Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
574 lines
18 KiB
574 lines
18 KiB
/* |
|
* upb - a minimalist implementation of protocol buffers. |
|
* |
|
* Copyright (c) 2009 Google Inc. See LICENSE for details. |
|
* Author: Josh Haberman <jhaberman@gmail.com> |
|
* |
|
* There are a few printf's strewn throughout this file, uncommenting them |
|
* can be useful for debugging. |
|
*/ |
|
|
|
#include "upb/table.h" |
|
|
|
#include <assert.h> |
|
#include <stdlib.h> |
|
#include <string.h> |
|
|
|
static const double MAX_LOAD = 0.85; |
|
|
|
// The minimum percentage of an array part that we will allow. This is a |
|
// speed/memory-usage tradeoff (though it's not straightforward because of |
|
// cache effects). The lower this is, the more memory we'll use. |
|
static const double MIN_DENSITY = 0.1; |
|
|
|
static uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed); |
|
|
|
/* Base table (shared code) ***************************************************/ |
|
|
|
static uint32_t upb_table_size(upb_table *t) { return 1 << t->size_lg2; } |
|
static size_t upb_table_entrysize(upb_table *t) { return t->entry_size; } |
|
static size_t upb_table_valuesize(upb_table *t) { return t->value_size; } |
|
|
|
void upb_table_init(upb_table *t, uint32_t size, uint16_t entry_size) { |
|
t->count = 0; |
|
t->entry_size = entry_size; |
|
t->size_lg2 = 1; |
|
while(upb_table_size(t) < size) t->size_lg2++; |
|
size_t bytes = upb_table_size(t) * t->entry_size; |
|
t->mask = upb_table_size(t) - 1; |
|
t->entries = malloc(bytes); |
|
} |
|
|
|
void upb_table_free(upb_table *t) { free(t->entries); } |
|
|
|
/* upb_inttable ***************************************************************/ |
|
|
|
static upb_inttable_entry *intent(upb_inttable *t, int32_t i) { |
|
//printf("looking up int entry %d, size of entry: %d\n", i, t->t.entry_size); |
|
return UPB_INDEX(t->t.entries, i, t->t.entry_size); |
|
} |
|
|
|
static uint32_t upb_inttable_hashtablesize(upb_inttable *t) { |
|
return upb_table_size(&t->t); |
|
} |
|
|
|
void upb_inttable_sizedinit(upb_inttable *t, uint32_t arrsize, uint32_t hashsize, |
|
uint16_t value_size) { |
|
size_t entsize = _upb_inttable_entrysize(value_size); |
|
upb_table_init(&t->t, hashsize, entsize); |
|
for (uint32_t i = 0; i < upb_table_size(&t->t); i++) { |
|
upb_inttable_entry *e = intent(t, i); |
|
e->hdr.key = 0; |
|
e->hdr.next = UPB_END_OF_CHAIN; |
|
e->val.has_entry = 0; |
|
} |
|
t->t.value_size = value_size; |
|
// Always make the array part at least 1 long, so that we know key 0 |
|
// won't be in the hash part (which lets us speed up that code path). |
|
t->array_size = UPB_MAX(1, arrsize); |
|
t->array = malloc(upb_table_valuesize(&t->t) * t->array_size); |
|
t->array_count = 0; |
|
for (uint32_t i = 0; i < t->array_size; i++) { |
|
upb_inttable_value *val = UPB_INDEX(t->array, i, upb_table_valuesize(&t->t)); |
|
val->has_entry = false; |
|
} |
|
} |
|
|
|
void upb_inttable_init(upb_inttable *t, uint32_t hashsize, uint16_t value_size) { |
|
upb_inttable_sizedinit(t, 0, hashsize, value_size); |
|
} |
|
|
|
void upb_inttable_free(upb_inttable *t) { |
|
upb_table_free(&t->t); |
|
free(t->array); |
|
} |
|
|
|
static uint32_t empty_intbucket(upb_inttable *table) |
|
{ |
|
// TODO: does it matter that this is biased towards the front of the table? |
|
for(uint32_t i = 0; i < upb_inttable_hashtablesize(table); i++) { |
|
upb_inttable_entry *e = intent(table, i); |
|
if(!e->val.has_entry) return i; |
|
} |
|
assert(false); |
|
return 0; |
|
} |
|
|
|
// The insert routines have a lot more code duplication between int/string |
|
// variants than I would like, but there's just a bit too much that varies to |
|
// parameterize them. |
|
static void intinsert(upb_inttable *t, uint32_t key, const void *val) { |
|
assert(upb_inttable_lookup(t, key) == NULL); |
|
upb_inttable_value *table_val; |
|
if (_upb_inttable_isarrkey(t, key)) { |
|
table_val = UPB_INDEX(t->array, key, upb_table_valuesize(&t->t)); |
|
t->array_count++; |
|
//printf("Inserting key %d to Array part! %p\n", key, table_val); |
|
} else { |
|
t->t.count++; |
|
uint32_t bucket = _upb_inttable_bucket(t, key); |
|
upb_inttable_entry *table_e = intent(t, bucket); |
|
//printf("Hash part! Inserting into bucket %d?\n", bucket); |
|
if(table_e->val.has_entry) { /* Collision. */ |
|
//printf("Collision!\n"); |
|
if(bucket == _upb_inttable_bucket(t, table_e->hdr.key)) { |
|
/* Existing element is in its main posisiton. Find an empty slot to |
|
* place our new element and append it to this key's chain. */ |
|
uint32_t empty_bucket = empty_intbucket(t); |
|
while (table_e->hdr.next != UPB_END_OF_CHAIN) |
|
table_e = intent(t, table_e->hdr.next); |
|
table_e->hdr.next = empty_bucket; |
|
table_e = intent(t, empty_bucket); |
|
} else { |
|
/* Existing element is not in its main position. Move it to an empty |
|
* slot and put our element in its main position. */ |
|
uint32_t empty_bucket = empty_intbucket(t); |
|
uint32_t evictee_bucket = _upb_inttable_bucket(t, table_e->hdr.key); |
|
memcpy(intent(t, empty_bucket), table_e, t->t.entry_size); /* copies next */ |
|
upb_inttable_entry *evictee_e = intent(t, evictee_bucket); |
|
while(1) { |
|
assert(evictee_e->val.has_entry); |
|
assert(evictee_e->hdr.next != UPB_END_OF_CHAIN); |
|
if(evictee_e->hdr.next == bucket) { |
|
evictee_e->hdr.next = empty_bucket; |
|
break; |
|
} |
|
evictee_e = intent(t, evictee_e->hdr.next); |
|
} |
|
/* table_e remains set to our mainpos. */ |
|
} |
|
} |
|
//printf("Inserting! to:%p, copying to: %p\n", table_e, &table_e->val); |
|
table_val = &table_e->val; |
|
table_e->hdr.key = key; |
|
table_e->hdr.next = UPB_END_OF_CHAIN; |
|
} |
|
memcpy(table_val, val, upb_table_valuesize(&t->t)); |
|
table_val->has_entry = true; |
|
assert(upb_inttable_lookup(t, key) == table_val); |
|
} |
|
|
|
// Insert all elements from src into dest. Caller ensures that a resize will |
|
// not be necessary. |
|
static void upb_inttable_insertall(upb_inttable *dst, upb_inttable *src) { |
|
for(upb_inttable_iter i = upb_inttable_begin(src); !upb_inttable_done(i); |
|
i = upb_inttable_next(src, i)) { |
|
//printf("load check: %d %d\n", upb_table_count(&dst->t), upb_inttable_hashtablesize(dst)); |
|
assert((double)(upb_table_count(&dst->t)) / |
|
upb_inttable_hashtablesize(dst) <= MAX_LOAD); |
|
intinsert(dst, upb_inttable_iter_key(i), upb_inttable_iter_value(i)); |
|
} |
|
} |
|
|
|
void upb_inttable_insert(upb_inttable *t, uint32_t key, const void *val) { |
|
if((double)(t->t.count + 1) / upb_inttable_hashtablesize(t) > MAX_LOAD) { |
|
//printf("RESIZE!\n"); |
|
// Need to resize. Allocate new table with double the size of however many |
|
// elements we have now, add old elements to it. We create the new hash |
|
// table without an array part, even if the old table had an array part. |
|
// If/when the user calls upb_inttable_compact() again, we'll create an |
|
// array part then. |
|
upb_inttable new_table; |
|
//printf("Old table count=%d, size=%d\n", upb_inttable_count(t), upb_inttable_hashtablesize(t)); |
|
upb_inttable_init(&new_table, upb_inttable_count(t)*2, upb_table_valuesize(&t->t)); |
|
upb_inttable_insertall(&new_table, t); |
|
upb_inttable_free(t); |
|
*t = new_table; |
|
} |
|
intinsert(t, key, val); |
|
} |
|
|
|
void upb_inttable_compact(upb_inttable *t) { |
|
// Find the largest array part we can that satisfies the MIN_DENSITY |
|
// definition. For now we just count down powers of two. |
|
uint32_t largest_key = 0; |
|
for(upb_inttable_iter i = upb_inttable_begin(t); !upb_inttable_done(i); |
|
i = upb_inttable_next(t, i)) { |
|
largest_key = UPB_MAX(largest_key, upb_inttable_iter_key(i)); |
|
} |
|
int lg2_array = 0; |
|
while ((1UL << lg2_array) < largest_key) ++lg2_array; |
|
++lg2_array; // Undo the first iteration. |
|
size_t array_size; |
|
int array_count = 0; |
|
while (lg2_array > 0) { |
|
array_size = (1 << --lg2_array); |
|
//printf("Considering size %d (btw, our table has %d things total)\n", array_size, upb_inttable_count(t)); |
|
if ((double)upb_inttable_count(t) / array_size < MIN_DENSITY) { |
|
// Even if 100% of the keys were in the array pary, an array of this |
|
// size would not be dense enough. |
|
continue; |
|
} |
|
array_count = 0; |
|
for(upb_inttable_iter i = upb_inttable_begin(t); !upb_inttable_done(i); |
|
i = upb_inttable_next(t, i)) { |
|
if (upb_inttable_iter_key(i) < array_size) |
|
array_count++; |
|
} |
|
//printf("There would be %d things in that array\n", array_count); |
|
if ((double)array_count / array_size >= MIN_DENSITY) break; |
|
} |
|
upb_inttable new_table; |
|
int hash_size = (upb_inttable_count(t) - array_count + 1) / MAX_LOAD; |
|
//printf("array_count: %d, array_size: %d, hash_size: %d, table size: %d\n", array_count, array_size, hash_size, upb_inttable_count(t)); |
|
upb_inttable_sizedinit(&new_table, array_size, hash_size, |
|
upb_table_valuesize(&t->t)); |
|
//printf("For %d things, using array size=%d, hash_size = %d\n", upb_inttable_count(t), array_size, hash_size); |
|
upb_inttable_insertall(&new_table, t); |
|
upb_inttable_free(t); |
|
*t = new_table; |
|
} |
|
|
|
upb_inttable_iter upb_inttable_begin(upb_inttable *t) { |
|
upb_inttable_iter iter = {-1, NULL, true}; // -1 will overflow to 0 on the first iteration. |
|
return upb_inttable_next(t, iter); |
|
} |
|
|
|
upb_inttable_iter upb_inttable_next(upb_inttable *t, upb_inttable_iter iter) { |
|
const size_t hdrsize = sizeof(upb_inttable_header); |
|
const size_t entsize = upb_table_entrysize(&t->t); |
|
if (iter.array_part) { |
|
while (++iter.key < t->array_size) { |
|
//printf("considering value %d\n", iter.key); |
|
iter.value = UPB_INDEX(t->array, iter.key, t->t.value_size); |
|
if (iter.value->has_entry) return iter; |
|
} |
|
//printf("Done with array part!\n"); |
|
iter.array_part = false; |
|
// Point to the value of the table[-1] entry. |
|
iter.value = UPB_INDEX(intent(t, -1), 1, hdrsize); |
|
} |
|
void *end = intent(t, upb_inttable_hashtablesize(t)); |
|
// Point to the entry for the value that was previously in iter. |
|
upb_inttable_entry *e = UPB_INDEX(iter.value, -1, hdrsize); |
|
do { |
|
e = UPB_INDEX(e, 1, entsize); |
|
//printf("considering value %p (val: %p)\n", e, &e->val); |
|
if(e == end) { |
|
//printf("No values.\n"); |
|
iter.value = NULL; |
|
return iter; |
|
} |
|
} while(!e->val.has_entry); |
|
//printf("USING VALUE! %p\n", e); |
|
iter.key = e->hdr.key; |
|
iter.value = &e->val; |
|
return iter; |
|
} |
|
|
|
|
|
/* upb_strtable ***************************************************************/ |
|
|
|
static upb_strtable_entry *strent(upb_strtable *t, int32_t i) { |
|
//fprintf(stderr, "i: %d, table_size: %d\n", i, upb_table_size(&t->t)); |
|
assert(i <= (int32_t)upb_table_size(&t->t)); |
|
return UPB_INDEX(t->t.entries, i, t->t.entry_size); |
|
} |
|
|
|
static uint32_t upb_strtable_size(upb_strtable *t) { |
|
return upb_table_size(&t->t); |
|
} |
|
|
|
void upb_strtable_init(upb_strtable *t, uint32_t size, uint16_t valuesize) { |
|
t->t.value_size = valuesize; |
|
size_t entsize = upb_align_up(sizeof(upb_strtable_header) + valuesize, 8); |
|
upb_table_init(&t->t, size, entsize); |
|
for (uint32_t i = 0; i < upb_table_size(&t->t); i++) { |
|
upb_strtable_entry *e = strent(t, i); |
|
e->hdr.key = NULL; |
|
e->hdr.next = UPB_END_OF_CHAIN; |
|
} |
|
} |
|
|
|
void upb_strtable_free(upb_strtable *t) { |
|
// Free keys from the strtable. |
|
upb_strtable_iter i; |
|
for(upb_strtable_begin(&i, t); !upb_strtable_done(&i); upb_strtable_next(&i)) |
|
free((char*)upb_strtable_iter_key(&i)); |
|
upb_table_free(&t->t); |
|
} |
|
|
|
static uint32_t strtable_bucket(upb_strtable *t, const char *key) { |
|
uint32_t hash = MurmurHash2(key, strlen(key), 0); |
|
return (hash & t->t.mask); |
|
} |
|
|
|
void *upb_strtable_lookup(upb_strtable *t, const char *key) { |
|
uint32_t bucket = strtable_bucket(t, key); |
|
upb_strtable_entry *e; |
|
do { |
|
e = strent(t, bucket); |
|
if(e->hdr.key && strcmp(e->hdr.key, key) == 0) return &e->val; |
|
} while((bucket = e->hdr.next) != UPB_END_OF_CHAIN); |
|
return NULL; |
|
} |
|
|
|
void *upb_strtable_lookupl(upb_strtable *t, const char *key, size_t len) { |
|
// TODO: improve. |
|
char key2[len+1]; |
|
memcpy(key2, key, len); |
|
key2[len] = '\0'; |
|
return upb_strtable_lookup(t, key2); |
|
} |
|
|
|
static uint32_t empty_strbucket(upb_strtable *table) { |
|
// TODO: does it matter that this is biased towards the front of the table? |
|
for(uint32_t i = 0; i < upb_strtable_size(table); i++) { |
|
upb_strtable_entry *e = strent(table, i); |
|
if(!e->hdr.key) return i; |
|
} |
|
assert(false); |
|
return 0; |
|
} |
|
|
|
static void strinsert(upb_strtable *t, const char *key, const void *val) { |
|
assert(upb_strtable_lookup(t, key) == NULL); |
|
t->t.count++; |
|
uint32_t bucket = strtable_bucket(t, key); |
|
upb_strtable_entry *table_e = strent(t, bucket); |
|
if(table_e->hdr.key) { /* Collision. */ |
|
if(bucket == strtable_bucket(t, table_e->hdr.key)) { |
|
/* Existing element is in its main posisiton. Find an empty slot to |
|
* place our new element and append it to this key's chain. */ |
|
uint32_t empty_bucket = empty_strbucket(t); |
|
while (table_e->hdr.next != UPB_END_OF_CHAIN) |
|
table_e = strent(t, table_e->hdr.next); |
|
table_e->hdr.next = empty_bucket; |
|
table_e = strent(t, empty_bucket); |
|
} else { |
|
/* Existing element is not in its main position. Move it to an empty |
|
* slot and put our element in its main position. */ |
|
uint32_t empty_bucket = empty_strbucket(t); |
|
uint32_t evictee_bucket = strtable_bucket(t, table_e->hdr.key); |
|
memcpy(strent(t, empty_bucket), table_e, t->t.entry_size); /* copies next */ |
|
upb_strtable_entry *evictee_e = strent(t, evictee_bucket); |
|
while(1) { |
|
assert(evictee_e->hdr.key); |
|
assert(evictee_e->hdr.next != UPB_END_OF_CHAIN); |
|
if(evictee_e->hdr.next == bucket) { |
|
evictee_e->hdr.next = empty_bucket; |
|
break; |
|
} |
|
evictee_e = strent(t, evictee_e->hdr.next); |
|
} |
|
/* table_e remains set to our mainpos. */ |
|
} |
|
} |
|
//fprintf(stderr, "val: %p\n", val); |
|
//fprintf(stderr, "val size: %d\n", t->t.value_size); |
|
memcpy(&table_e->val, val, t->t.value_size); |
|
table_e->hdr.key = strdup(key); |
|
table_e->hdr.next = UPB_END_OF_CHAIN; |
|
//fprintf(stderr, "Looking up, string=%s...\n", key); |
|
assert(upb_strtable_lookup(t, key) == &table_e->val); |
|
//printf("Yay!\n"); |
|
} |
|
|
|
void upb_strtable_insert(upb_strtable *t, const char *key, const void *val) { |
|
if((double)(t->t.count + 1) / upb_strtable_size(t) > MAX_LOAD) { |
|
// Need to resize. New table of double the size, add old elements to it. |
|
//printf("RESIZE!!\n"); |
|
upb_strtable new_table; |
|
upb_strtable_init(&new_table, upb_strtable_size(t)*2, t->t.value_size); |
|
upb_strtable_iter i; |
|
upb_strtable_begin(&i, t); |
|
for(; !upb_strtable_done(&i); upb_strtable_next(&i)) { |
|
strinsert(&new_table, |
|
upb_strtable_iter_key(&i), |
|
upb_strtable_iter_value(&i)); |
|
} |
|
upb_strtable_free(t); |
|
*t = new_table; |
|
} |
|
strinsert(t, key, val); |
|
} |
|
|
|
void upb_strtable_begin(upb_strtable_iter *i, upb_strtable *t) { |
|
i->e = strent(t, -1); |
|
i->t = t; |
|
upb_strtable_next(i); |
|
} |
|
|
|
void upb_strtable_next(upb_strtable_iter *i) { |
|
upb_strtable_entry *end = strent(i->t, upb_strtable_size(i->t)); |
|
upb_strtable_entry *cur = i->e; |
|
do { |
|
cur = (void*)((char*)cur + i->t->t.entry_size); |
|
if(cur == end) { i->e = NULL; return; } |
|
} while(cur->hdr.key == NULL); |
|
i->e = cur; |
|
} |
|
|
|
#ifdef UPB_UNALIGNED_READS_OK |
|
//----------------------------------------------------------------------------- |
|
// MurmurHash2, by Austin Appleby (released as public domain). |
|
// Reformatted and C99-ified by Joshua Haberman. |
|
// Note - This code makes a few assumptions about how your machine behaves - |
|
// 1. We can read a 4-byte value from any address without crashing |
|
// 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t |
|
// And it has a few limitations - |
|
// 1. It will not work incrementally. |
|
// 2. It will not produce the same results on little-endian and big-endian |
|
// machines. |
|
static uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) |
|
{ |
|
// 'm' and 'r' are mixing constants generated offline. |
|
// They're not really 'magic', they just happen to work well. |
|
const uint32_t m = 0x5bd1e995; |
|
const int32_t r = 24; |
|
|
|
// Initialize the hash to a 'random' value |
|
uint32_t h = seed ^ len; |
|
|
|
// Mix 4 bytes at a time into the hash |
|
const uint8_t * data = (const uint8_t *)key; |
|
while(len >= 4) { |
|
uint32_t k = *(uint32_t *)data; |
|
|
|
k *= m; |
|
k ^= k >> r; |
|
k *= m; |
|
|
|
h *= m; |
|
h ^= k; |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
// Handle the last few bytes of the input array |
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
|
|
// Do a few final mixes of the hash to ensure the last few |
|
// bytes are well-incorporated. |
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} |
|
|
|
#else // !UPB_UNALIGNED_READS_OK |
|
|
|
//----------------------------------------------------------------------------- |
|
// MurmurHashAligned2, by Austin Appleby |
|
// Same algorithm as MurmurHash2, but only does aligned reads - should be safer |
|
// on certain platforms. |
|
// Performance will be lower than MurmurHash2 |
|
|
|
#define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } |
|
|
|
static uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) |
|
{ |
|
const uint32_t m = 0x5bd1e995; |
|
const int32_t r = 24; |
|
const uint8_t * data = (const uint8_t *)key; |
|
uint32_t h = seed ^ len; |
|
uint8_t align = (uintptr_t)data & 3; |
|
|
|
if(align && (len >= 4)) { |
|
// Pre-load the temp registers |
|
uint32_t t = 0, d = 0; |
|
|
|
switch(align) { |
|
case 1: t |= data[2] << 16; |
|
case 2: t |= data[1] << 8; |
|
case 3: t |= data[0]; |
|
} |
|
|
|
t <<= (8 * align); |
|
|
|
data += 4-align; |
|
len -= 4-align; |
|
|
|
int32_t sl = 8 * (4-align); |
|
int32_t sr = 8 * align; |
|
|
|
// Mix |
|
|
|
while(len >= 4) { |
|
d = *(uint32_t *)data; |
|
t = (t >> sr) | (d << sl); |
|
|
|
uint32_t k = t; |
|
|
|
MIX(h,k,m); |
|
|
|
t = d; |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
// Handle leftover data in temp registers |
|
|
|
d = 0; |
|
|
|
if(len >= align) { |
|
switch(align) { |
|
case 3: d |= data[2] << 16; |
|
case 2: d |= data[1] << 8; |
|
case 1: d |= data[0]; |
|
} |
|
|
|
uint32_t k = (t >> sr) | (d << sl); |
|
MIX(h,k,m); |
|
|
|
data += align; |
|
len -= align; |
|
|
|
//---------- |
|
// Handle tail bytes |
|
|
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
} else { |
|
switch(len) { |
|
case 3: d |= data[2] << 16; |
|
case 2: d |= data[1] << 8; |
|
case 1: d |= data[0]; |
|
case 0: h ^= (t >> sr) | (d << sl); h *= m; |
|
} |
|
} |
|
|
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} else { |
|
while(len >= 4) { |
|
uint32_t k = *(uint32_t *)data; |
|
|
|
MIX(h,k,m); |
|
|
|
data += 4; |
|
len -= 4; |
|
} |
|
|
|
//---------- |
|
// Handle tail bytes |
|
|
|
switch(len) { |
|
case 3: h ^= data[2] << 16; |
|
case 2: h ^= data[1] << 8; |
|
case 1: h ^= data[0]; h *= m; |
|
}; |
|
|
|
h ^= h >> 13; |
|
h *= m; |
|
h ^= h >> 15; |
|
|
|
return h; |
|
} |
|
} |
|
#undef MIX |
|
|
|
#endif // UPB_UNALIGNED_READS_OK
|
|
|