldDef::set_default_uint32(uint32_t value) {
upb_fielddef_setdefaultuint32(this, value);
}
inline void FieldDef::set_default_bool(bool value) {
upb_fielddef_setdefaultbool(this, value);
}
inline void FieldDef::set_default_float(float value) {
upb_fielddef_setdefaultfloat(this, value);
}
inline void FieldDef::set_default_double(double value) {
upb_fielddef_setdefaultdouble(this, value);
}
inline bool FieldDef::set_default_string(const void *str, size_t len,
Status *s) {
return upb_fielddef_setdefaultstr(this, str, len, s);
}
inline bool FieldDef::set_default_string(const std::string& str, Status* s) {
return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s);
}
inline void FieldDef::set_default_cstr(const char* str, Status* s) {
return upb_fielddef_setdefaultcstr(this, str, s);
}
inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); }
inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); }
inline const MessageDef *FieldDef::message_subdef() const {
return upb_fielddef_msgsubdef(this);
}
inline const EnumDef *FieldDef::enum_subdef() const {
return upb_fielddef_enumsubdef(this);
}
inline const char* FieldDef::subdef_name() const {
return upb_fielddef_subdefname(this);
}
inline bool FieldDef::set_subdef(const Def* subdef, Status* s) {
return upb_fielddef_setsubdef(this, subdef, s);
}
inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) {
return upb_fielddef_setenumsubdef(this, subdef, s);
}
inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) {
return upb_fielddef_setmsgsubdef(this, subdef, s);
}
inline bool FieldDef::set_subdef_name(const char* name, Status* s) {
return upb_fielddef_setsubdefname(this, name, s);
}
inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) {
return upb_fielddef_setsubdefname(this, upb_safecstr(name), s);
}
inline reffed_ptr<MessageDef> MessageDef::New() {
upb_msgdef *m = upb_msgdef_new(&m);
return reffed_ptr<MessageDef>(m, &m);
}
inline bool MessageDef::IsFrozen() const { return upb_msgdef_isfrozen(this); }
inline void MessageDef::Ref(const void* owner) const {
return upb_msgdef_ref(this, owner);
}
inline void MessageDef::Unref(const void* owner) const {
return upb_msgdef_unref(this, owner);
}
inline void MessageDef::DonateRef(const void* from, const void* to) const {
return upb_msgdef_donateref(this, from, to);
}
inline void MessageDef::CheckRef(const void* owner) const {
return upb_msgdef_checkref(this, owner);
}
inline const char *MessageDef::full_name() const {
return upb_msgdef_fullname(this);
}
inline bool MessageDef::set_full_name(const char* fullname, Status* s) {
return upb_msgdef_setfullname(this, fullname, s);
}
inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) {
return upb_msgdef_setfullname(this, upb_safecstr(fullname), s);
}
inline bool MessageDef::Freeze(Status* status) {
return upb_msgdef_freeze(this, status);
}
inline int MessageDef::field_count() const {
return upb_msgdef_numfields(this);
}
inline bool MessageDef::AddField(upb_fielddef* f, Status* s) {
return upb_msgdef_addfield(this, f, NULL, s);
}
inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) {
return upb_msgdef_addfield(this, f.get(), NULL, s);
}
inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) {
return upb_msgdef_itof_mutable(this, number);
}
inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) {
return upb_msgdef_ntof_mutable(this, name, len);
}
inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const {
return upb_msgdef_itof(this, number);
}
inline const FieldDef *MessageDef::FindFieldByName(const char *name,
size_t len) const {
return upb_msgdef_ntof(this, name, len);
}
inline MessageDef* MessageDef::Dup(const void *owner) const {
return upb_msgdef_dup(this, owner);
}
inline void MessageDef::setmapentry(bool map_entry) {
upb_msgdef_setmapentry(this, map_entry);
}
inline bool MessageDef::mapentry() const {
return upb_msgdef_mapentry(this);
}
inline MessageDef::iterator MessageDef::begin() { return iterator(this); }
inline MessageDef::iterator MessageDef::end() { return iterator::end(this); }
inline MessageDef::const_iterator MessageDef::begin() const {
return const_iterator(this);
}
inline MessageDef::const_iterator MessageDef::end() const {
return const_iterator::end(this);
}
inline MessageDef::iterator::iterator(MessageDef* md) {
upb_msg_begin(&iter_, md);
}
inline MessageDef::iterator MessageDef::iterator::end(MessageDef* md) {
MessageDef::iterator iter(md);
upb_msg_iter_setdone(&iter.iter_);
return iter;
}
inline FieldDef* MessageDef::iterator::operator*() const {
return upb_msg_iter_field(&iter_);
}
inline void MessageDef::iterator::operator++() { return upb_msg_next(&iter_); }
inline bool MessageDef::iterator::operator==(const iterator &other) const {
return upb_inttable_iter_isequal(&iter_, &other.iter_);
}
inline bool MessageDef::iterator::operator!=(const iterator &other) const {
return !(*this == other);
}
inline MessageDef::const_iterator::const_iterator(const MessageDef* md) {
upb_msg_begin(&iter_, md);
}
inline MessageDef::const_iterator MessageDef::const_iterator::end(
const MessageDef *md) {
MessageDef::const_iterator iter(md);
upb_msg_iter_setdone(&iter.iter_);
return iter;
}
inline const FieldDef* MessageDef::const_iterator::operator*() const {
return upb_msg_iter_field(&iter_);
}
inline void MessageDef::const_iterator::operator++() {
return upb_msg_next(&iter_);
}
inline bool MessageDef::const_iterator::operator==(
const const_iterator &other) const {
return upb_inttable_iter_isequal(&iter_, &other.iter_);
}
inline bool MessageDef::const_iterator::operator!=(
const const_iterator &other) const {
return !(*this == other);
}
inline reffed_ptr<EnumDef> EnumDef::New() {
upb_enumdef *e = upb_enumdef_new(&e);
return reffed_ptr<EnumDef>(e, &e);
}
inline bool EnumDef::IsFrozen() const { return upb_enumdef_isfrozen(this); }
inline void EnumDef::Ref(const void* owner) const {
return upb_enumdef_ref(this, owner);
}
inline void EnumDef::Unref(const void* owner) const {
return upb_enumdef_unref(this, owner);
}
inline void EnumDef::DonateRef(const void* from, const void* to) const {
return upb_enumdef_donateref(this, from, to);
}
inline void EnumDef::CheckRef(const void* owner) const {
return upb_enumdef_checkref(this, owner);
}
inline const char* EnumDef::full_name() const {
return upb_enumdef_fullname(this);
}
inline bool EnumDef::set_full_name(const char* fullname, Status* s) {
return upb_enumdef_setfullname(this, fullname, s);
}
inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) {
return upb_enumdef_setfullname(this, upb_safecstr(fullname), s);
}
inline bool EnumDef::Freeze(Status* status) {
return upb_enumdef_freeze(this, status);
}
inline int32_t EnumDef::default_value() const {
return upb_enumdef_default(this);
}
inline bool EnumDef::set_default_value(int32_t val, Status* status) {
return upb_enumdef_setdefault(this, val, status);
}
inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); }
inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) {
return upb_enumdef_addval(this, name, num, status);
}
inline bool EnumDef::AddValue(const std::string& name, int32_t num,
Status* status) {
return upb_enumdef_addval(this, upb_safecstr(name), num, status);
}
inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const {
return upb_enumdef_ntoiz(this, name, num);
}
inline const char* EnumDef::FindValueByNumber(int32_t num) const {
return upb_enumdef_iton(this, num);
}
inline EnumDef* EnumDef::Dup(const void* owner) const {
return upb_enumdef_dup(this, owner);
}
inline EnumDef::Iterator::Iterator(const EnumDef* e) {
upb_enum_begin(&iter_, e);
}
inline int32_t EnumDef::Iterator::number() {
return upb_enum_iter_number(&iter_);
}
inline const char* EnumDef::Iterator::name() {
return upb_enum_iter_name(&iter_);
}
inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); }
inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); }
} // namespace upb
#endif
#undef UPB_DEFINE_DEF
#undef UPB_DEF_CASTS
#undef UPB_CPP_CASTS
#endif /* UPB_DEF_H_ */
// This file contains accessors for a set of compiled-in defs.
// Note that unlike Google's protobuf, it does *not* define
// generated classes or any other kind of data structure for
// actually storing protobufs. It only contains *defs* which
// let you reflect over a protobuf *schema*.
//
// This file was generated by upbc (the upb compiler).
// Do not edit -- your changes will be discarded when the file is
// regenerated.
#ifndef GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_
#define GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* A symtab (symbol table) stores a name->def map of upb_defs. Clients could
* always create such tables themselves, but upb_symtab has logic for resolving
* symbolic references, and in particular, for keeping a whole set of consistent
* defs when replacing some subset of those defs. This logic is nontrivial.
*
* This is a mixed C/C++ interface that offers a full API to both languages.
* See the top-level README for more information.
*/
#ifndef UPB_SYMTAB_H_
#define UPB_SYMTAB_H_
#ifdef __cplusplus
#include <vector>
namespace upb { class SymbolTable; }
#endif
UPB_DECLARE_TYPE(upb::SymbolTable, upb_symtab);
typedef struct {
UPB_PRIVATE_FOR_CPP
upb_strtable_iter iter;
upb_deftype_t type;
} upb_symtab_iter;
// Non-const methods in upb::SymbolTable are NOT thread-safe.
UPB_DEFINE_CLASS1(upb::SymbolTable, upb::RefCounted,
public:
// Returns a new symbol table with a single ref owned by "owner."
// Returns NULL if memory allocation failed.
static reffed_ptr<SymbolTable> New();
// Functionality from upb::RefCounted.
bool IsFrozen() const;
void Ref(const void* owner) const;
void Unref(const void* owner) const;
void DonateRef(const void *from, const void *to) const;
void CheckRef(const void *owner) const;
// For all lookup functions, the returned pointer is not owned by the
// caller; it may be invalidated by any non-const call or unref of the
// SymbolTable! To protect against this, take a ref if desired.
// Freezes the symbol table: prevents further modification of it.
// After the Freeze() operation is successful, the SymbolTable must only be
// accessed via a const pointer.
//
// Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not
// a necessary step in using a SymbolTable. If you have no need for it to be
// immutable, there is no need to freeze it ever. However sometimes it is
// useful, and SymbolTables that are statically compiled into the binary are
// always frozen by nature.
void Freeze();
// Resolves the given symbol using the rules described in descriptor.proto,
// namely:
//
// If the name starts with a '.', it is fully-qualified. Otherwise,
// C++-like scoping rules are used to find the type (i.e. first the nested
// types within this message are searched, then within the parent, on up
// to the root namespace).
//
// If not found, returns NULL.
const Def* Resolve(const char* base, const char* sym) const;
// Finds an entry in the symbol table with this exact name. If not found,
// returns NULL.
const Def* Lookup(const char *sym) const;
const MessageDef* LookupMessage(const char *sym) const;
const EnumDef* LookupEnum(const char *sym) const;
// TODO: introduce a C++ iterator, but make it nice and templated so that if
// you ask for an iterator of MessageDef the iterated elements are strongly
// typed as MessageDef*.
// Adds the given mutable defs to the symtab, resolving all symbols
// (including enum default values) and finalizing the defs. Only one def per
// name may be in the list, but defs can replace existing defs in the symtab.
// All defs must have a name -- anonymous defs are not allowed. Anonymous
// defs can still be frozen by calling upb_def_freeze() directly.
//
// Any existing defs that can reach defs that are being replaced will
// themselves be replaced also, so that the resulting set of defs is fully
// consistent.
//
// This logic implemented in this method is a convenience; ultimately it
// calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and
// upb_freeze(), any of which the client could call themself. However, since
// the logic for doing so is nontrivial, we provide it here.
//
// The entire operation either succeeds or fails. If the operation fails,
// the symtab is unchanged, false is returned, and status indicates the
// error. The caller passes a ref on all defs to the symtab (even if the
// operation fails).
//
// TODO(haberman): currently failure will leave the symtab unchanged, but may
// leave the defs themselves partially resolved. Does this matter? If so we
// could do a prepass that ensures that all symbols are resolvable and bail
// if not, so we don't mutate anything until we know the operation will
// succeed.
//
// TODO(haberman): since the defs must be mutable, refining a frozen def
// requires making mutable copies of the entire tree. This is wasteful if
// only a few messages are changing. We may want to add a way of adding a
// tree of frozen defs to the symtab (perhaps an alternate constructor where
// you pass the root of the tree?)
bool Add(Def*const* defs, int n, void* ref_donor, upb_status* status);
bool Add(const std::vector<Def*>& defs, void *owner, Status* status) {
return Add((Def*const*)&defs[0], defs.size(), owner, status);
}
private:
UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable);
,
UPB_DEFINE_STRUCT(upb_symtab, upb_refcounted,
upb_strtable symtab;
));
#define UPB_SYMTAB_INIT(symtab, refs, ref2s) \
{ UPB_REFCOUNT_INIT(refs, ref2s), symtab }
UPB_BEGIN_EXTERN_C // {
// Native C API.
// From upb_refcounted.
bool upb_symtab_isfrozen(const upb_symtab *s);
void upb_symtab_ref(const upb_symtab *s, const void *owner);
void upb_symtab_unref(const upb_symtab *s, const void *owner);
void upb_symtab_donateref(
const upb_symtab *s, const void *from, const void *to);
void upb_symtab_checkref(const upb_symtab *s, const void *owner);
upb_symtab *upb_symtab_new(const void *owner);
void upb_symtab_freeze(upb_symtab *s);
const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base,
const char *sym);
const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym);
const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym);
const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym);
bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor,
upb_status *status);
// upb_symtab_iter i;
// for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i);
// upb_symtab_next(&i)) {
// const upb_def *def = upb_symtab_iter_def(&i);
// // ...
// }
//
// For C we don't have separate iterators for const and non-const.
// It is the caller's responsibility to cast the upb_fielddef* to
// const if the upb_msgdef* is const.
void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s,
upb_deftype_t type);
void upb_symtab_next(upb_symtab_iter *iter);
bool upb_symtab_done(const upb_symtab_iter *iter);
const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter);
UPB_END_EXTERN_C // }
#ifdef __cplusplus
// C++ inline wrappers.
namespace upb {
inline reffed_ptr<SymbolTable> SymbolTable::New() {
upb_symtab *s = upb_symtab_new(&s);
return reffed_ptr<SymbolTable>(s, &s);
}
inline bool SymbolTable::IsFrozen() const {
return upb_symtab_isfrozen(this);
}
inline void SymbolTable::Ref(const void *owner) const {
upb_symtab_ref(this, owner);
}
inline void SymbolTable::Unref(const void *owner) const {
upb_symtab_unref(this, owner);
}
inline void SymbolTable::DonateRef(const void *from, const void *to) const {
upb_symtab_donateref(this, from, to);
}
inline void SymbolTable::CheckRef(const void *owner) const {
upb_symtab_checkref(this, owner);
}
inline void SymbolTable::Freeze() {
return upb_symtab_freeze(this);
}
inline const Def *SymbolTable::Resolve(const char *base,
const char *sym) const {
return upb_symtab_resolve(this, base, sym);
}
inline const Def* SymbolTable::Lookup(const char *sym) const {
return upb_symtab_lookup(this, sym);
}
inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const {
return upb_symtab_lookupmsg(this, sym);
}
inline bool SymbolTable::Add(
Def*const* defs, int n, void* ref_donor, upb_status* status) {
return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status);
}
} // namespace upb
#endif
#endif /* UPB_SYMTAB_H_ */
#ifdef __cplusplus
extern "C" {
#endif
// Enums
typedef enum {
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_OPTIONAL = 1,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_REQUIRED = 2,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_REPEATED = 3,
} google_protobuf_FieldDescriptorProto_Label;
typedef enum {
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_DOUBLE = 1,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FLOAT = 2,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT64 = 3,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_UINT64 = 4,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT32 = 5,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FIXED64 = 6,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_FIXED32 = 7,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_BOOL = 8,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_STRING = 9,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_GROUP = 10,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_MESSAGE = 11,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_BYTES = 12,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_UINT32 = 13,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_ENUM = 14,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SFIXED32 = 15,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SFIXED64 = 16,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SINT32 = 17,
GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_SINT64 = 18,
} google_protobuf_FieldDescriptorProto_Type;
typedef enum {
GOOGLE_PROTOBUF_FIELDOPTIONS_STRING = 0,
GOOGLE_PROTOBUF_FIELDOPTIONS_CORD = 1,
GOOGLE_PROTOBUF_FIELDOPTIONS_STRING_PIECE = 2,
} google_protobuf_FieldOptions_CType;
typedef enum {
GOOGLE_PROTOBUF_FILEOPTIONS_SPEED = 1,
GOOGLE_PROTOBUF_FILEOPTIONS_CODE_SIZE = 2,
GOOGLE_PROTOBUF_FILEOPTIONS_LITE_RUNTIME = 3,
} google_protobuf_FileOptions_OptimizeMode;
// Selectors
// google.protobuf.DescriptorProto
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_STARTSUBMSG 3
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_STARTSUBMSG 4
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_STARTSUBMSG 5
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_STARTSUBMSG 6
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_OPTIONS_STARTSUBMSG 7
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_STARTSEQ 8
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_ENDSEQ 9
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_FIELD_ENDSUBMSG 10
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_STARTSEQ 11
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_ENDSEQ 12
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NESTED_TYPE_ENDSUBMSG 13
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_STARTSEQ 14
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_ENDSEQ 15
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_ENUM_TYPE_ENDSUBMSG 16
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_STARTSEQ 17
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_ENDSEQ 18
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_RANGE_ENDSUBMSG 19
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_STARTSEQ 20
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_ENDSEQ 21
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSION_ENDSUBMSG 22
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_OPTIONS_ENDSUBMSG 23
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_STRING 24
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_STARTSTR 25
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_NAME_ENDSTR 26
// google.protobuf.DescriptorProto.ExtensionRange
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSIONRANGE_START_INT32 2
#define SEL_GOOGLE_PROTOBUF_DESCRIPTORPROTO_EXTENSIONRANGE_END_INT32 3
// google.protobuf.EnumDescriptorProto
#define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 3
#define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_STARTSEQ 4
#define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_ENDSEQ 5
#define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_VALUE_ENDSUBMSG 6
#define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 7
#define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_STRING 8
#define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_STARTSTR 9
#define SEL_GOOGLE_PROTOBUF_ENUMDESCRIPTORPROTO_NAME_ENDSTR 10
// google.protobuf.EnumOptions
#define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
#define SEL_GOOGLE_PROTOBUF_ENUMOPTIONS_ALLOW_ALIAS_BOOL 6
// google.protobuf.EnumValueDescriptorProto
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_STRING 4
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_STARTSTR 5
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NAME_ENDSTR 6
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEDESCRIPTORPROTO_NUMBER_INT32 7
// google.protobuf.EnumValueOptions
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_ENUMVALUEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
// google.protobuf.FieldDescriptorProto
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_STRING 4
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_STARTSTR 5
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NAME_ENDSTR 6
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_STRING 7
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_STARTSTR 8
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_EXTENDEE_ENDSTR 9
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_NUMBER_INT32 10
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_LABEL_INT32 11
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_INT32 12
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_STRING 13
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_STARTSTR 14
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_TYPE_NAME_ENDSTR 15
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_STRING 16
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_STARTSTR 17
#define SEL_GOOGLE_PROTOBUF_FIELDDESCRIPTORPROTO_DEFAULT_VALUE_ENDSTR 18
// google.protobuf.FieldOptions
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_CTYPE_INT32 6
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_PACKED_BOOL 7
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_DEPRECATED_BOOL 8
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_LAZY_BOOL 9
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_STRING 10
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_STARTSTR 11
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_EXPERIMENTAL_MAP_KEY_ENDSTR 12
#define SEL_GOOGLE_PROTOBUF_FIELDOPTIONS_WEAK_BOOL 13
// google.protobuf.FileDescriptorProto
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_STARTSUBMSG 3
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_STARTSUBMSG 4
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_STARTSUBMSG 5
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 6
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SOURCE_CODE_INFO_STARTSUBMSG 7
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_STARTSEQ 8
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_ENDSEQ 9
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_MESSAGE_TYPE_ENDSUBMSG 10
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_STARTSEQ 11
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_ENDSEQ 12
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_ENUM_TYPE_ENDSUBMSG 13
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_STARTSEQ 14
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_ENDSEQ 15
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SERVICE_ENDSUBMSG 16
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_STARTSEQ 17
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_ENDSEQ 18
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_EXTENSION_ENDSUBMSG 19
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 20
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_SOURCE_CODE_INFO_ENDSUBMSG 21
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_STRING 22
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_STARTSTR 23
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_NAME_ENDSTR 24
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_STRING 25
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_STARTSTR 26
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PACKAGE_ENDSTR 27
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STARTSEQ 28
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_ENDSEQ 29
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STRING 30
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_STARTSTR 31
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_DEPENDENCY_ENDSTR 32
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_STARTSEQ 33
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_ENDSEQ 34
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_PUBLIC_DEPENDENCY_INT32 35
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_STARTSEQ 36
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_ENDSEQ 37
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORPROTO_WEAK_DEPENDENCY_INT32 38
// google.protobuf.FileDescriptorSet
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_FILEDESCRIPTORSET_FILE_ENDSUBMSG 5
// google.protobuf.FileOptions
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_STRING 6
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_STARTSTR 7
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_PACKAGE_ENDSTR 8
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_STRING 9
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_STARTSTR 10
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_OUTER_CLASSNAME_ENDSTR 11
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_OPTIMIZE_FOR_INT32 12
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_MULTIPLE_FILES_BOOL 13
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_STRING 14
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_STARTSTR 15
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_GO_PACKAGE_ENDSTR 16
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_CC_GENERIC_SERVICES_BOOL 17
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_GENERIC_SERVICES_BOOL 18
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_PY_GENERIC_SERVICES_BOOL 19
#define SEL_GOOGLE_PROTOBUF_FILEOPTIONS_JAVA_GENERATE_EQUALS_AND_HASH_BOOL 20
// google.protobuf.MessageOptions
#define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
#define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_MESSAGE_SET_WIRE_FORMAT_BOOL 6
#define SEL_GOOGLE_PROTOBUF_MESSAGEOPTIONS_NO_STANDARD_DESCRIPTOR_ACCESSOR_BOOL 7
// google.protobuf.MethodDescriptorProto
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 3
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_STRING 4
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_STARTSTR 5
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_NAME_ENDSTR 6
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_STRING 7
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_STARTSTR 8
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_INPUT_TYPE_ENDSTR 9
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_STRING 10
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_STARTSTR 11
#define SEL_GOOGLE_PROTOBUF_METHODDESCRIPTORPROTO_OUTPUT_TYPE_ENDSTR 12
// google.protobuf.MethodOptions
#define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_METHODOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
// google.protobuf.ServiceDescriptorProto
#define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_OPTIONS_STARTSUBMSG 3
#define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_STARTSEQ 4
#define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_ENDSEQ 5
#define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_METHOD_ENDSUBMSG 6
#define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_OPTIONS_ENDSUBMSG 7
#define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_STRING 8
#define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_STARTSTR 9
#define SEL_GOOGLE_PROTOBUF_SERVICEDESCRIPTORPROTO_NAME_ENDSTR 10
// google.protobuf.ServiceOptions
#define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_SERVICEOPTIONS_UNINTERPRETED_OPTION_ENDSUBMSG 5
// google.protobuf.SourceCodeInfo
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_ENDSUBMSG 5
// google.protobuf.SourceCodeInfo.Location
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_STARTSEQ 2
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_ENDSEQ 3
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_PATH_INT32 4
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_STARTSEQ 5
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_ENDSEQ 6
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_SPAN_INT32 7
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_STRING 8
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_STARTSTR 9
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_LEADING_COMMENTS_ENDSTR 10
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_STRING 11
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_STARTSTR 12
#define SEL_GOOGLE_PROTOBUF_SOURCECODEINFO_LOCATION_TRAILING_COMMENTS_ENDSTR 13
// google.protobuf.UninterpretedOption
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_STARTSUBMSG 2
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_STARTSEQ 3
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_ENDSEQ 4
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAME_ENDSUBMSG 5
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_STRING 6
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_STARTSTR 7
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_IDENTIFIER_VALUE_ENDSTR 8
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_POSITIVE_INT_VALUE_UINT64 9
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NEGATIVE_INT_VALUE_INT64 10
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_DOUBLE_VALUE_DOUBLE 11
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_STRING 12
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_STARTSTR 13
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_STRING_VALUE_ENDSTR 14
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_STRING 15
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_STARTSTR 16
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_AGGREGATE_VALUE_ENDSTR 17
// google.protobuf.UninterpretedOption.NamePart
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_STRING 2
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_STARTSTR 3
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_NAME_PART_ENDSTR 4
#define SEL_GOOGLE_PROTOBUF_UNINTERPRETEDOPTION_NAMEPART_IS_EXTENSION_BOOL 5
const upb_symtab *upbdefs_google_protobuf_descriptor(const void *owner);
// MessageDefs
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_DescriptorProto(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.DescriptorProto");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.DescriptorProto.ExtensionRange");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumDescriptorProto");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumOptions(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumOptions");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumValueDescriptorProto");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.EnumValueOptions");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FieldDescriptorProto");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FieldOptions(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FieldOptions");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileDescriptorProto");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileDescriptorSet");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_FileOptions(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.FileOptions");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MessageOptions(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MessageOptions");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MethodDescriptorProto");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_MethodOptions(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.MethodOptions");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.ServiceDescriptorProto");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_ServiceOptions(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.ServiceOptions");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.SourceCodeInfo");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.SourceCodeInfo.Location");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.UninterpretedOption");
assert(m);
return m;
}
UPB_INLINE const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart(const upb_symtab *s) {
const upb_msgdef *m = upb_symtab_lookupmsg(s, "google.protobuf.UninterpretedOption.NamePart");
assert(m);
return m;
}
// EnumDefs
UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label(const upb_symtab *s) {
const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldDescriptorProto.Label");
assert(e);
return e;
}
UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type(const upb_symtab *s) {
const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldDescriptorProto.Type");
assert(e);
return e;
}
UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType(const upb_symtab *s) {
const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FieldOptions.CType");
assert(e);
return e;
}
UPB_INLINE const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode(const upb_symtab *s) {
const upb_enumdef *e = upb_symtab_lookupenum(s, "google.protobuf.FileOptions.OptimizeMode");
assert(e);
return e;
}
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_end(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto_ExtensionRange(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_start(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto_ExtensionRange(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_enum_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_extension_range(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_field(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_nested_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_DescriptorProto(s), 7); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescriptorProto(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescriptorProto(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumDescriptorProto(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_allow_alias(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumOptions(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumOptions(s), 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueDescriptorProto(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_number(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueDescriptorProto(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueDescriptorProto(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_EnumValueOptions(s), 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_default_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 7); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_extendee(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_label(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_number(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 8); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_type_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldDescriptorProto(s), 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_ctype(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_deprecated(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_experimental_map_key(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 9); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_lazy(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_packed(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_weak(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FieldOptions(s), 10); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_enum_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 7); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_message_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 8); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_package(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_public_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 10); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_service(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_source_code_info(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 9); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_weak_dependency(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorProto(s), 11); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_file(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileDescriptorSet(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_cc_generic_services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 16); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_go_package(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 11); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_generate_equals_and_hash(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 20); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_generic_services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 17); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_multiple_files(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 10); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_outer_classname(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 8); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_java_package(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_optimize_for(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 9); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_py_generic_services(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 18); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_FileOptions(s), 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_message_set_wire_format(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MessageOptions(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_no_standard_descriptor_accessor(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MessageOptions(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MessageOptions(s), 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_input_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_output_type(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodDescriptorProto(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_MethodOptions(s), 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_method(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceDescriptorProto(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceDescriptorProto(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_options(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceDescriptorProto(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_uninterpreted_option(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_ServiceOptions(s), 999); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_leading_comments(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_path(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_span(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_trailing_comments(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo_Location(s), 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_location(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_SourceCodeInfo(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_is_extension(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption_NamePart(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_name_part(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption_NamePart(s), 1); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_aggregate_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 8); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_double_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 6); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_identifier_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 3); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_name(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 2); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_negative_int_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 5); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_positive_int_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 4); }
UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_string_value(const upb_symtab *s) { return upb_msgdef_itof(upbdefs_google_protobuf_UninterpretedOption(s), 7); }
#ifdef __cplusplus
}; // extern "C"
#endif
#ifdef __cplusplus
namespace upbdefs {
namespace google {
namespace protobuf {
namespace descriptor {
inline upb::reffed_ptr<const upb::SymbolTable> SymbolTable() {
const upb::SymbolTable* s = upbdefs_google_protobuf_descriptor(&s);
return upb::reffed_ptr<const upb::SymbolTable>(s, &s);
}
} // namespace descriptor
} // namespace protobuf
} // namespace google
#define RETURN_REFFED(type, func) \
const type* obj = func(upbdefs::google::protobuf::descriptor::SymbolTable().get()); \
return upb::reffed_ptr<const type>(obj);
namespace google {
namespace protobuf {
namespace DescriptorProto {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_DescriptorProto) }
inline upb::reffed_ptr<const upb::FieldDef> enum_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_enum_type) }
inline upb::reffed_ptr<const upb::FieldDef> extension() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_extension) }
inline upb::reffed_ptr<const upb::FieldDef> extension_range() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_extension_range) }
inline upb::reffed_ptr<const upb::FieldDef> field() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_field) }
inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_name) }
inline upb::reffed_ptr<const upb::FieldDef> nested_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_nested_type) }
inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_options) }
} // namespace DescriptorProto
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace DescriptorProto {
namespace ExtensionRange {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange) }
inline upb::reffed_ptr<const upb::FieldDef> end() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange_end) }
inline upb::reffed_ptr<const upb::FieldDef> start() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_DescriptorProto_ExtensionRange_start) }
} // namespace ExtensionRange
} // namespace DescriptorProto
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace EnumDescriptorProto {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumDescriptorProto) }
inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumDescriptorProto_name) }
inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumDescriptorProto_options) }
inline upb::reffed_ptr<const upb::FieldDef> value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumDescriptorProto_value) }
} // namespace EnumDescriptorProto
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace EnumOptions {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumOptions) }
inline upb::reffed_ptr<const upb::FieldDef> allow_alias() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumOptions_allow_alias) }
inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumOptions_uninterpreted_option) }
} // namespace EnumOptions
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace EnumValueDescriptorProto {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumValueDescriptorProto) }
inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueDescriptorProto_name) }
inline upb::reffed_ptr<const upb::FieldDef> number() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueDescriptorProto_number) }
inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueDescriptorProto_options) }
} // namespace EnumValueDescriptorProto
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace EnumValueOptions {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_EnumValueOptions) }
inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_EnumValueOptions_uninterpreted_option) }
} // namespace EnumValueOptions
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace FieldDescriptorProto {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FieldDescriptorProto) }
inline upb::reffed_ptr<const upb::FieldDef> default_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_default_value) }
inline upb::reffed_ptr<const upb::FieldDef> extendee() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_extendee) }
inline upb::reffed_ptr<const upb::FieldDef> label() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_label) }
inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_name) }
inline upb::reffed_ptr<const upb::FieldDef> number() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_number) }
inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_options) }
inline upb::reffed_ptr<const upb::FieldDef> type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_type) }
inline upb::reffed_ptr<const upb::FieldDef> type_name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldDescriptorProto_type_name) }
inline upb::reffed_ptr<const upb::EnumDef> Label() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldDescriptorProto_Label) }
inline upb::reffed_ptr<const upb::EnumDef> Type() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldDescriptorProto_Type) }
} // namespace FieldDescriptorProto
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace FieldOptions {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FieldOptions) }
inline upb::reffed_ptr<const upb::FieldDef> ctype() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_ctype) }
inline upb::reffed_ptr<const upb::FieldDef> deprecated() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_deprecated) }
inline upb::reffed_ptr<const upb::FieldDef> experimental_map_key() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_experimental_map_key) }
inline upb::reffed_ptr<const upb::FieldDef> lazy() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_lazy) }
inline upb::reffed_ptr<const upb::FieldDef> packed() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_packed) }
inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_uninterpreted_option) }
inline upb::reffed_ptr<const upb::FieldDef> weak() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FieldOptions_weak) }
inline upb::reffed_ptr<const upb::EnumDef> CType() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FieldOptions_CType) }
} // namespace FieldOptions
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace FileDescriptorProto {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FileDescriptorProto) }
inline upb::reffed_ptr<const upb::FieldDef> dependency() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_dependency) }
inline upb::reffed_ptr<const upb::FieldDef> enum_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_enum_type) }
inline upb::reffed_ptr<const upb::FieldDef> extension() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_extension) }
inline upb::reffed_ptr<const upb::FieldDef> message_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_message_type) }
inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_name) }
inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_options) }
inline upb::reffed_ptr<const upb::FieldDef> package() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_package) }
inline upb::reffed_ptr<const upb::FieldDef> public_dependency() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_public_dependency) }
inline upb::reffed_ptr<const upb::FieldDef> service() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_service) }
inline upb::reffed_ptr<const upb::FieldDef> source_code_info() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_source_code_info) }
inline upb::reffed_ptr<const upb::FieldDef> weak_dependency() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorProto_weak_dependency) }
} // namespace FileDescriptorProto
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace FileDescriptorSet {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FileDescriptorSet) }
inline upb::reffed_ptr<const upb::FieldDef> file() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileDescriptorSet_file) }
} // namespace FileDescriptorSet
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace FileOptions {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_FileOptions) }
inline upb::reffed_ptr<const upb::FieldDef> cc_generic_services() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_cc_generic_services) }
inline upb::reffed_ptr<const upb::FieldDef> go_package() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_go_package) }
inline upb::reffed_ptr<const upb::FieldDef> java_generate_equals_and_hash() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_generate_equals_and_hash) }
inline upb::reffed_ptr<const upb::FieldDef> java_generic_services() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_generic_services) }
inline upb::reffed_ptr<const upb::FieldDef> java_multiple_files() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_multiple_files) }
inline upb::reffed_ptr<const upb::FieldDef> java_outer_classname() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_outer_classname) }
inline upb::reffed_ptr<const upb::FieldDef> java_package() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_java_package) }
inline upb::reffed_ptr<const upb::FieldDef> optimize_for() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_optimize_for) }
inline upb::reffed_ptr<const upb::FieldDef> py_generic_services() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_py_generic_services) }
inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_FileOptions_uninterpreted_option) }
inline upb::reffed_ptr<const upb::EnumDef> OptimizeMode() { RETURN_REFFED(upb::EnumDef, upbdefs_google_protobuf_FileOptions_OptimizeMode) }
} // namespace FileOptions
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace MessageOptions {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_MessageOptions) }
inline upb::reffed_ptr<const upb::FieldDef> message_set_wire_format() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_message_set_wire_format) }
inline upb::reffed_ptr<const upb::FieldDef> no_standard_descriptor_accessor() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_no_standard_descriptor_accessor) }
inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MessageOptions_uninterpreted_option) }
} // namespace MessageOptions
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace MethodDescriptorProto {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_MethodDescriptorProto) }
inline upb::reffed_ptr<const upb::FieldDef> input_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_input_type) }
inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_name) }
inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_options) }
inline upb::reffed_ptr<const upb::FieldDef> output_type() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodDescriptorProto_output_type) }
} // namespace MethodDescriptorProto
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace MethodOptions {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_MethodOptions) }
inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_MethodOptions_uninterpreted_option) }
} // namespace MethodOptions
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace ServiceDescriptorProto {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_ServiceDescriptorProto) }
inline upb::reffed_ptr<const upb::FieldDef> method() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceDescriptorProto_method) }
inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceDescriptorProto_name) }
inline upb::reffed_ptr<const upb::FieldDef> options() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceDescriptorProto_options) }
} // namespace ServiceDescriptorProto
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace ServiceOptions {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_ServiceOptions) }
inline upb::reffed_ptr<const upb::FieldDef> uninterpreted_option() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_ServiceOptions_uninterpreted_option) }
} // namespace ServiceOptions
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace SourceCodeInfo {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_SourceCodeInfo) }
inline upb::reffed_ptr<const upb::FieldDef> location() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_location) }
} // namespace SourceCodeInfo
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace SourceCodeInfo {
namespace Location {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_SourceCodeInfo_Location) }
inline upb::reffed_ptr<const upb::FieldDef> leading_comments() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_leading_comments) }
inline upb::reffed_ptr<const upb::FieldDef> path() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_path) }
inline upb::reffed_ptr<const upb::FieldDef> span() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_span) }
inline upb::reffed_ptr<const upb::FieldDef> trailing_comments() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_SourceCodeInfo_Location_trailing_comments) }
} // namespace Location
} // namespace SourceCodeInfo
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace UninterpretedOption {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_UninterpretedOption) }
inline upb::reffed_ptr<const upb::FieldDef> aggregate_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_aggregate_value) }
inline upb::reffed_ptr<const upb::FieldDef> double_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_double_value) }
inline upb::reffed_ptr<const upb::FieldDef> identifier_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_identifier_value) }
inline upb::reffed_ptr<const upb::FieldDef> name() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_name) }
inline upb::reffed_ptr<const upb::FieldDef> negative_int_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_negative_int_value) }
inline upb::reffed_ptr<const upb::FieldDef> positive_int_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_positive_int_value) }
inline upb::reffed_ptr<const upb::FieldDef> string_value() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_string_value) }
} // namespace UninterpretedOption
} // namespace protobuf
} // namespace google
namespace google {
namespace protobuf {
namespace UninterpretedOption {
namespace NamePart {
inline upb::reffed_ptr<const upb::MessageDef> MessageDef() { RETURN_REFFED(upb::MessageDef, upbdefs_google_protobuf_UninterpretedOption_NamePart) }
inline upb::reffed_ptr<const upb::FieldDef> is_extension() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_NamePart_is_extension) }
inline upb::reffed_ptr<const upb::FieldDef> name_part() { RETURN_REFFED(upb::FieldDef, upbdefs_google_protobuf_UninterpretedOption_NamePart_name_part) }
} // namespace NamePart
} // namespace UninterpretedOption
} // namespace protobuf
} // namespace google
} // namespace upbdefs
#undef RETURN_REFFED
#endif // __cplusplus
#endif // GOOGLE_PROTOBUF_DESCRIPTOR_UPB_H_
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2010-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* A upb_handlers is like a virtual table for a upb_msgdef. Each field of the
* message can have associated functions that will be called when we are
* parsing or visiting a stream of data. This is similar to how handlers work
* in SAX (the Simple API for XML).
*
* The handlers have no idea where the data is coming from, so a single set of
* handlers could be used with two completely different data sources (for
* example, a parser and a visitor over in-memory objects). This decoupling is
* the most important feature of upb, because it allows parsers and serializers
* to be highly reusable.
*
* This is a mixed C/C++ interface that offers a full API to both languages.
* See the top-level README for more information.
*/
#ifndef UPB_HANDLERS_H
#define UPB_HANDLERS_H
#ifdef __cplusplus
namespace upb {
class BufferHandle;
class BytesHandler;
class HandlerAttributes;
class Handlers;
template <class T> class Handler;
template <class T> struct CanonicalType;
} // namespace upb
#endif
UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle);
UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler);
UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr);
UPB_DECLARE_TYPE(upb::Handlers, upb_handlers);
// The maximum depth that the handler graph can have. This is a resource limit
// for the C stack since we sometimes need to recursively traverse the graph.
// Cycles are ok; the traversal will stop when it detects a cycle, but we must
// hit the cycle before the maximum depth is reached.
//
// If having a single static limit is too inflexible, we can add another variant
// of Handlers::Freeze that allows specifying this as a parameter.
#define UPB_MAX_HANDLER_DEPTH 64
// All the different types of handlers that can be registered.
// Only needed for the advanced functions in upb::Handlers.
typedef enum {
UPB_HANDLER_INT32,
UPB_HANDLER_INT64,
UPB_HANDLER_UINT32,
UPB_HANDLER_UINT64,
UPB_HANDLER_FLOAT,
UPB_HANDLER_DOUBLE,
UPB_HANDLER_BOOL,
UPB_HANDLER_STARTSTR,
UPB_HANDLER_STRING,
UPB_HANDLER_ENDSTR,
UPB_HANDLER_STARTSUBMSG,
UPB_HANDLER_ENDSUBMSG,
UPB_HANDLER_STARTSEQ,
UPB_HANDLER_ENDSEQ,
} upb_handlertype_t;
#define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1)
#define UPB_BREAK NULL
// A convenient definition for when no closure is needed.
extern char _upb_noclosure;
#define UPB_NO_CLOSURE &_upb_noclosure
// A selector refers to a specific field handler in the Handlers object
// (for example: the STARTSUBMSG handler for field "field15").
typedef int32_t upb_selector_t;
UPB_BEGIN_EXTERN_C
// Forward-declares for C inline accessors. We need to declare these here
// so we can "friend" them in the class declarations in C++.
UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
upb_selector_t s);
UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr);
UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
upb_selector_t s);
UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h);
UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
const void *type);
UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
size_t ofs);
UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h);
UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h);
UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h);
UPB_END_EXTERN_C
// Static selectors for upb::Handlers.
#define UPB_STARTMSG_SELECTOR 0
#define UPB_ENDMSG_SELECTOR 1
#define UPB_STATIC_SELECTOR_COUNT 2
// Static selectors for upb::BytesHandler.
#define UPB_STARTSTR_SELECTOR 0
#define UPB_STRING_SELECTOR 1
#define UPB_ENDSTR_SELECTOR 2
typedef void upb_handlerfree(void *d);
// A set of attributes that accompanies a handler's function pointer.
UPB_DEFINE_CLASS0(upb::HandlerAttributes,
public:
HandlerAttributes();
~HandlerAttributes();
// Sets the handler data that will be passed as the second parameter of the
// handler. To free this pointer when the handlers are freed, call
// Handlers::AddCleanup().
bool SetHandlerData(const void *handler_data);
const void* handler_data() const;
// Use this to specify the type of the closure. This will be checked against
// all other closure types for handler that use the same closure.
// Registration will fail if this does not match all other non-NULL closure
// types.
bool SetClosureType(const void *closure_type);
const void* closure_type() const;
// Use this to specify the type of the returned closure. Only used for
// Start*{String,SubMessage,Sequence} handlers. This must match the closure
// type of any handlers that use it (for example, the StringBuf handler must
// match the closure returned from StartString).
bool SetReturnClosureType(const void *return_closure_type);
const void* return_closure_type() const;
// Set to indicate that the handler always returns "ok" (either "true" or a
// non-NULL closure). This is a hint that can allow code generators to
// generate more efficient code.
bool SetAlwaysOk(bool always_ok);
bool always_ok() const;
private:
friend UPB_INLINE const void * ::upb_handlerattr_handlerdata(
const upb_handlerattr *attr);
,
UPB_DEFINE_STRUCT0(upb_handlerattr,
const void *handler_data_;
const void *closure_type_;
const void *return_closure_type_;
bool alwaysok_;
));
#define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false}
typedef struct {
upb_func *func;
// It is wasteful to include the entire attributes here:
//
// * Some of the information is redundant (like storing the closure type
// separately for each handler that must match).
// * Some of the info is only needed prior to freeze() (like closure types).
// * alignment padding wastes a lot of space for alwaysok_.
//
// If/when the size and locality of handlers is an issue, we can optimize this
// not to store the entire attr like this. We do not expose the table's
// layout to allow this optimization in the future.
upb_handlerattr attr;
} upb_handlers_tabent;
// Extra information about a buffer that is passed to a StringBuf handler.
// TODO(haberman): allow the handle to be pinned so that it will outlive
// the handler invocation.
UPB_DEFINE_CLASS0(upb::BufferHandle,
public:
BufferHandle();
~BufferHandle();
// The beginning of the buffer. This may be different than the pointer
// passed to a StringBuf handler because the handler may receive data
// that is from the middle or end of a larger buffer.
const char* buffer() const;
// The offset within the attached object where this buffer begins. Only
// meaningful if there is an attached object.
size_t object_offset() const;
// Note that object_offset is the offset of "buf" within the attached object.
void SetBuffer(const char* buf, size_t object_offset);
// The BufferHandle can have an "attached object", which can be used to
// tunnel through a pointer to the buffer's underlying representation.
template <class T>
void SetAttachedObject(const T* obj);
// Returns NULL if the attached object is not of this type.
template <class T>
const T* GetAttachedObject() const;
private:
friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h);
friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h,
const void *obj,
const void *type);
friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h,
const char *buf, size_t ofs);
friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h);
friend UPB_INLINE const void* ::upb_bufhandle_objtype(
const upb_bufhandle *h);
friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h);
,
UPB_DEFINE_STRUCT0(upb_bufhandle,
const char *buf_;
const void *obj_;
const void *objtype_;
size_t objofs_;
));
// A upb::Handlers object represents the set of handlers associated with a
// message in the graph of messages. You can think of it as a big virtual
// table with functions corresponding to all the events that can fire while
// parsing or visiting a message of a specific type.
//
// Any handlers that are not set behave as if they had successfully consumed
// the value. Any unset Start* handlers will propagate their closure to the
// inner frame.
//
// The easiest way to create the *Handler objects needed by the Set* methods is
// with the UpbBind() and UpbMakeHandler() macros; see below.
UPB_DEFINE_CLASS1(upb::Handlers, upb::RefCounted,
public:
typedef upb_selector_t Selector;
typedef upb_handlertype_t Type;
typedef Handler<void *(*)(void *, const void *)> StartFieldHandler;
typedef Handler<bool (*)(void *, const void *)> EndFieldHandler;
typedef Handler<bool (*)(void *, const void *)> StartMessageHandler;
typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler;
typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler;
typedef Handler<size_t (*)(void *, const void *, const char *, size_t,
const BufferHandle *)> StringHandler;
template <class T> struct ValueHandler {
typedef Handler<bool(*)(void *, const void *, T)> H;
};
typedef ValueHandler<int32_t>::H Int32Handler;
typedef ValueHandler<int64_t>::H Int64Handler;
typedef ValueHandler<uint32_t>::H UInt32Handler;
typedef ValueHandler<uint64_t>::H UInt64Handler;
typedef ValueHandler<float>::H FloatHandler;
typedef ValueHandler<double>::H DoubleHandler;
typedef ValueHandler<bool>::H BoolHandler;
// Any function pointer can be converted to this and converted back to its
// correct type.
typedef void GenericFunction();
typedef void HandlersCallback(const void *closure, upb_handlers *h);
// Returns a new handlers object for the given frozen msgdef.
// Returns NULL if memory allocation failed.
static reffed_ptr<Handlers> New(const MessageDef *m);
// Convenience function for registering a graph of handlers that mirrors the
// graph of msgdefs for some message. For "m" and all its children a new set
// of handlers will be created and the given callback will be invoked,
// allowing the client to register handlers for this message. Note that any
// subhandlers set by the callback will be overwritten.
static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m,
HandlersCallback *callback,
const void *closure);
// Functionality from upb::RefCounted.
bool IsFrozen() const;
void Ref(const void* owner) const;
void Unref(const void* owner) const;
void DonateRef(const void *from, const void *to) const;
void CheckRef(const void *owner) const;
// All handler registration functions return bool to indicate success or
// failure; details about failures are stored in this status object. If a
// failure does occur, it must be cleared before the Handlers are frozen,
// otherwise the freeze() operation will fail. The functions may *only* be
// used while the Handlers are mutable.
const Status* status();
void ClearError();
// Call to freeze these Handlers. Requires that any SubHandlers are already
// frozen. For cycles, you must use the static version below and freeze the
// whole graph at once.
bool Freeze(Status* s);
// Freezes the given set of handlers. You may not freeze a handler without
// also freezing any handlers they point to.
static bool Freeze(Handlers*const* handlers, int n, Status* s);
static bool Freeze(const std::vector<Handlers*>& handlers, Status* s);
// Returns the msgdef associated with this handlers object.
const MessageDef* message_def() const;
// Adds the given pointer and function to the list of cleanup functions that
// will be run when these handlers are freed. If this pointer has previously
// been registered, the function returns false and does nothing.
bool AddCleanup(void *ptr, upb_handlerfree *cleanup);
// Sets the startmsg handler for the message, which is defined as follows:
//
// bool startmsg(MyType* closure) {
// // Called when the message begins. Returns true if processing should
// // continue.
// return true;
// }
bool SetStartMessageHandler(const StartMessageHandler& handler);
// Sets the endmsg handler for the message, which is defined as follows:
//
// bool endmsg(MyType* closure, upb_status *status) {
// // Called when processing of this message ends, whether in success or
// // failure. "status" indicates the final status of processing, and
// // can also be modified in-place to update the final status.
// }
bool SetEndMessageHandler(const EndMessageHandler& handler);
// Sets the value handler for the given field, which is defined as follows
// (this is for an int32 field; other field types will pass their native
// C/C++ type for "val"):
//
// bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) {
// // Called when the field's value is encountered. "d" contains
// // whatever data was bound to this field when it was registered.
// // Returns true if processing should continue.
// return true;
// }
//
// handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...)));
//
// The value type must exactly match f->type().
// For example, a handler that takes an int32_t parameter may only be used for
// fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM.
//
// Returns false if the handler failed to register; in this case the cleanup
// handler (if any) will be called immediately.
bool SetInt32Handler (const FieldDef* f, const Int32Handler& h);
bool SetInt64Handler (const FieldDef* f, const Int64Handler& h);
bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h);
bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h);
bool SetFloatHandler (const FieldDef* f, const FloatHandler& h);
bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h);
bool SetBoolHandler (const FieldDef* f, const BoolHandler& h);
// Like the previous, but templated on the type on the value (ie. int32).
// This is mostly useful to call from other templates. To call this you must
// specify the template parameter explicitly, ie:
// h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData));
template <class T>
bool SetValueHandler(
const FieldDef *f,
const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler);
// Sets handlers for a string field, which are defined as follows:
//
// MySubClosure* startstr(MyClosure* c, const MyHandlerData* d,
// size_t size_hint) {
// // Called when a string value begins. The return value indicates the
// // closure for the string. "size_hint" indicates the size of the
// // string if it is known, however if the string is length-delimited
// // and the end-of-string is not available size_hint will be zero.
// // This case is indistinguishable from the case where the size is
// // known to be zero.
// //
// // TODO(haberman): is it important to distinguish these cases?
// // If we had ssize_t as a type we could make -1 "unknown", but
// // ssize_t is POSIX (not ANSI) and therefore less portable.
// // In practice I suspect it won't be important to distinguish.
// return closure;
// }
//
// size_t str(MyClosure* closure, const MyHandlerData* d,
// const char *str, size_t len) {
// // Called for each buffer of string data; the multiple physical buffers
// // are all part of the same logical string. The return value indicates
// // how many bytes were consumed. If this number is less than "len",
// // this will also indicate that processing should be halted for now,
// // like returning false or UPB_BREAK from any other callback. If
// // number is greater than "len", the excess bytes will be skipped over
// // and not passed to the callback.
// return len;
// }
//
// bool endstr(MyClosure* c, const MyHandlerData* d) {
// // Called when a string value ends. Return value indicates whether
// // processing should continue.
// return true;
// }
bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h);
bool SetStringHandler(const FieldDef* f, const StringHandler& h);
bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h);
// Sets the startseq handler, which is defined as follows:
//
// MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) {
// // Called when a sequence (repeated field) begins. The returned
// // pointer indicates the closure for the sequence (or UPB_BREAK
// // to interrupt processing).
// return closure;
// }
//
// h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...)));
//
// Returns "false" if "f" does not belong to this message or is not a
// repeated field.
bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h);
// Sets the startsubmsg handler for the given field, which is defined as
// follows:
//
// MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) {
// // Called when a submessage begins. The returned pointer indicates the
// // closure for the sequence (or UPB_BREAK to interrupt processing).
// return closure;
// }
//
// h->SetStartSubMessageHandler(f, UpbBind(startsubmsg,
// new MyHandlerData(...)));
//
// Returns "false" if "f" does not belong to this message or is not a
// submessage/group field.
bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h);
// Sets the endsubmsg handler for the given field, which is defined as
// follows:
//
// bool endsubmsg(MyClosure* c, const MyHandlerData* d) {
// // Called when a submessage ends. Returns true to continue processing.
// return true;
// }
//
// Returns "false" if "f" does not belong to this message or is not a
// submessage/group field.
bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h);
// Starts the endsubseq handler for the given field, which is defined as
// follows:
//
// bool endseq(MyClosure* c, const MyHandlerData* d) {
// // Called when a sequence ends. Returns true continue processing.
// return true;
// }
//
// Returns "false" if "f" does not belong to this message or is not a
// repeated field.
bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h);
// Sets or gets the object that specifies handlers for the given field, which
// must be a submessage or group. Returns NULL if no handlers are set.
bool SetSubHandlers(const FieldDef* f, const Handlers* sub);
const Handlers* GetSubHandlers(const FieldDef* f) const;
// Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the
// field.
const Handlers* GetSubHandlers(Selector startsubmsg) const;
// A selector refers to a specific field handler in the Handlers object
// (for example: the STARTSUBMSG handler for field "field15").
// On success, returns true and stores the selector in "s".
// If the FieldDef or Type are invalid, returns false.
// The returned selector is ONLY valid for Handlers whose MessageDef
// contains this FieldDef.
static bool GetSelector(const FieldDef* f, Type type, Selector* s);
// Given a START selector of any kind, returns the corresponding END selector.
static Selector GetEndSelector(Selector start_selector);
// Returns the function pointer for this handler. It is the client's
// responsibility to cast to the correct function type before calling it.
GenericFunction* GetHandler(Selector selector);
// Sets the given attributes to the attributes for this selector.
bool GetAttributes(Selector selector, HandlerAttributes* attr);
// Returns the handler data that was registered with this handler.
const void* GetHandlerData(Selector selector);
// Could add any of the following functions as-needed, with some minor
// implementation changes:
//
// const FieldDef* GetFieldDef(Selector selector);
// static bool IsSequence(Selector selector);
private:
UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers);
friend UPB_INLINE GenericFunction *::upb_handlers_gethandler(
const upb_handlers *h, upb_selector_t s);
friend UPB_INLINE const void *::upb_handlers_gethandlerdata(
const upb_handlers *h, upb_selector_t s);
,
UPB_DEFINE_STRUCT(upb_handlers, upb_refcounted,
const upb_msgdef *msg;
const upb_handlers **sub;
const void *top_closure_type;
upb_inttable cleanup_;
upb_status status_; // Used only when mutable.
upb_handlers_tabent table[1]; // Dynamically-sized field handler array.
));
#ifdef __cplusplus
namespace upb {
// Convenience macros for creating a Handler object that is wrapped with a
// type-safe wrapper function that converts the "void*" parameters/returns
// of the underlying C API into nice C++ function.
//
// Sample usage:
// void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) {
// // do stuff ...
// }
//
// // Handler that doesn't need any data bound to it.
// void OnValue2(MyClosure* c, int32_t val) {
// // do stuff ...
// }
//
// // Handler that returns bool so it can return failure if necessary.
// bool OnValue3(MyClosure* c, int32_t val) {
// // do stuff ...
// return ok;
// }
//
// // Member function handler.
// class MyClosure {
// public:
// void OnValue(int32_t val) {
// // do stuff ...
// }
// };
//
// // Takes ownership of the MyHandlerData.
// handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...)));
// handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2));
// handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3));
// handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue));
#ifdef UPB_CXX11
// In C++11, the "template" disambiguator can appear even outside templates,
// so all calls can safely use this pair of macros.
#define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>()
// We have to be careful to only evaluate "d" once.
#define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
#else
// Prior to C++11, the "template" disambiguator may only appear inside a
// template, so the regular macro must not use "template"
#define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>()
#define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d))
#endif // UPB_CXX11
// This macro must be used in C++98 for calls from inside a template. But we
// define this variant in all cases; code that wants to be compatible with both
// C++98 and C++11 should always use this macro when calling from a template.
#define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>()
// We have to be careful to only evaluate "d" once.
#define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d))
// Handler: a struct that contains the (handler, data, deleter) tuple that is
// used to register all handlers. Users can Make() these directly but it's
// more convenient to use the UpbMakeHandler/UpbBind macros above.
template <class T> class Handler {
public:
// The underlying, handler function signature that upb uses internally.
typedef T FuncPtr;
// Intentionally implicit.
template <class F> Handler(F func);
~Handler();
private:
void AddCleanup(Handlers* h) const {
if (cleanup_func_) {
bool ok = h->AddCleanup(cleanup_data_, cleanup_func_);
UPB_ASSERT_VAR(ok, ok);
}
}
UPB_DISALLOW_COPY_AND_ASSIGN(Handler);
friend class Handlers;
FuncPtr handler_;
mutable HandlerAttributes attr_;
mutable bool registered_;
void *cleanup_data_;
upb_handlerfree *cleanup_func_;
};
} // namespace upb
#endif // __cplusplus
UPB_BEGIN_EXTERN_C
// Native C API.
// Handler function typedefs.
typedef bool upb_startmsg_handlerfunc(void *c, const void*);
typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status);
typedef void* upb_startfield_handlerfunc(void *c, const void *hd);
typedef bool upb_endfield_handlerfunc(void *c, const void *hd);
typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val);
typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val);
typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val);
typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val);
typedef bool upb_float_handlerfunc(void *c, const void *hd, float val);
typedef bool upb_double_handlerfunc(void *c, const void *hd, double val);
typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val);
typedef void *upb_startstr_handlerfunc(void *c, const void *hd,
size_t size_hint);
typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf,
size_t n, const upb_bufhandle* handle);
// upb_bufhandle
size_t upb_bufhandle_objofs(const upb_bufhandle *h);
// upb_handlerattr
void upb_handlerattr_init(upb_handlerattr *attr);
void upb_handlerattr_uninit(upb_handlerattr *attr);
bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd);
bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type);
const void *upb_handlerattr_closuretype(const upb_handlerattr *attr);
bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr,
const void *type);
const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr);
bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok);
bool upb_handlerattr_alwaysok(const upb_handlerattr *attr);
UPB_INLINE const void *upb_handlerattr_handlerdata(
const upb_handlerattr *attr) {
return attr->handler_data_;
}
// upb_handlers
typedef void upb_handlers_callback(const void *closure, upb_handlers *h);
upb_handlers *upb_handlers_new(const upb_msgdef *m,
const void *owner);
const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m,
const void *owner,
upb_handlers_callback *callback,
const void *closure);
bool upb_handlers_isfrozen(const upb_handlers *h);
void upb_handlers_ref(const upb_handlers *h, const void *owner);
void upb_handlers_unref(const upb_handlers *h, const void *owner);
void upb_handlers_donateref(const upb_handlers *h, const void *from,
const void *to);
void upb_handlers_checkref(const upb_handlers *h, const void *owner);
const upb_status *upb_handlers_status(upb_handlers *h);
void upb_handlers_clearerr(upb_handlers *h);
const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h);
bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree);
bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f,
upb_int32_handlerfunc *func, upb_handlerattr *attr);
bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f,
upb_int64_handlerfunc *func, upb_handlerattr *attr);
bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f,
upb_uint32_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f,
upb_uint64_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f,
upb_float_handlerfunc *func, upb_handlerattr *attr);
bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f,
upb_double_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f,
upb_bool_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f,
upb_startstr_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f,
upb_string_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f,
upb_endfield_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f,
upb_startfield_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f,
upb_startfield_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f,
upb_endfield_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f,
upb_endfield_handlerfunc *func,
upb_handlerattr *attr);
bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f,
const upb_handlers *sub);
const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h,
const upb_fielddef *f);
const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h,
upb_selector_t sel);
UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h,
upb_selector_t s) {
return (upb_func *)h->table[s].func;
}
bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s,
upb_handlerattr *attr);
UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h,
upb_selector_t s) {
return upb_handlerattr_handlerdata(&h->table[s].attr);
}
// Handler types for single fields.
// Right now we only have one for TYPE_BYTES but ones for other types
// should follow.
//
// These follow the same handlers protocol for fields of a message.
UPB_DEFINE_CLASS0(upb::BytesHandler,
public:
BytesHandler();
~BytesHandler();
,
UPB_DEFINE_STRUCT0(upb_byteshandler,
upb_handlers_tabent table[3];
));
void upb_byteshandler_init(upb_byteshandler *h);
void upb_byteshandler_uninit(upb_byteshandler *h);
// Caller must ensure that "d" outlives the handlers.
// TODO(haberman): support handlerfree function for the data.
// TODO(haberman): should this have a "freeze" operation? It's not necessary
// for memory management, but could be useful to force immutability and provide
// a convenient moment to verify that all registration succeeded.
bool upb_byteshandler_setstartstr(upb_byteshandler *h,
upb_startstr_handlerfunc *func, void *d);
bool upb_byteshandler_setstring(upb_byteshandler *h,
upb_string_handlerfunc *func, void *d);
bool upb_byteshandler_setendstr(upb_byteshandler *h,
upb_endfield_handlerfunc *func, void *d);
// "Static" methods
bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s);
upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f);
bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type,
upb_selector_t *s);
UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) {
return start + 1;
}
// Internal-only.
uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f);
uint32_t upb_handlers_selectorcount(const upb_fielddef *f);
UPB_END_EXTERN_C
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Inline definitions for handlers.h, which are particularly long and a bit
* tricky.
*/
#ifndef UPB_HANDLERS_INL_H_
#define UPB_HANDLERS_INL_H_
#include <limits.h>
// Type detection and typedefs for integer types.
// For platforms where there are multiple 32-bit or 64-bit types, we need to be
// able to enumerate them so we can properly create overloads for all variants.
//
// If any platform existed where there were three integer types with the same
// size, this would have to become more complicated. For example, short, int,
// and long could all be 32-bits. Even more diabolically, short, int, long,
// and long long could all be 64 bits and still be standard-compliant.
// However, few platforms are this strange, and it's unlikely that upb will be
// used on the strangest ones.
// Can't count on stdint.h limits like INT32_MAX, because in C++ these are
// only defined when __STDC_LIMIT_MACROS are defined before the *first* include
// of stdint.h. We can't guarantee that someone else didn't include these first
// without defining __STDC_LIMIT_MACROS.
#define UPB_INT32_MAX 0x7fffffffLL
#define UPB_INT32_MIN (-UPB_INT32_MAX - 1)
#define UPB_INT64_MAX 0x7fffffffffffffffLL
#define UPB_INT64_MIN (-UPB_INT64_MAX - 1)
#if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN
#define UPB_INT_IS_32BITS 1
#endif
#if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN
#define UPB_LONG_IS_32BITS 1
#endif
#if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN
#define UPB_LONG_IS_64BITS 1
#endif
#if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN
#define UPB_LLONG_IS_64BITS 1
#endif
// We use macros instead of typedefs so we can undefine them later and avoid
// leaking them outside this header file.
#if UPB_INT_IS_32BITS
#define UPB_INT32_T int
#define UPB_UINT32_T unsigned int
#if UPB_LONG_IS_32BITS
#define UPB_TWO_32BIT_TYPES 1
#define UPB_INT32ALT_T long
#define UPB_UINT32ALT_T unsigned long
#endif // UPB_LONG_IS_32BITS
#elif UPB_LONG_IS_32BITS // && !UPB_INT_IS_32BITS
#define UPB_INT32_T long
#define UPB_UINT32_T unsigned long
#endif // UPB_INT_IS_32BITS
#if UPB_LONG_IS_64BITS
#define UPB_INT64_T long
#define UPB_UINT64_T unsigned long
#if UPB_LLONG_IS_64BITS
#define UPB_TWO_64BIT_TYPES 1
#define UPB_INT64ALT_T long long
#define UPB_UINT64ALT_T unsigned long long
#endif // UPB_LLONG_IS_64BITS
#elif UPB_LLONG_IS_64BITS // && !UPB_LONG_IS_64BITS
#define UPB_INT64_T long long
#define UPB_UINT64_T unsigned long long
#endif // UPB_LONG_IS_64BITS
#undef UPB_INT32_MAX
#undef UPB_INT32_MIN
#undef UPB_INT64_MAX
#undef UPB_INT64_MIN
#undef UPB_INT_IS_32BITS
#undef UPB_LONG_IS_32BITS
#undef UPB_LONG_IS_64BITS
#undef UPB_LLONG_IS_64BITS
// C inline methods.
// upb_bufhandle
UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) {
h->obj_ = NULL;
h->objtype_ = NULL;
h->buf_ = NULL;
h->objofs_ = 0;
}
UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) {
UPB_UNUSED(h);
}
UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj,
const void *type) {
h->obj_ = obj;
h->objtype_ = type;
}
UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf,
size_t ofs) {
h->buf_ = buf;
h->objofs_ = ofs;
}
UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) {
return h->obj_;
}
UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) {
return h->objtype_;
}
UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) {
return h->buf_;
}
#ifdef __cplusplus
namespace upb {
typedef void CleanupFunc(void *ptr);
// Template to remove "const" from "const T*" and just return "T*".
//
// We define a nonsense default because otherwise it will fail to instantiate as
// a function parameter type even in cases where we don't expect any caller to
// actually match the overload.
class CouldntRemoveConst {};
template <class T> struct remove_constptr { typedef CouldntRemoveConst type; };
template <class T> struct remove_constptr<const T *> { typedef T *type; };
// Template that we use below to remove a template specialization from
// consideration if it matches a specific type.
template <class T, class U> struct disable_if_same { typedef void Type; };
template <class T> struct disable_if_same<T, T> {};
template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); }
template <class T1, class T2>
struct FirstUnlessVoid {
typedef T1 value;
};
template <class T2>
struct FirstUnlessVoid<void, T2> {
typedef T2 value;
};
template<class T, class U>
struct is_same {
static bool value;
};
template<class T>
struct is_same<T, T> {
static bool value;
};
template<class T, class U>
bool is_same<T, U>::value = false;
template<class T>
bool is_same<T, T>::value = true;
// FuncInfo ////////////////////////////////////////////////////////////////////
// Info about the user's original, pre-wrapped function.
template <class C, class R = void>
struct FuncInfo {
// The type of the closure that the function takes (its first param).
typedef C Closure;
// The return type.
typedef R Return;
};
// Func ////////////////////////////////////////////////////////////////////////
// Func1, Func2, Func3: Template classes representing a function and its
// signature.
//
// Since the function is a template parameter, calling the function can be
// inlined at compile-time and does not require a function pointer at runtime.
// These functions are not bound to a handler data so have no data or cleanup
// handler.
struct UnboundFunc {
CleanupFunc *GetCleanup() { return NULL; }
void *GetData() { return NULL; }
};
template <class R, class P1, R F(P1), class I>
struct Func1 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1) { return F(p1); }
};
template <class R, class P1, class P2, R F(P1, P2), class I>
struct Func2 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2) { return F(p1, p2); }
};
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
struct Func3 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); }
};
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
class I>
struct Func4 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); }
};
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5), class I>
struct Func5 : public UnboundFunc {
typedef R Return;
typedef I FuncInfo;
static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) {
return F(p1, p2, p3, p4, p5);
}
};
// BoundFunc ///////////////////////////////////////////////////////////////////
// BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that
// shall be bound to the function's second parameter.
//
// Note that the second parameter is a const pointer, but our stored bound value
// is non-const so we can free it when the handlers are destroyed.
template <class T>
struct BoundFunc {
typedef typename remove_constptr<T>::type MutableP2;
explicit BoundFunc(MutableP2 data_) : data(data_) {}
CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; }
MutableP2 GetData() { return data; }
MutableP2 data;
};
template <class R, class P1, class P2, R F(P1, P2), class I>
struct BoundFunc2 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {}
};
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I>
struct BoundFunc3 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {}
};
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
class I>
struct BoundFunc4 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {}
};
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5), class I>
struct BoundFunc5 : public BoundFunc<P2> {
typedef BoundFunc<P2> Base;
typedef I FuncInfo;
explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {}
};
// FuncSig /////////////////////////////////////////////////////////////////////
// FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function
// *signature*, but without a specific function attached.
//
// These classes contain member functions that can be invoked with a
// specific function to return a Func/BoundFunc class.
template <class R, class P1>
struct FuncSig1 {
template <R F(P1)>
Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() {
return Func1<R, P1, F, FuncInfo<P1, R> >();
}
};
template <class R, class P1, class P2>
struct FuncSig2 {
template <R F(P1, P2)>
Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() {
return Func2<R, P1, P2, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2)>
BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2);
}
};
template <class R, class P1, class P2, class P3>
struct FuncSig3 {
template <R F(P1, P2, P3)>
Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() {
return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2, P3)>
BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2);
}
};
template <class R, class P1, class P2, class P3, class P4>
struct FuncSig4 {
template <R F(P1, P2, P3, P4)>
Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() {
return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2, P3, P4)>
BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2);
}
};
template <class R, class P1, class P2, class P3, class P4, class P5>
struct FuncSig5 {
template <R F(P1, P2, P3, P4, P5)>
Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() {
return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >();
}
template <R F(P1, P2, P3, P4, P5)>
BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc(
typename remove_constptr<P2>::type param2) {
return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2);
}
};
// Overloaded template function that can construct the appropriate FuncSig*
// class given a function pointer by deducing the template parameters.
template <class R, class P1>
inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig1<R, P1>();
}
template <class R, class P1, class P2>
inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig2<R, P1, P2>();
}
template <class R, class P1, class P2, class P3>
inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig3<R, P1, P2, P3>();
}
template <class R, class P1, class P2, class P3, class P4>
inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig4<R, P1, P2, P3, P4>();
}
template <class R, class P1, class P2, class P3, class P4, class P5>
inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return FuncSig5<R, P1, P2, P3, P4, P5>();
}
// MethodSig ///////////////////////////////////////////////////////////////////
// CallMethod*: a function template that calls a given method.
template <class R, class C, R (C::*F)()>
R CallMethod0(C *obj) {
return ((*obj).*F)();
}
template <class R, class C, class P1, R (C::*F)(P1)>
R CallMethod1(C *obj, P1 arg1) {
return ((*obj).*F)(arg1);
}
template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)>
R CallMethod2(C *obj, P1 arg1, P2 arg2) {
return ((*obj).*F)(arg1, arg2);
}
template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)>
R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) {
return ((*obj).*F)(arg1, arg2, arg3);
}
template <class R, class C, class P1, class P2, class P3, class P4,
R (C::*F)(P1, P2, P3, P4)>
R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) {
return ((*obj).*F)(arg1, arg2, arg3, arg4);
}
// MethodSig: like FuncSig, but for member functions.
//
// GetFunc() returns a normal FuncN object, so after calling GetFunc() no
// more logic is required to special-case methods.
template <class R, class C>
struct MethodSig0 {
template <R (C::*F)()>
Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() {
return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >();
}
};
template <class R, class C, class P1>
struct MethodSig1 {
template <R (C::*F)(P1)>
Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() {
return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >();
}
template <R (C::*F)(P1)>
BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc(
typename remove_constptr<P1>::type param1) {
return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(
param1);
}
};
template <class R, class C, class P1, class P2>
struct MethodSig2 {
template <R (C::*F)(P1, P2)>
Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
GetFunc() {
return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
FuncInfo<C *, R> >();
}
template <R (C::*F)(P1, P2)>
BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >
GetFunc(typename remove_constptr<P1>::type param1) {
return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>,
FuncInfo<C *, R> >(param1);
}
};
template <class R, class C, class P1, class P2, class P3>
struct MethodSig3 {
template <R (C::*F)(P1, P2, P3)>
Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >
GetFunc() {
return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
FuncInfo<C *, R> >();
}
template <R (C::*F)(P1, P2, P3)>
BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
FuncInfo<C *, R> >
GetFunc(typename remove_constptr<P1>::type param1) {
return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>,
FuncInfo<C *, R> >(param1);
}
};
template <class R, class C, class P1, class P2, class P3, class P4>
struct MethodSig4 {
template <R (C::*F)(P1, P2, P3, P4)>
Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
FuncInfo<C *, R> >
GetFunc() {
return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
FuncInfo<C *, R> >();
}
template <R (C::*F)(P1, P2, P3, P4)>
BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>,
FuncInfo<C *, R> >
GetFunc(typename remove_constptr<P1>::type param1) {
return BoundFunc5<R, C *, P1, P2, P3, P4,
CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(
param1);
}
};
template <class R, class C>
inline MethodSig0<R, C> MatchFunc(R (C::*f)()) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig0<R, C>();
}
template <class R, class C, class P1>
inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig1<R, C, P1>();
}
template <class R, class C, class P1, class P2>
inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig2<R, C, P1, P2>();
}
template <class R, class C, class P1, class P2, class P3>
inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig3<R, C, P1, P2, P3>();
}
template <class R, class C, class P1, class P2, class P3, class P4>
inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) {
UPB_UNUSED(f); // Only used for template parameter deduction.
return MethodSig4<R, C, P1, P2, P3, P4>();
}
// MaybeWrapReturn /////////////////////////////////////////////////////////////
// Template class that attempts to wrap the return value of the function so it
// matches the expected type. There are two main adjustments it may make:
//
// 1. If the function returns void, make it return the expected type and with
// a value that always indicates success.
// 2. If the function is expected to return void* but doesn't, wrap it so it
// does (either by returning the closure param if the wrapped function
// returns void or by casting a different pointer type to void* for
// return).
// Template parameters are FuncN type and desired return type.
template <class F, class R, class Enable = void>
struct MaybeWrapReturn;
// If the return type matches, return the given function unwrapped.
template <class F>
struct MaybeWrapReturn<F, typename F::Return> {
typedef F Func;
};
// Function wrapper that munges the return value from void to (bool)true.
template <class P1, class P2, void F(P1, P2)>
bool ReturnTrue2(P1 p1, P2 p2) {
F(p1, p2);
return true;
}
template <class P1, class P2, class P3, void F(P1, P2, P3)>
bool ReturnTrue3(P1 p1, P2 p2, P3 p3) {
F(p1, p2, p3);
return true;
}
// Function wrapper that munges the return value from void to (void*)arg1
template <class P1, class P2, void F(P1, P2)>
void *ReturnClosure2(P1 p1, P2 p2) {
F(p1, p2);
return p1;
}
template <class P1, class P2, class P3, void F(P1, P2, P3)>
void *ReturnClosure3(P1 p1, P2 p2, P3 p3) {
F(p1, p2, p3);
return p1;
}
// Function wrapper that munges the return value from R to void*.
template <class R, class P1, class P2, R F(P1, P2)>
void *CastReturnToVoidPtr2(P1 p1, P2 p2) {
return F(p1, p2);
}
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) {
return F(p1, p2, p3);
}
// Function wrapper that munges the return value from bool to void*.
template <class P1, class P2, bool F(P1, P2)>
void *ReturnClosureOrBreak2(P1 p1, P2 p2) {
return F(p1, p2) ? p1 : UPB_BREAK;
}
template <class P1, class P2, class P3, bool F(P1, P2, P3)>
void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) {
return F(p1, p2, p3) ? p1 : UPB_BREAK;
}
// For the string callback, which takes five params, returns the size param.
template <class P1, class P2,
void F(P1, P2, const char *, size_t, const BufferHandle *)>
size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4,
const BufferHandle *p5) {
F(p1, p2, p3, p4, p5);
return p4;
}
// For the string callback, which takes five params, returns the size param or
// zero.
template <class P1, class P2,
bool F(P1, P2, const char *, size_t, const BufferHandle *)>
size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4,
const BufferHandle *p5) {
return F(p1, p2, p3, p4, p5) ? p4 : 0;
}
// If we have a function returning void but want a function returning bool, wrap
// it in a function that returns true.
template <class P1, class P2, void F(P1, P2), class I>
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> {
typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func;
};
template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> {
typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func;
};
// If our function returns void but we want one returning void*, wrap it in a
// function that returns the first argument.
template <class P1, class P2, void F(P1, P2), class I>
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> {
typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func;
};
template <class P1, class P2, class P3, void F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> {
typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func;
};
// If our function returns R* but we want one returning void*, wrap it in a
// function that casts to void*.
template <class R, class P1, class P2, R *F(P1, P2), class I>
struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *,
typename disable_if_same<R *, void *>::Type> {
typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func;
};
template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *,
typename disable_if_same<R *, void *>::Type> {
typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I>
Func;
};
// If our function returns bool but we want one returning void*, wrap it in a
// function that returns either the first param or UPB_BREAK.
template <class P1, class P2, bool F(P1, P2), class I>
struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> {
typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func;
};
template <class P1, class P2, class P3, bool F(P1, P2, P3), class I>
struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> {
typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I>
Func;
};
// If our function returns void but we want one returning size_t, wrap it in a
// function that returns the size argument.
template <class P1, class P2,
void F(P1, P2, const char *, size_t, const BufferHandle *), class I>
struct MaybeWrapReturn<
Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
size_t> {
typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
ReturnStringLen<P1, P2, F>, I> Func;
};
// If our function returns bool but we want one returning size_t, wrap it in a
// function that returns either 0 or the buf size.
template <class P1, class P2,
bool F(P1, P2, const char *, size_t, const BufferHandle *), class I>
struct MaybeWrapReturn<
Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>,
size_t> {
typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *,
ReturnNOr0<P1, P2, F>, I> Func;
};
// ConvertParams ///////////////////////////////////////////////////////////////
// Template class that converts the function parameters if necessary, and
// ignores the HandlerData parameter if appropriate.
//
// Template parameter is the are FuncN function type.
template <class F, class T>
struct ConvertParams;
// Function that discards the handler data parameter.
template <class R, class P1, R F(P1)>
R IgnoreHandlerData2(void *p1, const void *hd) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1));
}
template <class R, class P1, class P2Wrapper, class P2Wrapped,
R F(P1, P2Wrapped)>
R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1), p2);
}
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)>
R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1), p2, p3);
}
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)>
R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) {
UPB_UNUSED(hd);
return F(static_cast<P1>(p1), p2, p3, p4);
}
template <class R, class P1, R F(P1, const char*, size_t)>
R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2,
size_t p3, const BufferHandle *handle) {
UPB_UNUSED(hd);
UPB_UNUSED(handle);
return F(static_cast<P1>(p1), p2, p3);
}
// Function that casts the handler data parameter.
template <class R, class P1, class P2, R F(P1, P2)>
R CastHandlerData2(void *c, const void *hd) {
return F(static_cast<P1>(c), static_cast<P2>(hd));
}
template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped,
R F(P1, P2, P3Wrapped)>
R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) {
return F(static_cast<P1>(c), static_cast<P2>(hd), p3);
}
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5)>
R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) {
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5);
}
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)>
R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3,
size_t p4, const BufferHandle *handle) {
UPB_UNUSED(handle);
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4);
}
// For unbound functions, ignore the handler data.
template <class R, class P1, R F(P1), class I, class T>
struct ConvertParams<Func1<R, P1, F, I>, T> {
typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func;
};
template <class R, class P1, class P2, R F(P1, P2), class I,
class R2, class P1_2, class P2_2, class P3_2>
struct ConvertParams<Func2<R, P1, P2, F, I>,
R2 (*)(P1_2, P2_2, P3_2)> {
typedef Func3<R, void *, const void *, P3_2,
IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func;
};
// For StringBuffer only; this ignores both the handler data and the
// BufferHandle.
template <class R, class P1, R F(P1, const char *, size_t), class I, class T>
struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> {
typedef Func5<R, void *, const void *, const char *, size_t,
const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>,
I> Func;
};
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4),
class I, class T>
struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> {
typedef Func5<R, void *, const void *, P2, P3, P4,
IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func;
};
// For bound functions, cast the handler data.
template <class R, class P1, class P2, R F(P1, P2), class I, class T>
struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> {
typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I>
Func;
};
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I,
class R2, class P1_2, class P2_2, class P3_2>
struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>,
R2 (*)(P1_2, P2_2, P3_2)> {
typedef Func3<R, void *, const void *, P3_2,
CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func;
};
// For StringBuffer only; this ignores the BufferHandle.
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t),
class I, class T>
struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> {
typedef Func5<R, void *, const void *, const char *, size_t,
const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>,
I> Func;
};
template <class R, class P1, class P2, class P3, class P4, class P5,
R F(P1, P2, P3, P4, P5), class I, class T>
struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> {
typedef Func5<R, void *, const void *, P3, P4, P5,
CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func;
};
// utype/ltype are upper/lower-case, ctype is canonical C type, vtype is
// variant C type.
#define TYPE_METHODS(utype, ltype, ctype, vtype) \
template <> struct CanonicalType<vtype> { \
typedef ctype Type; \
}; \
template <> \
inline bool Handlers::SetValueHandler<vtype>( \
const FieldDef *f, \
const Handlers::utype ## Handler& handler) { \
assert(!handler.registered_); \
handler.AddCleanup(this); \
handler.registered_ = true; \
return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \
} \
TYPE_METHODS(Double, double, double, double);
TYPE_METHODS(Float, float, float, float);
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T);
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T);
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64_T);
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32_T);
TYPE_METHODS(Bool, bool, bool, bool);
#ifdef UPB_TWO_32BIT_TYPES
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32ALT_T);
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T);
#endif
#ifdef UPB_TWO_64BIT_TYPES
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64ALT_T);
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T);
#endif
#undef TYPE_METHODS
template <> struct CanonicalType<Status*> {
typedef Status* Type;
};
// Type methods that are only one-per-canonical-type and not one-per-cvariant.
#define TYPE_METHODS(utype, ctype) \
inline bool Handlers::Set##utype##Handler(const FieldDef *f, \
const utype##Handler &h) { \
return SetValueHandler<ctype>(f, h); \
} \
TYPE_METHODS(Double, double);
TYPE_METHODS(Float, float);
TYPE_METHODS(UInt64, uint64_t);
TYPE_METHODS(UInt32, uint32_t);
TYPE_METHODS(Int64, int64_t);
TYPE_METHODS(Int32, int32_t);
TYPE_METHODS(Bool, bool);
#undef TYPE_METHODS
template <class F> struct ReturnOf;
template <class R, class P1, class P2>
struct ReturnOf<R (*)(P1, P2)> {
typedef R Return;
};
template <class R, class P1, class P2, class P3>
struct ReturnOf<R (*)(P1, P2, P3)> {
typedef R Return;
};
template <class R, class P1, class P2, class P3, class P4>
struct ReturnOf<R (*)(P1, P2, P3, P4)> {
typedef R Return;
};
template <class R, class P1, class P2, class P3, class P4, class P5>
struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> {
typedef R Return;
};
template<class T> const void *UniquePtrForType() {
static const char ch = 0;
return &ch;
}
template <class T>
template <class F>
inline Handler<T>::Handler(F func)
: registered_(false),
cleanup_data_(func.GetData()),
cleanup_func_(func.GetCleanup()) {
upb_handlerattr_sethandlerdata(&attr_, func.GetData());
typedef typename ReturnOf<T>::Return Return;
typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc;
typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func
ReturnWrappedFunc;
handler_ = ReturnWrappedFunc().Call;
// Set attributes based on what templates can statically tell us about the
// user's function.
// If the original function returns void, then we know that we wrapped it to
// always return ok.
bool always_ok = is_same<typename F::FuncInfo::Return, void>::value;
attr_.SetAlwaysOk(always_ok);
// Closure parameter and return type.
attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>());
// We use the closure type (from the first parameter) if the return type is
// void. This is all nonsense for non START* handlers, but it doesn't matter
// because in that case the value will be ignored.
typedef typename FirstUnlessVoid<typename F::FuncInfo::Return,
typename F::FuncInfo::Closure>::value
EffectiveReturn;
attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>());
}
template <class T>
inline Handler<T>::~Handler() {
assert(registered_);
}
inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); }
inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); }
inline bool HandlerAttributes::SetHandlerData(const void *hd) {
return upb_handlerattr_sethandlerdata(this, hd);
}
inline const void* HandlerAttributes::handler_data() const {
return upb_handlerattr_handlerdata(this);
}
inline bool HandlerAttributes::SetClosureType(const void *type) {
return upb_handlerattr_setclosuretype(this, type);
}
inline const void* HandlerAttributes::closure_type() const {
return upb_handlerattr_closuretype(this);
}
inline bool HandlerAttributes::SetReturnClosureType(const void *type) {
return upb_handlerattr_setreturnclosuretype(this, type);
}
inline const void* HandlerAttributes::return_closure_type() const {
return upb_handlerattr_returnclosuretype(this);
}
inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) {
return upb_handlerattr_setalwaysok(this, always_ok);
}
inline bool HandlerAttributes::always_ok() const {
return upb_handlerattr_alwaysok(this);
}
inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); }
inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); }
inline const char* BufferHandle::buffer() const {
return upb_bufhandle_buf(this);
}
inline size_t BufferHandle::object_offset() const {
return upb_bufhandle_objofs(this);
}
inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) {
upb_bufhandle_setbuf(this, buf, ofs);
}
template <class T>
void BufferHandle::SetAttachedObject(const T* obj) {
upb_bufhandle_setobj(this, obj, UniquePtrForType<T>());
}
template <class T>
const T* BufferHandle::GetAttachedObject() const {
return upb_bufhandle_objtype(this) == UniquePtrForType<T>()
? static_cast<const T *>(upb_bufhandle_obj(this))
: NULL;
}
inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) {
upb_handlers *h = upb_handlers_new(m, &h);
return reffed_ptr<Handlers>(h, &h);
}
inline reffed_ptr<const Handlers> Handlers::NewFrozen(
const MessageDef *m, upb_handlers_callback *callback,
const void *closure) {
const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure);
return reffed_ptr<const Handlers>(h, &h);
}
inline bool Handlers::IsFrozen() const { return upb_handlers_isfrozen(this); }
inline void Handlers::Ref(const void *owner) const {
upb_handlers_ref(this, owner);
}
inline void Handlers::Unref(const void *owner) const {
upb_handlers_unref(this, owner);
}
inline void Handlers::DonateRef(const void *from, const void *to) const {
upb_handlers_donateref(this, from, to);
}
inline void Handlers::CheckRef(const void *owner) const {
upb_handlers_checkref(this, owner);
}
inline const Status* Handlers::status() {
return upb_handlers_status(this);
}
inline void Handlers::ClearError() {
return upb_handlers_clearerr(this);
}
inline bool Handlers::Freeze(Status *s) {
upb::Handlers* h = this;
return upb_handlers_freeze(&h, 1, s);
}
inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) {
return upb_handlers_freeze(handlers, n, s);
}
inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) {
return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status);
}
inline const MessageDef *Handlers::message_def() const {
return upb_handlers_msgdef(this);
}
inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) {
return upb_handlers_addcleanup(this, p, func);
}
inline bool Handlers::SetStartMessageHandler(
const Handlers::StartMessageHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
handler.AddCleanup(this);
return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndMessageHandler(
const Handlers::EndMessageHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
handler.AddCleanup(this);
return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStartStringHandler(const FieldDef *f,
const StartStringHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
handler.AddCleanup(this);
return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndStringHandler(const FieldDef *f,
const EndFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
handler.AddCleanup(this);
return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStringHandler(const FieldDef *f,
const StringHandler& handler) {
assert(!handler.registered_);
handler.registered_ = true;
handler.AddCleanup(this);
return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStartSequenceHandler(
const FieldDef *f, const StartFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
handler.AddCleanup(this);
return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetStartSubMessageHandler(
const FieldDef *f, const StartFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
handler.AddCleanup(this);
return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f,
const EndFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
handler.AddCleanup(this);
return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetEndSequenceHandler(const FieldDef *f,
const EndFieldHandler &handler) {
assert(!handler.registered_);
handler.registered_ = true;
handler.AddCleanup(this);
return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_);
}
inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) {
return upb_handlers_setsubhandlers(this, f, sub);
}
inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const {
return upb_handlers_getsubhandlers(this, f);
}
inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const {
return upb_handlers_getsubhandlers_sel(this, sel);
}
inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type,
Handlers::Selector *s) {
return upb_handlers_getselector(f, type, s);
}
inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) {
return upb_handlers_getendselector(start);
}
inline Handlers::GenericFunction *Handlers::GetHandler(
Handlers::Selector selector) {
return upb_handlers_gethandler(this, selector);
}
inline const void *Handlers::GetHandlerData(Handlers::Selector selector) {
return upb_handlers_gethandlerdata(this, selector);
}
inline BytesHandler::BytesHandler() {
upb_byteshandler_init(this);
}
inline BytesHandler::~BytesHandler() {
upb_byteshandler_uninit(this);
}
} // namespace upb
#endif // __cplusplus
#undef UPB_TWO_32BIT_TYPES
#undef UPB_TWO_64BIT_TYPES
#undef UPB_INT32_T
#undef UPB_UINT32_T
#undef UPB_INT32ALT_T
#undef UPB_UINT32ALT_T
#undef UPB_INT64_T
#undef UPB_UINT64_T
#undef UPB_INT64ALT_T
#undef UPB_UINT64ALT_T
#endif // UPB_HANDLERS_INL_H_
#endif // UPB_HANDLERS_H
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2010-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* A upb_sink is an object that binds a upb_handlers object to some runtime
* state. It is the object that can actually receive data via the upb_handlers
* interface.
*
* Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or
* thread-safe. You can create as many of them as you want, but each one may
* only be used in a single thread at a time.
*
* If we compare with class-based OOP, a you can think of a upb_def as an
* abstract base class, a upb_handlers as a concrete derived class, and a
* upb_sink as an object (class instance).
*/
#ifndef UPB_SINK_H
#define UPB_SINK_H
#ifdef __cplusplus
namespace upb {
class BufferSource;
class BytesSink;
class Sink;
}
#endif
UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc);
UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink);
UPB_DECLARE_TYPE(upb::Sink, upb_sink);
// Internal-only struct for the sink.
struct upb_sinkframe {
UPB_PRIVATE_FOR_CPP
const upb_handlers *h;
void *closure;
// For any frames besides the top, this is the END* callback that will run
// when the subframe is popped (for example, for a "sequence" frame the frame
// above it will be a UPB_HANDLER_ENDSEQ handler). But this is only
// necessary for assertion checking inside upb_sink and can be omitted if the
// sink has only one caller.
//
// TODO(haberman): have a mechanism for ensuring that a sink only has one
// caller.
upb_selector_t selector;
};
// The maximum nesting depth that upb::Sink will allow. Matches proto2's limit.
// TODO: make this a runtime-settable property of Sink.
#define UPB_SINK_MAX_NESTING 64
// A upb::Sink is an object that binds a upb::Handlers object to some runtime
// state. It represents an endpoint to which data can be sent.
//
// TODO(haberman): right now all of these functions take selectors. Should they
// take selectorbase instead?
//
// ie. instead of calling:
// sink->StartString(FOO_FIELD_START_STRING, ...)
// a selector base would let you say:
// sink->StartString(FOO_FIELD, ...)
//
// This would make call sites a little nicer and require emitting fewer selector
// definitions in .h files.
//
// But the current scheme has the benefit that you can retrieve a function
// pointer for any handler with handlers->GetHandler(selector), without having
// to have a separate GetHandler() function for each handler type. The JIT
// compiler uses this. To accommodate we'd have to expose a separate
// GetHandler() for every handler type.
//
// Also to ponder: selectors right now are independent of a specific Handlers
// instance. In other words, they allocate a number to every possible handler
// that *could* be registered, without knowing anything about what handlers
// *are* registered. That means that using selectors as table offsets prohibits
// us from compacting the handler table at Freeze() time. If the table is very
// sparse, this could be wasteful.
//
// Having another selector-like thing that is specific to a Handlers instance
// would allow this compacting, but then it would be impossible to write code
// ahead-of-time that can be bound to any Handlers instance at runtime. For
// example, a .proto file parser written as straight C will not know what
// Handlers it will be bound to, so when it calls sink->StartString() what
// selector will it pass? It needs a selector like we have today, that is
// independent of any particular upb::Handlers.
//
// Is there a way then to allow Handlers table compaction?
UPB_DEFINE_CLASS0(upb::Sink,
public:
// Constructor with no initialization; must be Reset() before use.
Sink() {}
// Constructs a new sink for the given frozen handlers and closure.
//
// TODO: once the Handlers know the expected closure type, verify that T
// matches it.
template <class T> Sink(const Handlers* handlers, T* closure);
// Resets the value of the sink.
template <class T> void Reset(const Handlers* handlers, T* closure);
// Returns the top-level object that is bound to this sink.
//
// TODO: once the Handlers know the expected closure type, verify that T
// matches it.
template <class T> T* GetObject() const;
// Functions for pushing data into the sink.
//
// These return false if processing should stop (either due to error or just
// to suspend).
//
// These may not be called from within one of the same sink's handlers (in
// other words, handlers are not re-entrant).
// Should be called at the start and end of every message; both the top-level
// message and submessages. This means that submessages should use the
// following sequence:
// sink->StartSubMessage(startsubmsg_selector);
// sink->StartMessage();
// // ...
// sink->EndMessage(&status);
// sink->EndSubMessage(endsubmsg_selector);
bool StartMessage();
bool EndMessage(Status* status);
// Putting of individual values. These work for both repeated and
// non-repeated fields, but for repeated fields you must wrap them in
// calls to StartSequence()/EndSequence().
bool PutInt32(Handlers::Selector s, int32_t val);
bool PutInt64(Handlers::Selector s, int64_t val);
bool PutUInt32(Handlers::Selector s, uint32_t val);
bool PutUInt64(Handlers::Selector s, uint64_t val);
bool PutFloat(Handlers::Selector s, float val);
bool PutDouble(Handlers::Selector s, double val);
bool PutBool(Handlers::Selector s, bool val);
// Putting of string/bytes values. Each string can consist of zero or more
// non-contiguous buffers of data.
//
// For StartString(), the function will write a sink for the string to "sub."
// The sub-sink must be used for any/all PutStringBuffer() calls.
bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub);
size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len,
const BufferHandle *handle);
bool EndString(Handlers::Selector s);
// For submessage fields.
//
// For StartSubMessage(), the function will write a sink for the string to
// "sub." The sub-sink must be used for any/all handlers called within the
// submessage.
bool StartSubMessage(Handlers::Selector s, Sink* sub);
bool EndSubMessage(Handlers::Selector s);
// For repeated fields of any type, the sequence of values must be wrapped in
// these calls.
//
// For StartSequence(), the function will write a sink for the string to
// "sub." The sub-sink must be used for any/all handlers called within the
// sequence.
bool StartSequence(Handlers::Selector s, Sink* sub);
bool EndSequence(Handlers::Selector s);
// Copy and assign specifically allowed.
// We don't even bother making these members private because so many
// functions need them and this is mainly just a dumb data container anyway.
,
UPB_DEFINE_STRUCT0(upb_sink,
const upb_handlers *handlers;
void *closure;
));
UPB_DEFINE_CLASS0(upb::BytesSink,
public:
BytesSink() {}
// Constructs a new sink for the given frozen handlers and closure.
//
// TODO(haberman): once the Handlers know the expected closure type, verify
// that T matches it.
template <class T> BytesSink(const BytesHandler* handler, T* closure);
// Resets the value of the sink.
template <class T> void Reset(const BytesHandler* handler, T* closure);
bool Start(size_t size_hint, void **subc);
size_t PutBuffer(void *subc, const char *buf, size_t len,
const BufferHandle *handle);
bool End();
,
UPB_DEFINE_STRUCT0(upb_bytessink,
const upb_byteshandler *handler;
void *closure;
));
// A class for pushing a flat buffer of data to a BytesSink.
// You can construct an instance of this to get a resumable source,
// or just call the static PutBuffer() to do a non-resumable push all in one go.
UPB_DEFINE_CLASS0(upb::BufferSource,
public:
BufferSource();
BufferSource(const char* buf, size_t len, BytesSink* sink);
// Returns true if the entire buffer was pushed successfully. Otherwise the
// next call to PutNext() will resume where the previous one left off.
// TODO(haberman): implement this.
bool PutNext();
// A static version; with this version is it not possible to resume in the
// case of failure or a partially-consumed buffer.
static bool PutBuffer(const char* buf, size_t len, BytesSink* sink);
template <class T> static bool PutBuffer(const T& str, BytesSink* sink) {
return PutBuffer(str.c_str(), str.size(), sink);
}
,
UPB_DEFINE_STRUCT0(upb_bufsrc,
));
UPB_BEGIN_EXTERN_C // {
// Inline definitions.
UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h,
void *closure) {
s->handler = h;
s->closure = closure;
}
UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint,
void **subc) {
*subc = s->closure;
if (!s->handler) return true;
upb_startstr_handlerfunc *start =
(upb_startstr_handlerfunc *)s->handler->table[UPB_STARTSTR_SELECTOR].func;
if (!start) return true;
*subc = start(s->closure, upb_handlerattr_handlerdata(
&s->handler->table[UPB_STARTSTR_SELECTOR].attr),
size_hint);
return *subc != NULL;
}
UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc,
const char *buf, size_t size,
const upb_bufhandle* handle) {
if (!s->handler) return true;
upb_string_handlerfunc *putbuf =
(upb_string_handlerfunc *)s->handler->table[UPB_STRING_SELECTOR].func;
if (!putbuf) return true;
return putbuf(subc, upb_handlerattr_handlerdata(
&s->handler->table[UPB_STRING_SELECTOR].attr),
buf, size, handle);
}
UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) {
if (!s->handler) return true;
upb_endfield_handlerfunc *end =
(upb_endfield_handlerfunc *)s->handler->table[UPB_ENDSTR_SELECTOR].func;
if (!end) return true;
return end(s->closure,
upb_handlerattr_handlerdata(
&s->handler->table[UPB_ENDSTR_SELECTOR].attr));
}
UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len,
upb_bytessink *sink) {
void *subc;
upb_bufhandle handle;
upb_bufhandle_init(&handle);
upb_bufhandle_setbuf(&handle, buf, 0);
bool ret = upb_bytessink_start(sink, len, &subc);
if (ret && len != 0) {
ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) == len);
}
if (ret) {
ret = upb_bytessink_end(sink);
}
upb_bufhandle_uninit(&handle);
return ret;
}
#define PUTVAL(type, ctype) \
UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel, \
ctype val) { \
if (!s->handlers) return true; \
upb_##type##_handlerfunc *func = \
(upb_##type##_handlerfunc *)upb_handlers_gethandler(s->handlers, sel); \
if (!func) return true; \
const void *hd = upb_handlers_gethandlerdata(s->handlers, sel); \
return func(s->closure, hd, val); \
}
PUTVAL(int32, int32_t);
PUTVAL(int64, int64_t);
PUTVAL(uint32, uint32_t);
PUTVAL(uint64, uint64_t);
PUTVAL(float, float);
PUTVAL(double, double);
PUTVAL(bool, bool);
#undef PUTVAL
UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) {
s->handlers = h;
s->closure = c;
}
UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel,
const char *buf, size_t n,
const upb_bufhandle *handle) {
if (!s->handlers) return n;
upb_string_handlerfunc *handler =
(upb_string_handlerfunc *)upb_handlers_gethandler(s->handlers, sel);
if (!handler) return n;
const void *hd = upb_handlers_gethandlerdata(s->handlers, sel);
return handler(s->closure, hd, buf, n, handle);
}
UPB_INLINE bool upb_sink_startmsg(upb_sink *s) {
if (!s->handlers) return true;
upb_startmsg_handlerfunc *startmsg =
(upb_startmsg_handlerfunc *)upb_handlers_gethandler(s->handlers,
UPB_STARTMSG_SELECTOR);
if (!startmsg) return true;
const void *hd =
upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR);
return startmsg(s->closure, hd);
}
UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) {
if (!s->handlers) return true;
upb_endmsg_handlerfunc *endmsg =
(upb_endmsg_handlerfunc *)upb_handlers_gethandler(s->handlers,
UPB_ENDMSG_SELECTOR);
if (!endmsg) return true;
const void *hd =
upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR);
return endmsg(s->closure, hd, status);
}
UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel,
upb_sink *sub) {
sub->closure = s->closure;
sub->handlers = s->handlers;
if (!s->handlers) return true;
upb_startfield_handlerfunc *startseq =
(upb_startfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel);
if (!startseq) return true;
const void *hd = upb_handlers_gethandlerdata(s->handlers, sel);
sub->closure = startseq(s->closure, hd);
return sub->closure ? true : false;
}
UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) {
if (!s->handlers) return true;
upb_endfield_handlerfunc *endseq =
(upb_endfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel);
if (!endseq) return true;
const void *hd = upb_handlers_gethandlerdata(s->handlers, sel);
return endseq(s->closure, hd);
}
UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel,
size_t size_hint, upb_sink *sub) {
sub->closure = s->closure;
sub->handlers = s->handlers;
if (!s->handlers) return true;
upb_startstr_handlerfunc *startstr =
(upb_startstr_handlerfunc*)upb_handlers_gethandler(s->handlers, sel);
if (!startstr) return true;
const void *hd = upb_handlers_gethandlerdata(s->handlers, sel);
sub->closure = startstr(s->closure, hd, size_hint);
return sub->closure ? true : false;
}
UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) {
if (!s->handlers) return true;
upb_endfield_handlerfunc *endstr =
(upb_endfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel);
if (!endstr) return true;
const void *hd = upb_handlers_gethandlerdata(s->handlers, sel);
return endstr(s->closure, hd);
}
UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel,
upb_sink *sub) {
sub->closure = s->closure;
if (!s->handlers) {
sub->handlers = NULL;
return true;
}
sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel);
upb_startfield_handlerfunc *startsubmsg =
(upb_startfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel);
if (!startsubmsg) return true;
const void *hd = upb_handlers_gethandlerdata(s->handlers, sel);
sub->closure = startsubmsg(s->closure, hd);
return sub->closure ? true : false;
}
UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) {
if (!s->handlers) return true;
upb_endfield_handlerfunc *endsubmsg =
(upb_endfield_handlerfunc*)upb_handlers_gethandler(s->handlers, sel);
if (!endsubmsg) return s->closure;
const void *hd = upb_handlers_gethandlerdata(s->handlers, sel);
return endsubmsg(s->closure, hd);
}
UPB_END_EXTERN_C // }
#ifdef __cplusplus
namespace upb {
template <class T> Sink::Sink(const Handlers* handlers, T* closure) {
upb_sink_reset(this, handlers, closure);
}
template <class T>
inline void Sink::Reset(const Handlers* handlers, T* closure) {
upb_sink_reset(this, handlers, closure);
}
inline bool Sink::StartMessage() {
return upb_sink_startmsg(this);
}
inline bool Sink::EndMessage(Status* status) {
return upb_sink_endmsg(this, status);
}
inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) {
return upb_sink_putint32(this, sel, val);
}
inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) {
return upb_sink_putint64(this, sel, val);
}
inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) {
return upb_sink_putuint32(this, sel, val);
}
inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) {
return upb_sink_putuint64(this, sel, val);
}
inline bool Sink::PutFloat(Handlers::Selector sel, float val) {
return upb_sink_putfloat(this, sel, val);
}
inline bool Sink::PutDouble(Handlers::Selector sel, double val) {
return upb_sink_putdouble(this, sel, val);
}
inline bool Sink::PutBool(Handlers::Selector sel, bool val) {
return upb_sink_putbool(this, sel, val);
}
inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint,
Sink *sub) {
return upb_sink_startstr(this, sel, size_hint, sub);
}
inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf,
size_t len, const BufferHandle* handle) {
return upb_sink_putstring(this, sel, buf, len, handle);
}
inline bool Sink::EndString(Handlers::Selector sel) {
return upb_sink_endstr(this, sel);
}
inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) {
return upb_sink_startsubmsg(this, sel, sub);
}
inline bool Sink::EndSubMessage(Handlers::Selector sel) {
return upb_sink_endsubmsg(this, sel);
}
inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) {
return upb_sink_startseq(this, sel, sub);
}
inline bool Sink::EndSequence(Handlers::Selector sel) {
return upb_sink_endseq(this, sel);
}
template <class T>
BytesSink::BytesSink(const BytesHandler* handler, T* closure) {
Reset(handler, closure);
}
template <class T>
void BytesSink::Reset(const BytesHandler *handler, T *closure) {
upb_bytessink_reset(this, handler, closure);
}
inline bool BytesSink::Start(size_t size_hint, void **subc) {
return upb_bytessink_start(this, size_hint, subc);
}
inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len,
const BufferHandle *handle) {
return upb_bytessink_putbuf(this, subc, buf, len, handle);
}
inline bool BytesSink::End() {
return upb_bytessink_end(this);
}
inline bool BufferSource::PutBuffer(const char *buf, size_t len,
BytesSink *sink) {
return upb_bufsrc_putbuf(buf, len, sink);
}
} // namespace upb
#endif
#endif
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2013 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* For handlers that do very tiny, very simple operations, the function call
* overhead of calling a handler can be significant. This file allows the
* user to define handlers that do something very simple like store the value
* to memory and/or set a hasbit. JIT compilers can then special-case these
* handlers and emit specialized code for them instead of actually calling the
* handler.
*
* The functionality is very simple/limited right now but may expand to be able
* to call another function.
*/
#ifndef UPB_SHIM_H
#define UPB_SHIM_H
typedef struct {
size_t offset;
int32_t hasbit;
} upb_shim_data;
#ifdef __cplusplus
namespace upb {
struct Shim {
typedef upb_shim_data Data;
// Sets a handler for the given field that writes the value to the given
// offset and, if hasbit >= 0, sets a bit at the given bit offset. Returns
// true if the handler was set successfully.
static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit);
// If this handler is a shim, returns the corresponding upb::Shim::Data and
// stores the type in "type". Otherwise returns NULL.
static const Data* GetData(const Handlers* h, Handlers::Selector s,
FieldDef::Type* type);
};
} // namespace upb
#endif
UPB_BEGIN_EXTERN_C // {
// C API.
bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset,
int32_t hasbit);
const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s,
upb_fieldtype_t *type);
UPB_END_EXTERN_C // }
#ifdef __cplusplus
// C++ Wrappers.
namespace upb {
inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs,
int32_t hasbit) {
return upb_shim_set(h, f, ofs, hasbit);
}
inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s,
FieldDef::Type* type) {
return upb_shim_getdata(h, s, type);
}
} // namespace upb
#endif
#endif // UPB_SHIM_H
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* upb::descriptor::Reader provides a way of building upb::Defs from
* data in descriptor.proto format.
*/
#ifndef UPB_DESCRIPTOR_H
#define UPB_DESCRIPTOR_H
#ifdef __cplusplus
namespace upb {
namespace descriptor {
class Reader;
} // namespace descriptor
} // namespace upb
#endif
UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader);
// Internal-only structs used by Reader.
// upb_deflist is an internal-only dynamic array for storing a growing list of
// upb_defs.
typedef struct {
UPB_PRIVATE_FOR_CPP
upb_def **defs;
size_t len;
size_t size;
bool owned;
} upb_deflist;
// We keep a stack of all the messages scopes we are currently in, as well as
// the top-level file scope. This is necessary to correctly qualify the
// definitions that are contained inside. "name" tracks the name of the
// message or package (a bare name -- not qualified by any enclosing scopes).
typedef struct {
UPB_PRIVATE_FOR_CPP
char *name;
// Index of the first def that is under this scope. For msgdefs, the
// msgdef itself is at start-1.
int start;
} upb_descreader_frame;
// The maximum number of nested declarations that are allowed, ie.
// message Foo {
// message Bar {
// message Baz {
// }
// }
// }
//
// This is a resource limit that affects how big our runtime stack can grow.
// TODO: make this a runtime-settable property of the Reader instance.
#define UPB_MAX_MESSAGE_NESTING 64
// Class that receives descriptor data according to the descriptor.proto schema
// and use it to build upb::Defs corresponding to that schema.
UPB_DEFINE_CLASS0(upb::descriptor::Reader,
public:
// These handlers must have come from NewHandlers() and must outlive the
// Reader.
//
// TODO: generate the handlers statically (like we do with the
// descriptor.proto defs) so that there is no need to pass this parameter (or
// to build/memory-manage the handlers at runtime at all). Unfortunately this
// is a bit tricky to implement for Handlers, but necessary to simplify this
// interface.
Reader(const Handlers* handlers, Status* status);
~Reader();
// Resets the reader's state and discards any defs it may have built.
void Reset();
// The reader's input; this is where descriptor.proto data should be sent.
Sink* input();
// Returns an array of all defs that have been parsed, and transfers ownership
// of them to "owner". The number of defs is stored in *n. Ownership of the
// returned array is retained and is invalidated by any other call into
// Reader.
//
// These defs are not frozen or resolved; they are ready to be added to a
// symtab.
upb::Def** GetDefs(void* owner, int* n);
// Builds and returns handlers for the reader, owned by "owner."
static Handlers* NewHandlers(const void* owner);
,
UPB_DEFINE_STRUCT0(upb_descreader,
upb_sink sink;
upb_deflist defs;
upb_descreader_frame stack[UPB_MAX_MESSAGE_NESTING];
int stack_len;
uint32_t number;
char *name;
bool saw_number;
bool saw_name;
char *default_string;
upb_fielddef *f;
));
UPB_BEGIN_EXTERN_C // {
// C API.
void upb_descreader_init(upb_descreader *r, const upb_handlers *handlers,
upb_status *status);
void upb_descreader_uninit(upb_descreader *r);
void upb_descreader_reset(upb_descreader *r);
upb_sink *upb_descreader_input(upb_descreader *r);
upb_def **upb_descreader_getdefs(upb_descreader *r, void *owner, int *n);
const upb_handlers *upb_descreader_newhandlers(const void *owner);
UPB_END_EXTERN_C // }
#ifdef __cplusplus
// C++ implementation details. /////////////////////////////////////////////////
namespace upb {
namespace descriptor {
inline Reader::Reader(const Handlers *h, Status *s) {
upb_descreader_init(this, h, s);
}
inline Reader::~Reader() { upb_descreader_uninit(this); }
inline void Reader::Reset() { upb_descreader_reset(this); }
inline Sink* Reader::input() { return upb_descreader_input(this); }
inline upb::Def** Reader::GetDefs(void* owner, int* n) {
return upb_descreader_getdefs(this, owner, n);
}
} // namespace descriptor
} // namespace upb
#endif
#endif // UPB_DESCRIPTOR_H
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009-2014 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Internal-only definitions for the decoder.
*/
#ifndef UPB_DECODER_INT_H_
#define UPB_DECODER_INT_H_
#include <stdlib.h>
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009-2014 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* upb::pb::Decoder implements a high performance, streaming, resumable decoder
* for the binary protobuf format.
*
* This interface works the same regardless of what decoder backend is being
* used. A client of this class does not need to know whether decoding is using
* a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder. By default,
* it will always use the fastest available decoder. However, you can call
* set_allow_jit(false) to disable any JIT decoder that might be available.
* This is primarily useful for testing purposes.
*/
#ifndef UPB_DECODER_H_
#define UPB_DECODER_H_
#ifdef __cplusplus
namespace upb {
namespace pb {
class CodeCache;
class Decoder;
class DecoderMethod;
class DecoderMethodOptions;
} // namespace pb
} // namespace upb
#endif
UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache);
UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder);
UPB_DECLARE_TYPE(upb::pb::DecoderMethod, upb_pbdecodermethod);
UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts);
// The maximum that any submessages can be nested. Matches proto2's limit.
// This specifies the size of the decoder's statically-sized array and therefore
// setting it high will cause the upb::pb::Decoder object to be larger.
//
// If necessary we can add a runtime-settable property to Decoder that allow
// this to be larger than the compile-time setting, but this would add
// complexity, particularly since we would have to decide how/if to give users
// the ability to set a custom memory allocation function.
#define UPB_DECODER_MAX_NESTING 64
// Internal-only struct used by the decoder.
typedef struct {
UPB_PRIVATE_FOR_CPP
// Space optimization note: we store two pointers here that the JIT
// doesn't need at all; the upb_handlers* inside the sink and
// the dispatch table pointer. We can optimze so that the JIT uses
// smaller stack frames than the interpreter. The only thing we need
// to guarantee is that the fallback routines can find end_ofs.
upb_sink sink;
// The absolute stream offset of the end-of-frame delimiter.
// Non-delimited frames (groups and non-packed repeated fields) reuse the
// delimiter of their parent, even though the frame may not end there.
//
// NOTE: the JIT stores a slightly different value here for non-top frames.
// It stores the value relative to the end of the enclosed message. But the
// top frame is still stored the same way, which is important for ensuring
// that calls from the JIT into C work correctly.
uint64_t end_ofs;
const uint32_t *base;
// 0 indicates a length-delimited field.
// A positive number indicates a known group.
// A negative number indicates an unknown group.
int32_t groupnum;
upb_inttable *dispatch; // Not used by the JIT.
} upb_pbdecoder_frame;
// The parameters one uses to construct a DecoderMethod.
// TODO(haberman): move allowjit here? Seems more convenient for users.
UPB_DEFINE_CLASS0(upb::pb::DecoderMethodOptions,
public:
// Parameter represents the destination handlers that this method will push
// to.
explicit DecoderMethodOptions(const Handlers* dest_handlers);
// Should the decoder push submessages to lazy handlers for fields that have
// them? The caller should set this iff the lazy handlers expect data that is
// in protobuf binary format and the caller wishes to lazy parse it.
void set_lazy(bool lazy);
,
UPB_DEFINE_STRUCT0(upb_pbdecodermethodopts,
const upb_handlers *handlers;
bool lazy;
));
// Represents the code to parse a protobuf according to a destination Handlers.
UPB_DEFINE_CLASS1(upb::pb::DecoderMethod, upb::RefCounted,
public:
// From upb::ReferenceCounted.
void Ref(const void* owner) const;
void Unref(const void* owner) const;
void DonateRef(const void* from, const void* to) const;
void CheckRef(const void* owner) const;
// The destination handlers that are statically bound to this method.
// This method is only capable of outputting to a sink that uses these
// handlers.
const Handlers* dest_handlers() const;
// The input handlers for this decoder method.
const BytesHandler* input_handler() const;
// Whether this method is native.
bool is_native() const;
// Convenience method for generating a DecoderMethod without explicitly
// creating a CodeCache.
static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts);
private:
UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod);
,
UPB_DEFINE_STRUCT(upb_pbdecodermethod, upb_refcounted,
// While compiling, the base is relative in "ofs", after compiling it is
// absolute in "ptr".
union {
uint32_t ofs; // PC offset of method.
void *ptr; // Pointer to bytecode or machine code for this method.
} code_base;
// The decoder method group to which this method belongs. We own a ref.
// Owning a ref on the entire group is more coarse-grained than is strictly
// necessary; all we truly require is that methods we directly reference
// outlive us, while the group could contain many other messages we don't
// require. But the group represents the messages that were
// allocated+compiled together, so it makes the most sense to free them
// together also.
const upb_refcounted *group;
// Whether this method is native code or bytecode.
bool is_native_;
// The handler one calls to invoke this method.
upb_byteshandler input_handler_;
// The destination handlers this method is bound to. We own a ref.
const upb_handlers *dest_handlers_;
// Dispatch table -- used by both bytecode decoder and JIT when encountering a
// field number that wasn't the one we were expecting to see. See
// decoder.int.h for the layout of this table.
upb_inttable dispatch;
));
// A Decoder receives binary protobuf data on its input sink and pushes the
// decoded data to its output sink.
UPB_DEFINE_CLASS0(upb::pb::Decoder,
public:
// Constructs a decoder instance for the given method, which must outlive this
// decoder. Any errors during parsing will be set on the given status, which
// must also outlive this decoder.
Decoder(const DecoderMethod* method, Status* status);
~Decoder();
// Returns the DecoderMethod this decoder is parsing from.
// TODO(haberman): Do users need to be able to rebind this?
const DecoderMethod* method() const;
// Resets the state of the decoder.
void Reset();
// Returns number of bytes successfully parsed.
//
// This can be useful for determining the stream position where an error
// occurred.
//
// This value may not be up-to-date when called from inside a parsing
// callback.
uint64_t BytesParsed() const;
// Resets the output sink of the Decoder.
// The given sink must match method()->dest_handlers().
//
// This must be called at least once before the decoder can be used. It may
// only be called with the decoder is in a state where it was just created or
// reset with pipeline.Reset(). The given sink must be from the same pipeline
// as this decoder.
bool ResetOutput(Sink* sink);
// The sink on which this decoder receives input.
BytesSink* input();
private:
UPB_DISALLOW_COPY_AND_ASSIGN(Decoder);
,
UPB_DEFINE_STRUCT0(upb_pbdecoder, UPB_QUOTE(
// Our input sink.
upb_bytessink input_;
// The decoder method we are parsing with (owned).
const upb_pbdecodermethod *method_;
size_t call_len;
const uint32_t *pc, *last;
// Current input buffer and its stream offset.
const char *buf, *ptr, *end, *checkpoint;
// End of the delimited region, relative to ptr, or NULL if not in this buf.
const char *delim_end;
// End of the delimited region, relative to ptr, or end if not in this buf.
const char *data_end;
// Overall stream offset of "buf."
uint64_t bufstart_ofs;
// Buffer for residual bytes not parsed from the previous buffer.
// The maximum number of residual bytes we require is 12; a five-byte
// unknown tag plus an eight-byte value, less one because the value
// is only a partial value.
char residual[12];
char *residual_end;
// Stores the user buffer passed to our decode function.
const char *buf_param;
size_t size_param;
const upb_bufhandle *handle;
#ifdef UPB_USE_JIT_X64
// Used momentarily by the generated code to store a value while a user
// function is called.
uint32_t tmp_len;
const void *saved_rsp;
#endif
upb_status *status;
// Our internal stack.
upb_pbdecoder_frame *top, *limit;
upb_pbdecoder_frame stack[UPB_DECODER_MAX_NESTING];
#ifdef UPB_USE_JIT_X64
// Each native stack frame needs two pointers, plus we need a few frames for
// the enter/exit trampolines.
const uint32_t *callstack[(UPB_DECODER_MAX_NESTING * 2) + 10];
#else
const uint32_t *callstack[UPB_DECODER_MAX_NESTING];
#endif
)));
// A class for caching protobuf processing code, whether bytecode for the
// interpreted decoder or machine code for the JIT.
//
// This class is not thread-safe.
UPB_DEFINE_CLASS0(upb::pb::CodeCache,
public:
CodeCache();
~CodeCache();
// Whether the cache is allowed to generate machine code. Defaults to true.
// There is no real reason to turn it off except for testing or if you are
// having a specific problem with the JIT.
//
// Note that allow_jit = true does not *guarantee* that the code will be JIT
// compiled. If this platform is not supported or the JIT was not compiled
// in, the code may still be interpreted.
bool allow_jit() const;
// This may only be called when the object is first constructed, and prior to
// any code generation, otherwise returns false and does nothing.
bool set_allow_jit(bool allow);
// Returns a DecoderMethod that can push data to the given handlers.
// If a suitable method already exists, it will be returned from the cache.
//
// Specifying the destination handlers here allows the DecoderMethod to be
// statically bound to the destination handlers if possible, which can allow
// more efficient decoding. However the returned method may or may not
// actually be statically bound. But in all cases, the returned method can
// push data to the given handlers.
const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts);
// If/when someone needs to explicitly create a dynamically-bound
// DecoderMethod*, we can add a method to get it here.
private:
UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache);
,
UPB_DEFINE_STRUCT0(upb_pbcodecache,
bool allow_jit_;
// Array of mgroups.
upb_inttable groups;
));
UPB_BEGIN_EXTERN_C // {
void upb_pbdecoder_init(upb_pbdecoder *d, const upb_pbdecodermethod *method,
upb_status *status);
void upb_pbdecoder_uninit(upb_pbdecoder *d);
void upb_pbdecoder_reset(upb_pbdecoder *d);
const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d);
bool upb_pbdecoder_resetoutput(upb_pbdecoder *d, upb_sink *sink);
upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d);
uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d);
void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts,
const upb_handlers *h);
void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy);
void upb_pbdecodermethod_ref(const upb_pbdecodermethod *m, const void *owner);
void upb_pbdecodermethod_unref(const upb_pbdecodermethod *m, const void *owner);
void upb_pbdecodermethod_donateref(const upb_pbdecodermethod *m,
const void *from, const void *to);
void upb_pbdecodermethod_checkref(const upb_pbdecodermethod *m,
const void *owner);
const upb_handlers *upb_pbdecodermethod_desthandlers(
const upb_pbdecodermethod *m);
const upb_byteshandler *upb_pbdecodermethod_inputhandler(
const upb_pbdecodermethod *m);
bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m);
const upb_pbdecodermethod *upb_pbdecodermethod_new(
const upb_pbdecodermethodopts *opts, const void *owner);
void upb_pbcodecache_init(upb_pbcodecache *c);
void upb_pbcodecache_uninit(upb_pbcodecache *c);
bool upb_pbcodecache_allowjit(const upb_pbcodecache *c);
bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow);
const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod(
upb_pbcodecache *c, const upb_pbdecodermethodopts *opts);
UPB_END_EXTERN_C // }
#ifdef __cplusplus
namespace upb {
namespace pb {
inline Decoder::Decoder(const DecoderMethod* m, Status* s) {
upb_pbdecoder_init(this, m, s);
}
inline Decoder::~Decoder() {
upb_pbdecoder_uninit(this);
}
inline const DecoderMethod* Decoder::method() const {
return upb_pbdecoder_method(this);
}
inline void Decoder::Reset() {
upb_pbdecoder_reset(this);
}
inline uint64_t Decoder::BytesParsed() const {
return upb_pbdecoder_bytesparsed(this);
}
inline bool Decoder::ResetOutput(Sink* sink) {
return upb_pbdecoder_resetoutput(this, sink);
}
inline BytesSink* Decoder::input() {
return upb_pbdecoder_input(this);
}
inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) {
upb_pbdecodermethodopts_init(this, h);
}
inline void DecoderMethodOptions::set_lazy(bool lazy) {
upb_pbdecodermethodopts_setlazy(this, lazy);
}
inline void DecoderMethod::Ref(const void *owner) const {
upb_pbdecodermethod_ref(this, owner);
}
inline void DecoderMethod::Unref(const void *owner) const {
upb_pbdecodermethod_unref(this, owner);
}
inline void DecoderMethod::DonateRef(const void *from, const void *to) const {
upb_pbdecodermethod_donateref(this, from, to);
}
inline void DecoderMethod::CheckRef(const void *owner) const {
upb_pbdecodermethod_checkref(this, owner);
}
inline const Handlers* DecoderMethod::dest_handlers() const {
return upb_pbdecodermethod_desthandlers(this);
}
inline const BytesHandler* DecoderMethod::input_handler() const {
return upb_pbdecodermethod_inputhandler(this);
}
inline bool DecoderMethod::is_native() const {
return upb_pbdecodermethod_isnative(this);
}
// static
inline reffed_ptr<const DecoderMethod> DecoderMethod::New(
const DecoderMethodOptions &opts) {
const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m);
return reffed_ptr<const DecoderMethod>(m, &m);
}
inline CodeCache::CodeCache() {
upb_pbcodecache_init(this);
}
inline CodeCache::~CodeCache() {
upb_pbcodecache_uninit(this);
}
inline bool CodeCache::allow_jit() const {
return upb_pbcodecache_allowjit(this);
}
inline bool CodeCache::set_allow_jit(bool allow) {
return upb_pbcodecache_setallowjit(this, allow);
}
inline const DecoderMethod *CodeCache::GetDecoderMethod(
const DecoderMethodOptions& opts) {
return upb_pbcodecache_getdecodermethod(this, &opts);
}
} // namespace pb
} // namespace upb
#endif // __cplusplus
#endif /* UPB_DECODER_H_ */
// Opcode definitions. The canonical meaning of each opcode is its
// implementation in the interpreter (the JIT is written to match this).
//
// All instructions have the opcode in the low byte.
// Instruction format for most instructions is:
//
// +-------------------+--------+
// | arg (24) | op (8) |
// +-------------------+--------+
//
// Exceptions are indicated below. A few opcodes are multi-word.
typedef enum {
// Opcodes 1-8, 13, 15-18 parse their respective descriptor types.
// Arg for all of these is the upb selector for this field.
#define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type
T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32),
T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64),
#undef T
OP_STARTMSG = 9, // No arg.
OP_ENDMSG = 10, // No arg.
OP_STARTSEQ = 11,
OP_ENDSEQ = 12,
OP_STARTSUBMSG = 14,
OP_ENDSUBMSG = 19,
OP_STARTSTR = 20,
OP_STRING = 21,
OP_ENDSTR = 22,
OP_PUSHTAGDELIM = 23, // No arg.
OP_PUSHLENDELIM = 24, // No arg.
OP_POP = 25, // No arg.
OP_SETDELIM = 26, // No arg.
OP_SETBIGGROUPNUM = 27, // two words: | unused (24) | opc || groupnum (32) |
OP_CHECKDELIM = 28,
OP_CALL = 29,
OP_RET = 30,
OP_BRANCH = 31,
// Different opcodes depending on how many bytes expected.
OP_TAG1 = 32, // | expected tag (16) | jump target (8) | opc (8) |
OP_TAG2 = 33, // | expected tag (16) | jump target (8) | opc (8) |
OP_TAGN = 34, // three words:
// | unused (16) | jump target(8) | opc (8) |
// | expected tag 1 (32) |
// | expected tag 2 (32) |
OP_SETDISPATCH = 35, // N words:
// | unused (24) | opc |
// | upb_inttable* (32 or 64) |
OP_HALT = 36, // No arg.
} opcode;
#define OP_MAX OP_HALT
UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; }
// Method group; represents a set of decoder methods that had their code
// emitted together, and must therefore be freed together. Immutable once
// created. It is possible we may want to expose this to users at some point.
//
// Overall ownership of Decoder objects looks like this:
//
// +----------+
// | | <---> DecoderMethod
// | method |
// CodeCache ---> | group | <---> DecoderMethod
// | |
// | (mgroup) | <---> DecoderMethod
// +----------+
typedef struct {
upb_refcounted base;
// Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod. We own refs on the
// methods.
upb_inttable methods;
// When we add the ability to link to previously existing mgroups, we'll
// need an array of mgroups we reference here, and own refs on them.
// The bytecode for our methods, if any exists. Owned by us.
uint32_t *bytecode;
uint32_t *bytecode_end;
#ifdef UPB_USE_JIT_X64
// JIT-generated machine code, if any.
upb_string_handlerfunc *jit_code;
// The size of the jit_code (required to munmap()).
size_t jit_size;
char *debug_info;
void *dl;
#endif
} mgroup;
// Decoder entry points; used as handlers.
void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint);
void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint);
size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf,
size_t size, const upb_bufhandle *handle);
bool upb_pbdecoder_end(void *closure, const void *handler_data);
// Decoder-internal functions that the JIT calls to handle fallback paths.
int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf,
size_t size, const upb_bufhandle *handle);
size_t upb_pbdecoder_suspend(upb_pbdecoder *d);
int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum,
uint8_t wire_type);
int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected);
int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64);
int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32);
int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64);
void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg);
// Error messages that are shared between the bytecode and JIT decoders.
extern const char *kPbDecoderStackOverflow;
// Access to decoderplan members needed by the decoder.
const char *upb_pbdecoder_getopname(unsigned int op);
// JIT codegen entry point.
void upb_pbdecoder_jit(mgroup *group);
void upb_pbdecoder_freejit(mgroup *group);
// A special label that means "do field dispatch for this message and branch to
// wherever that takes you."
#define LABEL_DISPATCH 0
// A special slot in the dispatch table that stores the epilogue (ENDMSG and/or
// RET) for branching to when we find an appropriate ENDGROUP tag.
#define DISPATCH_ENDMSG 0
// It's important to use this invalid wire type instead of 0 (which is a valid
// wire type).
#define NO_WIRE_TYPE 0xff
// The dispatch table layout is:
// [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ]
//
// If wt1 matches, jump to the 48-bit offset. If wt2 matches, lookup
// (UPB_MAX_FIELDNUMBER + fieldnum) and jump there.
//
// We need two wire types because of packed/non-packed compatibility. A
// primitive repeated field can use either wire type and be valid. While we
// could key the table on fieldnum+wiretype, the table would be 8x sparser.
//
// Storing two wire types in the primary value allows us to quickly rule out
// the second wire type without needing to do a separate lookup (this case is
// less common than an unknown field).
UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1,
uint8_t wt2) {
return (ofs << 16) | (wt2 << 8) | wt1;
}
UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs,
uint8_t *wt1, uint8_t *wt2) {
*wt1 = (uint8_t)dispatch;
*wt2 = (uint8_t)(dispatch >> 8);
*ofs = dispatch >> 16;
}
// All of the functions in decoder.c that return int32_t return values according
// to the following scheme:
// 1. negative values indicate a return code from the following list.
// 2. positive values indicate that error or end of buffer was hit, and
// that the decode function should immediately return the given value
// (the decoder state has already been suspended and is ready to be
// resumed).
#define DECODE_OK -1
#define DECODE_MISMATCH -2 // Used only from checktag_slow().
#define DECODE_ENDGROUP -3 // Used only from checkunknown().
#define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; }
#endif // UPB_DECODER_INT_H_
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* A number of routines for varint manipulation (we keep them all around to
* have multiple approaches available for benchmarking).
*/
#ifndef UPB_VARINT_DECODER_H_
#define UPB_VARINT_DECODER_H_
#include <assert.h>
#include <stdint.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
// A list of types as they are encoded on-the-wire.
typedef enum {
UPB_WIRE_TYPE_VARINT = 0,
UPB_WIRE_TYPE_64BIT = 1,
UPB_WIRE_TYPE_DELIMITED = 2,
UPB_WIRE_TYPE_START_GROUP = 3,
UPB_WIRE_TYPE_END_GROUP = 4,
UPB_WIRE_TYPE_32BIT = 5,
} upb_wiretype_t;
#define UPB_MAX_WIRE_TYPE 5
// The maximum number of bytes that it takes to encode a 64-bit varint.
// Note that with a better encoding this could be 9 (TODO: write up a
// wiki document about this).
#define UPB_PB_VARINT_MAX_LEN 10
// Array of the "native" (ie. non-packed-repeated) wire type for the given a
// descriptor type (upb_descriptortype_t).
extern const uint8_t upb_pb_native_wire_types[];
/* Zig-zag encoding/decoding **************************************************/
UPB_INLINE int32_t upb_zzdec_32(uint32_t n) {
return (n >> 1) ^ -(int32_t)(n & 1);
}
UPB_INLINE int64_t upb_zzdec_64(uint64_t n) {
return (n >> 1) ^ -(int64_t)(n & 1);
}
UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); }
UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); }
/* Decoding *******************************************************************/
// All decoding functions return this struct by value.
typedef struct {
const char *p; // NULL if the varint was unterminated.
uint64_t val;
} upb_decoderet;
// Four functions for decoding a varint of at most eight bytes. They are all
// functionally identical, but are implemented in different ways and likely have
// different performance profiles. We keep them around for performance testing.
//
// Note that these functions may not read byte-by-byte, so they must not be used
// unless there are at least eight bytes left in the buffer!
upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r);
upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r);
upb_decoderet upb_vdecode_max8_wright(upb_decoderet r);
upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r);
// Template for a function that checks the first two bytes with branching
// and dispatches 2-10 bytes with a separate function. Note that this may read
// up to 10 bytes, so it must not be used unless there are at least ten bytes
// left in the buffer!
#define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function) \
UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) { \
uint8_t *p = (uint8_t*)_p; \
if ((*p & 0x80) == 0) { upb_decoderet r = {_p + 1, *p & 0x7fU}; return r; } \
upb_decoderet r = {_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7)}; \
if ((*(p + 1) & 0x80) == 0) return r; \
return decode_max8_function(r); \
}
UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32);
UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64);
UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright);
UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino);
#undef UPB_VARINT_DECODER_CHECK2
// Our canonical functions for decoding varints, based on the currently
// favored best-performing implementations.
UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) {
if (sizeof(long) == 8)
return upb_vdecode_check2_branch64(p);
else
return upb_vdecode_check2_branch32(p);
}
UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) {
return upb_vdecode_max8_massimino(r);
}
/* Encoding *******************************************************************/
UPB_INLINE int upb_value_size(uint64_t val) {
#ifdef __GNUC__
int high_bit = 63 - __builtin_clzll(val); // 0-based, undef if val == 0.
#else
int high_bit = 0;
uint64_t tmp = val;
while(tmp >>= 1) high_bit++;
#endif
return val == 0 ? 1 : high_bit / 8 + 1;
}
// Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN
// bytes long), returning how many bytes were used.
//
// TODO: benchmark and optimize if necessary.
UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) {
if (val == 0) { buf[0] = 0; return 1; }
size_t i = 0;
while (val) {
uint8_t byte = val & 0x7fU;
val >>= 7;
if (val) byte |= 0x80U;
buf[i++] = byte;
}
return i;
}
UPB_INLINE size_t upb_varint_size(uint64_t val) {
char buf[UPB_PB_VARINT_MAX_LEN];
return upb_vencode64(val, buf);
}
// Encodes a 32-bit varint, *not* sign-extended.
UPB_INLINE uint64_t upb_vencode32(uint32_t val) {
char buf[UPB_PB_VARINT_MAX_LEN];
size_t bytes = upb_vencode64(val, buf);
uint64_t ret = 0;
assert(bytes <= 5);
memcpy(&ret, buf, bytes);
assert(ret <= 0xffffffffffU);
return ret;
}
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* UPB_VARINT_DECODER_H_ */
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009-2010 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* Implements a set of upb_handlers that write protobuf data to the binary wire
* format.
*
* This encoder implementation does not have any access to any out-of-band or
* precomputed lengths for submessages, so it must buffer submessages internally
* before it can emit the first byte.
*/
#ifndef UPB_ENCODER_H_
#define UPB_ENCODER_H_
#ifdef __cplusplus
namespace upb {
namespace pb {
class Encoder;
} // namespace pb
} // namespace upb
#endif
UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder);
#define UPB_PBENCODER_MAX_NESTING 100
/* upb::pb::Encoder ***********************************************************/
// The output buffer is divided into segments; a segment is a string of data
// that is "ready to go" -- it does not need any varint lengths inserted into
// the middle. The seams between segments are where varints will be inserted
// once they are known.
//
// We also use the concept of a "run", which is a range of encoded bytes that
// occur at a single submessage level. Every segment contains one or more runs.
//
// A segment can span messages. Consider:
//
// .--Submessage lengths---------.
// | | |
// | V V
// V | |--------------- | |-----------------
// Submessages: | |-----------------------------------------------
// Top-level msg: ------------------------------------------------------------
//
// Segments: ----- ------------------- -----------------
// Runs: *---- *--------------*--- *----------------
// (* marks the start)
//
// Note that the top-level menssage is not in any segment because it does not
// have any length preceding it.
//
// A segment is only interrupted when another length needs to be inserted. So
// observe how the second segment spans both the inner submessage and part of
// the next enclosing message.
typedef struct {
UPB_PRIVATE_FOR_CPP
uint32_t msglen; // The length to varint-encode before this segment.
uint32_t seglen; // Length of the segment.
} upb_pb_encoder_segment;
UPB_DEFINE_CLASS0(upb::pb::Encoder,
public:
Encoder(const upb::Handlers* handlers);
~Encoder();
static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* msg);
// Resets the state of the printer, so that it will expect to begin a new
// document.
void Reset();
// Resets the output pointer which will serve as our closure.
void ResetOutput(BytesSink* output);
// The input to the encoder.
Sink* input();
private:
UPB_DISALLOW_COPY_AND_ASSIGN(Encoder);
,
UPB_DEFINE_STRUCT0(upb_pb_encoder, UPB_QUOTE(
// Our input and output.
upb_sink input_;
upb_bytessink *output_;
// The "subclosure" -- used as the inner closure as part of the bytessink
// protocol.
void *subc;
// The output buffer and limit, and our current write position. "buf"
// initially points to "initbuf", but is dynamically allocated if we need to
// grow beyond the initial size.
char *buf, *ptr, *limit;
// The beginning of the current run, or undefined if we are at the top level.
char *runbegin;
// The list of segments we are accumulating.
upb_pb_encoder_segment *segbuf, *segptr, *seglimit;
// The stack of enclosing submessages. Each entry in the stack points to the
// segment where this submessage's length is being accumulated.
int stack[UPB_PBENCODER_MAX_NESTING], *top, *stacklimit;
// Depth of startmsg/endmsg calls.
int depth;
// Initial buffers for the output buffer and segment buffer. If we outgrow
// these we will dynamically allocate bigger ones.
char initbuf[256];
upb_pb_encoder_segment seginitbuf[32];
)));
UPB_BEGIN_EXTERN_C
const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m,
const void *owner);
void upb_pb_encoder_reset(upb_pb_encoder *e);
upb_sink *upb_pb_encoder_input(upb_pb_encoder *p);
void upb_pb_encoder_init(upb_pb_encoder *e, const upb_handlers *h);
void upb_pb_encoder_resetoutput(upb_pb_encoder *e, upb_bytessink *output);
void upb_pb_encoder_uninit(upb_pb_encoder *e);
UPB_END_EXTERN_C
#ifdef __cplusplus
namespace upb {
namespace pb {
inline Encoder::Encoder(const upb::Handlers* handlers) {
upb_pb_encoder_init(this, handlers);
}
inline Encoder::~Encoder() {
upb_pb_encoder_uninit(this);
}
inline void Encoder::Reset() {
upb_pb_encoder_reset(this);
}
inline void Encoder::ResetOutput(BytesSink* output) {
upb_pb_encoder_resetoutput(this, output);
}
inline Sink* Encoder::input() {
return upb_pb_encoder_input(this);
}
inline reffed_ptr<const Handlers> Encoder::NewHandlers(
const upb::MessageDef *md) {
const Handlers* h = upb_pb_encoder_newhandlers(md, &h);
return reffed_ptr<const Handlers>(h, &h);
}
} // namespace pb
} // namespace upb
#endif
#endif /* UPB_ENCODER_H_ */
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011-2012 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* upb's core components like upb_decoder and upb_msg are carefully designed to
* avoid depending on each other for maximum orthogonality. In other words,
* you can use a upb_decoder to decode into *any* kind of structure; upb_msg is
* just one such structure. A upb_msg can be serialized/deserialized into any
* format, protobuf binary format is just one such format.
*
* However, for convenience we provide functions here for doing common
* operations like deserializing protobuf binary format into a upb_msg. The
* compromise is that this file drags in almost all of upb as a dependency,
* which could be undesirable if you're trying to use a trimmed-down build of
* upb.
*
* While these routines are convenient, they do not reuse any encoding/decoding
* state. For example, if a decoder is JIT-based, it will be re-JITted every
* time these functions are called. For this reason, if you are parsing lots
* of data and efficiency is an issue, these may not be the best functions to
* use (though they are useful for prototyping, before optimizing).
*/
#ifndef UPB_GLUE_H
#define UPB_GLUE_H
#include <stdbool.h>
#ifdef __cplusplus
extern "C" {
#endif
// Loads all defs from the given protobuf binary descriptor, setting default
// accessors and a default layout on all messages. The caller owns the
// returned array of defs, which will be of length *n. On error NULL is
// returned and status is set (if non-NULL).
upb_def **upb_load_defs_from_descriptor(const char *str, size_t len, int *n,
void *owner, upb_status *status);
// Like the previous but also adds the loaded defs to the given symtab.
bool upb_load_descriptor_into_symtab(upb_symtab *symtab, const char *str,
size_t len, upb_status *status);
// Like the previous but also reads the descriptor from the given filename.
bool upb_load_descriptor_file_into_symtab(upb_symtab *symtab, const char *fname,
upb_status *status);
// Reads the given filename into a character string, returning NULL if there
// was an error.
char *upb_readfile(const char *filename, size_t *len);
#ifdef __cplusplus
} /* extern "C" */
namespace upb {
// All routines that load descriptors expect the descriptor to be a
// FileDescriptorSet.
inline bool LoadDescriptorFileIntoSymtab(SymbolTable* s, const char *fname,
Status* status) {
return upb_load_descriptor_file_into_symtab(s, fname, status);
}
inline bool LoadDescriptorIntoSymtab(SymbolTable* s, const char* str,
size_t len, Status* status) {
return upb_load_descriptor_into_symtab(s, str, len, status);
}
// Templated so it can accept both string and std::string.
template <typename T>
bool LoadDescriptorIntoSymtab(SymbolTable* s, const T& desc, Status* status) {
return upb_load_descriptor_into_symtab(s, desc.c_str(), desc.size(), status);
}
} // namespace upb
#endif
#endif
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*/
#ifndef UPB_TEXT_H_
#define UPB_TEXT_H_
#ifdef __cplusplus
namespace upb {
namespace pb {
class TextPrinter;
} // namespace pb
} // namespace upb
#endif
UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter);
UPB_DEFINE_CLASS0(upb::pb::TextPrinter,
public:
// The given handlers must have come from NewHandlers(). It must outlive the
// TextPrinter.
explicit TextPrinter(const upb::Handlers* handlers);
void SetSingleLineMode(bool single_line);
bool ResetOutput(BytesSink* output);
Sink* input();
// If handler caching becomes a requirement we can add a code cache as in
// decoder.h
static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md);
private:
,
UPB_DEFINE_STRUCT0(upb_textprinter,
upb_sink input_;
upb_bytessink *output_;
int indent_depth_;
bool single_line_;
void *subc;
));
UPB_BEGIN_EXTERN_C // {
// C API.
void upb_textprinter_init(upb_textprinter *p, const upb_handlers *h);
void upb_textprinter_uninit(upb_textprinter *p);
bool upb_textprinter_resetoutput(upb_textprinter *p, upb_bytessink *output);
void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line);
upb_sink *upb_textprinter_input(upb_textprinter *p);
const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m,
const void *owner);
UPB_END_EXTERN_C // }
#ifdef __cplusplus
namespace upb {
namespace pb {
inline TextPrinter::TextPrinter(const upb::Handlers* handlers) {
upb_textprinter_init(this, handlers);
}
inline void TextPrinter::SetSingleLineMode(bool single_line) {
upb_textprinter_setsingleline(this, single_line);
}
inline bool TextPrinter::ResetOutput(BytesSink* output) {
return upb_textprinter_resetoutput(this, output);
}
inline Sink* TextPrinter::input() {
return upb_textprinter_input(this);
}
inline reffed_ptr<const Handlers> TextPrinter::NewHandlers(
const MessageDef *md) {
const Handlers* h = upb_textprinter_newhandlers(md, &h);
return reffed_ptr<const Handlers>(h, &h);
}
} // namespace pb
} // namespace upb
#endif
#endif /* UPB_TEXT_H_ */
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2014 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* upb::json::Parser can parse JSON according to a specific schema.
* Support for parsing arbitrary JSON (schema-less) will be added later.
*/
#ifndef UPB_JSON_PARSER_H_
#define UPB_JSON_PARSER_H_
#ifdef __cplusplus
namespace upb {
namespace json {
class Parser;
} // namespace json
} // namespace upb
#endif
UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser);
// Internal-only struct used by the parser.
typedef struct {
UPB_PRIVATE_FOR_CPP
upb_sink sink;
const upb_msgdef *m;
const upb_fielddef *f;
} upb_jsonparser_frame;
/* upb::json::Parser **********************************************************/
#define UPB_JSON_MAX_DEPTH 64
// Parses an incoming BytesStream, pushing the results to the destination sink.
UPB_DEFINE_CLASS0(upb::json::Parser,
public:
Parser(Status* status);
~Parser();
// Resets the state of the printer, so that it will expect to begin a new
// document.
void Reset();
// Resets the output pointer which will serve as our closure. Implies
// Reset().
void ResetOutput(Sink* output);
// The input to the printer.
BytesSink* input();
,
UPB_DEFINE_STRUCT0(upb_json_parser,
upb_byteshandler input_handler_;
upb_bytessink input_;
// Stack to track the JSON scopes we are in.
upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH];
upb_jsonparser_frame *top;
upb_jsonparser_frame *limit;
upb_status *status;
// Ragel's internal parsing stack for the parsing state machine.
int current_state;
int parser_stack[UPB_JSON_MAX_DEPTH];
int parser_top;
// A pointer to the beginning of whatever text we are currently parsing.
const char *text_begin;
// We have to accumulate text for member names, integers, unicode escapes, and
// base64 partial results.
const char *accumulated;
size_t accumulated_len;
// TODO: add members and code for allocating a buffer when necessary (when the
// member spans input buffers or contains escapes).
));
UPB_BEGIN_EXTERN_C
void upb_json_parser_init(upb_json_parser *p, upb_status *status);
void upb_json_parser_uninit(upb_json_parser *p);
void upb_json_parser_reset(upb_json_parser *p);
void upb_json_parser_resetoutput(upb_json_parser *p, upb_sink *output);
upb_bytessink *upb_json_parser_input(upb_json_parser *p);
UPB_END_EXTERN_C
#ifdef __cplusplus
namespace upb {
namespace json {
inline Parser::Parser(Status* status) { upb_json_parser_init(this, status); }
inline Parser::~Parser() { upb_json_parser_uninit(this); }
inline void Parser::Reset() { upb_json_parser_reset(this); }
inline void Parser::ResetOutput(Sink* output) {
upb_json_parser_resetoutput(this, output);
}
inline BytesSink* Parser::input() {
return upb_json_parser_input(this);
}
} // namespace json
} // namespace upb
#endif
#endif // UPB_JSON_PARSER_H_
/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2014 Google Inc. See LICENSE for details.
* Author: Josh Haberman <jhaberman@gmail.com>
*
* upb::json::Printer allows you to create handlers that emit JSON
* according to a specific protobuf schema.
*/
#ifndef UPB_JSON_TYPED_PRINTER_H_
#define UPB_JSON_TYPED_PRINTER_H_
#ifdef __cplusplus
namespace upb {
namespace json {
class Printer;
} // namespace json
} // namespace upb
#endif
UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer);
/* upb::json::Printer *********************************************************/
// Prints an incoming stream of data to a BytesSink in JSON format.
UPB_DEFINE_CLASS0(upb::json::Printer,
public:
Printer(const upb::Handlers* handlers);
~Printer();
// Resets the state of the printer, so that it will expect to begin a new
// document.
void Reset();
// Resets the output pointer which will serve as our closure. Implies
// Reset().
void ResetOutput(BytesSink* output);
// The input to the printer.
Sink* input();
// Returns handlers for printing according to the specified schema.
static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md);
,
UPB_DEFINE_STRUCT0(upb_json_printer,
upb_sink input_;
// BytesSink closure.
void *subc_;
upb_bytessink *output_;
// We track the depth so that we know when to emit startstr/endstr on the
// output.
int depth_;
// Have we emitted the first element? This state is necessary to emit commas
// without leaving a trailing comma in arrays/maps. We keep this state per
// frame depth.
//
// Why max_depth * 2? UPB_MAX_HANDLER_DEPTH counts depth as nested messages.
// We count frames (contexts in which we separate elements by commas) as both
// repeated fields and messages (maps), and the worst case is a
// message->repeated field->submessage->repeated field->... nesting.
bool first_elem_[UPB_MAX_HANDLER_DEPTH * 2];
));
UPB_BEGIN_EXTERN_C // {
// Native C API.
void upb_json_printer_init(upb_json_printer *p, const upb_handlers *h);
void upb_json_printer_uninit(upb_json_printer *p);
void upb_json_printer_reset(upb_json_printer *p);
void upb_json_printer_resetoutput(upb_json_printer *p, upb_bytessink *output);
upb_sink *upb_json_printer_input(upb_json_printer *p);
const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md,
const void *owner);
UPB_END_EXTERN_C // }
#ifdef __cplusplus
namespace upb {
namespace json {
inline Printer::Printer(const upb::Handlers* handlers) {
upb_json_printer_init(this, handlers);
}
inline Printer::~Printer() { upb_json_printer_uninit(this); }
inline void Printer::Reset() { upb_json_printer_reset(this); }
inline void Printer::ResetOutput(BytesSink* output) {
upb_json_printer_resetoutput(this, output);
}
inline Sink* Printer::input() { return upb_json_printer_input(this); }
inline reffed_ptr<const Handlers> Printer::NewHandlers(
const upb::MessageDef *md) {
const Handlers* h = upb_json_printer_newhandlers(md, &h);
return reffed_ptr<const Handlers>(h, &h);
}
} // namespace json
} // namespace upb
#endif
#endif // UPB_JSON_TYPED_PRINTER_H_