Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
413 lines
12 KiB
413 lines
12 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2008 Google Inc. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
/** |
|
* @fileoverview This file contains helper code used by jspb.utils to |
|
* handle 64-bit integer conversion to/from strings. |
|
* |
|
* @author cfallin@google.com (Chris Fallin) |
|
* |
|
* TODO(haberman): move this to javascript/closure/math? |
|
*/ |
|
|
|
goog.provide('jspb.arith.Int64'); |
|
goog.provide('jspb.arith.UInt64'); |
|
|
|
/** |
|
* UInt64 implements some 64-bit arithmetic routines necessary for properly |
|
* handling 64-bit integer fields. It implements lossless integer arithmetic on |
|
* top of JavaScript's number type, which has only 53 bits of precision, by |
|
* representing 64-bit integers as two 32-bit halves. |
|
* |
|
* @param {number} lo The low 32 bits. |
|
* @param {number} hi The high 32 bits. |
|
* @constructor |
|
*/ |
|
jspb.arith.UInt64 = function(lo, hi) { |
|
/** |
|
* The low 32 bits. |
|
* @public {number} |
|
*/ |
|
this.lo = lo; |
|
/** |
|
* The high 32 bits. |
|
* @public {number} |
|
*/ |
|
this.hi = hi; |
|
}; |
|
|
|
|
|
/** |
|
* Compare two 64-bit numbers. Returns -1 if the first is |
|
* less, +1 if the first is greater, or 0 if both are equal. |
|
* @param {!jspb.arith.UInt64} other |
|
* @return {number} |
|
*/ |
|
jspb.arith.UInt64.prototype.cmp = function(other) { |
|
if (this.hi < other.hi || (this.hi == other.hi && this.lo < other.lo)) { |
|
return -1; |
|
} else if (this.hi == other.hi && this.lo == other.lo) { |
|
return 0; |
|
} else { |
|
return 1; |
|
} |
|
}; |
|
|
|
|
|
/** |
|
* Right-shift this number by one bit. |
|
* @return {!jspb.arith.UInt64} |
|
*/ |
|
jspb.arith.UInt64.prototype.rightShift = function() { |
|
var hi = this.hi >>> 1; |
|
var lo = (this.lo >>> 1) | ((this.hi & 1) << 31); |
|
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); |
|
}; |
|
|
|
|
|
/** |
|
* Left-shift this number by one bit. |
|
* @return {!jspb.arith.UInt64} |
|
*/ |
|
jspb.arith.UInt64.prototype.leftShift = function() { |
|
var lo = this.lo << 1; |
|
var hi = (this.hi << 1) | (this.lo >>> 31); |
|
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); |
|
}; |
|
|
|
|
|
/** |
|
* Test the MSB. |
|
* @return {boolean} |
|
*/ |
|
jspb.arith.UInt64.prototype.msb = function() { |
|
return !!(this.hi & 0x80000000); |
|
}; |
|
|
|
|
|
/** |
|
* Test the LSB. |
|
* @return {boolean} |
|
*/ |
|
jspb.arith.UInt64.prototype.lsb = function() { |
|
return !!(this.lo & 1); |
|
}; |
|
|
|
|
|
/** |
|
* Test whether this number is zero. |
|
* @return {boolean} |
|
*/ |
|
jspb.arith.UInt64.prototype.zero = function() { |
|
return this.lo == 0 && this.hi == 0; |
|
}; |
|
|
|
|
|
/** |
|
* Add two 64-bit numbers to produce a 64-bit number. |
|
* @param {!jspb.arith.UInt64} other |
|
* @return {!jspb.arith.UInt64} |
|
*/ |
|
jspb.arith.UInt64.prototype.add = function(other) { |
|
var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; |
|
var hi = |
|
(((this.hi + other.hi) & 0xffffffff) >>> 0) + |
|
(((this.lo + other.lo) >= 0x100000000) ? 1 : 0); |
|
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); |
|
}; |
|
|
|
|
|
/** |
|
* Subtract two 64-bit numbers to produce a 64-bit number. |
|
* @param {!jspb.arith.UInt64} other |
|
* @return {!jspb.arith.UInt64} |
|
*/ |
|
jspb.arith.UInt64.prototype.sub = function(other) { |
|
var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; |
|
var hi = |
|
(((this.hi - other.hi) & 0xffffffff) >>> 0) - |
|
(((this.lo - other.lo) < 0) ? 1 : 0); |
|
return new jspb.arith.UInt64(lo >>> 0, hi >>> 0); |
|
}; |
|
|
|
|
|
/** |
|
* Multiply two 32-bit numbers to produce a 64-bit number. |
|
* @param {number} a The first integer: must be in [0, 2^32-1). |
|
* @param {number} b The second integer: must be in [0, 2^32-1). |
|
* @return {!jspb.arith.UInt64} |
|
*/ |
|
jspb.arith.UInt64.mul32x32 = function(a, b) { |
|
// Directly multiplying two 32-bit numbers may produce up to 64 bits of |
|
// precision, thus losing precision because of the 53-bit mantissa of |
|
// JavaScript numbers. So we multiply with 16-bit digits (radix 65536) |
|
// instead. |
|
var aLow = (a & 0xffff); |
|
var aHigh = (a >>> 16); |
|
var bLow = (b & 0xffff); |
|
var bHigh = (b >>> 16); |
|
var productLow = |
|
// 32-bit result, result bits 0-31, take all 32 bits |
|
(aLow * bLow) + |
|
// 32-bit result, result bits 16-47, take bottom 16 as our top 16 |
|
((aLow * bHigh) & 0xffff) * 0x10000 + |
|
// 32-bit result, result bits 16-47, take bottom 16 as our top 16 |
|
((aHigh * bLow) & 0xffff) * 0x10000; |
|
var productHigh = |
|
// 32-bit result, result bits 32-63, take all 32 bits |
|
(aHigh * bHigh) + |
|
// 32-bit result, result bits 16-47, take top 16 as our bottom 16 |
|
((aLow * bHigh) >>> 16) + |
|
// 32-bit result, result bits 16-47, take top 16 as our bottom 16 |
|
((aHigh * bLow) >>> 16); |
|
|
|
// Carry. Note that we actually have up to *two* carries due to addition of |
|
// three terms. |
|
while (productLow >= 0x100000000) { |
|
productLow -= 0x100000000; |
|
productHigh += 1; |
|
} |
|
|
|
return new jspb.arith.UInt64(productLow >>> 0, productHigh >>> 0); |
|
}; |
|
|
|
|
|
/** |
|
* Multiply this number by a 32-bit number, producing a 96-bit number, then |
|
* truncate the top 32 bits. |
|
* @param {number} a The multiplier. |
|
* @return {!jspb.arith.UInt64} |
|
*/ |
|
jspb.arith.UInt64.prototype.mul = function(a) { |
|
// Produce two parts: at bits 0-63, and 32-95. |
|
var lo = jspb.arith.UInt64.mul32x32(this.lo, a); |
|
var hi = jspb.arith.UInt64.mul32x32(this.hi, a); |
|
// Left-shift hi by 32 bits, truncating its top bits. The parts will then be |
|
// aligned for addition. |
|
hi.hi = hi.lo; |
|
hi.lo = 0; |
|
return lo.add(hi); |
|
}; |
|
|
|
|
|
/** |
|
* Divide a 64-bit number by a 32-bit number to produce a |
|
* 64-bit quotient and a 32-bit remainder. |
|
* @param {number} _divisor |
|
* @return {Array<jspb.arith.UInt64>} array of [quotient, remainder], |
|
* unless divisor is 0, in which case an empty array is returned. |
|
*/ |
|
jspb.arith.UInt64.prototype.div = function(_divisor) { |
|
if (_divisor == 0) { |
|
return []; |
|
} |
|
|
|
// We perform long division using a radix-2 algorithm, for simplicity (i.e., |
|
// one bit at a time). TODO: optimize to a radix-2^32 algorithm, taking care |
|
// to get the variable shifts right. |
|
var quotient = new jspb.arith.UInt64(0, 0); |
|
var remainder = new jspb.arith.UInt64(this.lo, this.hi); |
|
var divisor = new jspb.arith.UInt64(_divisor, 0); |
|
var unit = new jspb.arith.UInt64(1, 0); |
|
|
|
// Left-shift the divisor and unit until the high bit of divisor is set. |
|
while (!divisor.msb()) { |
|
divisor = divisor.leftShift(); |
|
unit = unit.leftShift(); |
|
} |
|
|
|
// Perform long division one bit at a time. |
|
while (!unit.zero()) { |
|
// If divisor < remainder, add unit to quotient and subtract divisor from |
|
// remainder. |
|
if (divisor.cmp(remainder) <= 0) { |
|
quotient = quotient.add(unit); |
|
remainder = remainder.sub(divisor); |
|
} |
|
// Right-shift the divisor and unit. |
|
divisor = divisor.rightShift(); |
|
unit = unit.rightShift(); |
|
} |
|
|
|
return [quotient, remainder]; |
|
}; |
|
|
|
|
|
/** |
|
* Convert a 64-bit number to a string. |
|
* @return {string} |
|
* @override |
|
*/ |
|
jspb.arith.UInt64.prototype.toString = function() { |
|
var result = ''; |
|
var num = this; |
|
while (!num.zero()) { |
|
var divResult = num.div(10); |
|
var quotient = divResult[0], remainder = divResult[1]; |
|
result = remainder.lo + result; |
|
num = quotient; |
|
} |
|
if (result == '') { |
|
result = '0'; |
|
} |
|
return result; |
|
}; |
|
|
|
|
|
/** |
|
* Parse a string into a 64-bit number. Returns `null` on a parse error. |
|
* @param {string} s |
|
* @return {?jspb.arith.UInt64} |
|
*/ |
|
jspb.arith.UInt64.fromString = function(s) { |
|
var result = new jspb.arith.UInt64(0, 0); |
|
// optimization: reuse this instance for each digit. |
|
var digit64 = new jspb.arith.UInt64(0, 0); |
|
for (var i = 0; i < s.length; i++) { |
|
if (s[i] < '0' || s[i] > '9') { |
|
return null; |
|
} |
|
var digit = parseInt(s[i], 10); |
|
digit64.lo = digit; |
|
result = result.mul(10).add(digit64); |
|
} |
|
return result; |
|
}; |
|
|
|
|
|
/** |
|
* Make a copy of the uint64. |
|
* @return {!jspb.arith.UInt64} |
|
*/ |
|
jspb.arith.UInt64.prototype.clone = function() { |
|
return new jspb.arith.UInt64(this.lo, this.hi); |
|
}; |
|
|
|
|
|
/** |
|
* Int64 is like UInt64, but modifies string conversions to interpret the stored |
|
* 64-bit value as a twos-complement-signed integer. It does *not* support the |
|
* full range of operations that UInt64 does: only add, subtract, and string |
|
* conversions. |
|
* |
|
* N.B. that multiply and divide routines are *NOT* supported. They will throw |
|
* exceptions. (They are not necessary to implement string conversions, which |
|
* are the only operations we really need in jspb.) |
|
* |
|
* @param {number} lo The low 32 bits. |
|
* @param {number} hi The high 32 bits. |
|
* @constructor |
|
*/ |
|
jspb.arith.Int64 = function(lo, hi) { |
|
/** |
|
* The low 32 bits. |
|
* @public {number} |
|
*/ |
|
this.lo = lo; |
|
/** |
|
* The high 32 bits. |
|
* @public {number} |
|
*/ |
|
this.hi = hi; |
|
}; |
|
|
|
|
|
/** |
|
* Add two 64-bit numbers to produce a 64-bit number. |
|
* @param {!jspb.arith.Int64} other |
|
* @return {!jspb.arith.Int64} |
|
*/ |
|
jspb.arith.Int64.prototype.add = function(other) { |
|
var lo = ((this.lo + other.lo) & 0xffffffff) >>> 0; |
|
var hi = |
|
(((this.hi + other.hi) & 0xffffffff) >>> 0) + |
|
(((this.lo + other.lo) >= 0x100000000) ? 1 : 0); |
|
return new jspb.arith.Int64(lo >>> 0, hi >>> 0); |
|
}; |
|
|
|
|
|
/** |
|
* Subtract two 64-bit numbers to produce a 64-bit number. |
|
* @param {!jspb.arith.Int64} other |
|
* @return {!jspb.arith.Int64} |
|
*/ |
|
jspb.arith.Int64.prototype.sub = function(other) { |
|
var lo = ((this.lo - other.lo) & 0xffffffff) >>> 0; |
|
var hi = |
|
(((this.hi - other.hi) & 0xffffffff) >>> 0) - |
|
(((this.lo - other.lo) < 0) ? 1 : 0); |
|
return new jspb.arith.Int64(lo >>> 0, hi >>> 0); |
|
}; |
|
|
|
|
|
/** |
|
* Make a copy of the int64. |
|
* @return {!jspb.arith.Int64} |
|
*/ |
|
jspb.arith.Int64.prototype.clone = function() { |
|
return new jspb.arith.Int64(this.lo, this.hi); |
|
}; |
|
|
|
|
|
/** |
|
* Convert a 64-bit number to a string. |
|
* @return {string} |
|
* @override |
|
*/ |
|
jspb.arith.Int64.prototype.toString = function() { |
|
// If the number is negative, find its twos-complement inverse. |
|
var sign = (this.hi & 0x80000000) != 0; |
|
var num = new jspb.arith.UInt64(this.lo, this.hi); |
|
if (sign) { |
|
num = new jspb.arith.UInt64(0, 0).sub(num); |
|
} |
|
return (sign ? '-' : '') + num.toString(); |
|
}; |
|
|
|
|
|
/** |
|
* Parse a string into a 64-bit number. Returns `null` on a parse error. |
|
* @param {string} s |
|
* @return {?jspb.arith.Int64} |
|
*/ |
|
jspb.arith.Int64.fromString = function(s) { |
|
var hasNegative = (s.length > 0 && s[0] == '-'); |
|
if (hasNegative) { |
|
s = s.substring(1); |
|
} |
|
var num = jspb.arith.UInt64.fromString(s); |
|
if (num === null) { |
|
return null; |
|
} |
|
if (hasNegative) { |
|
num = new jspb.arith.UInt64(0, 0).sub(num); |
|
} |
|
return new jspb.arith.Int64(num.lo, num.hi); |
|
};
|
|
|