Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1283 lines
48 KiB
1283 lines
48 KiB
#region Copyright notice and license |
|
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2008 Google Inc. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
#endregion |
|
|
|
using Google.Protobuf.Collections; |
|
using System; |
|
using System.Collections.Generic; |
|
using System.IO; |
|
|
|
namespace Google.Protobuf |
|
{ |
|
/// <summary> |
|
/// Reads and decodes protocol message fields. |
|
/// </summary> |
|
/// <remarks> |
|
/// <para> |
|
/// This class is generally used by generated code to read appropriate |
|
/// primitives from the stream. It effectively encapsulates the lowest |
|
/// levels of protocol buffer format. |
|
/// </para> |
|
/// <para> |
|
/// Repeated fields and map fields are not handled by this class; use <see cref="RepeatedField{T}"/> |
|
/// and <see cref="MapField{TKey, TValue}"/> to serialize such fields. |
|
/// </para> |
|
/// </remarks> |
|
public sealed class CodedInputStream : IDisposable |
|
{ |
|
/// <summary> |
|
/// Whether to leave the underlying stream open when disposing of this stream. |
|
/// This is always true when there's no stream. |
|
/// </summary> |
|
private readonly bool leaveOpen; |
|
|
|
/// <summary> |
|
/// Buffer of data read from the stream or provided at construction time. |
|
/// </summary> |
|
private readonly byte[] buffer; |
|
|
|
/// <summary> |
|
/// The index of the buffer at which we need to refill from the stream (if there is one). |
|
/// </summary> |
|
private int bufferSize; |
|
|
|
private int bufferSizeAfterLimit = 0; |
|
/// <summary> |
|
/// The position within the current buffer (i.e. the next byte to read) |
|
/// </summary> |
|
private int bufferPos = 0; |
|
|
|
/// <summary> |
|
/// The stream to read further input from, or null if the byte array buffer was provided |
|
/// directly on construction, with no further data available. |
|
/// </summary> |
|
private readonly Stream input; |
|
|
|
/// <summary> |
|
/// The last tag we read. 0 indicates we've read to the end of the stream |
|
/// (or haven't read anything yet). |
|
/// </summary> |
|
private uint lastTag = 0; |
|
|
|
/// <summary> |
|
/// The next tag, used to store the value read by PeekTag. |
|
/// </summary> |
|
private uint nextTag = 0; |
|
private bool hasNextTag = false; |
|
|
|
internal const int DefaultRecursionLimit = 64; |
|
internal const int DefaultSizeLimit = 64 << 20; // 64MB |
|
internal const int BufferSize = 4096; |
|
|
|
/// <summary> |
|
/// The total number of bytes read before the current buffer. The |
|
/// total bytes read up to the current position can be computed as |
|
/// totalBytesRetired + bufferPos. |
|
/// </summary> |
|
private int totalBytesRetired = 0; |
|
|
|
/// <summary> |
|
/// The absolute position of the end of the current message. |
|
/// </summary> |
|
private int currentLimit = int.MaxValue; |
|
|
|
private int recursionDepth = 0; |
|
|
|
private readonly int recursionLimit; |
|
private readonly int sizeLimit; |
|
|
|
#region Construction |
|
// Note that the checks are performed such that we don't end up checking obviously-valid things |
|
// like non-null references for arrays we've just created. |
|
|
|
/// <summary> |
|
/// Creates a new CodedInputStream reading data from the given byte array. |
|
/// </summary> |
|
public CodedInputStream(byte[] buffer) : this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), 0, buffer.Length, true) |
|
{ |
|
} |
|
|
|
/// <summary> |
|
/// Creates a new <see cref="CodedInputStream"/> that reads from the given byte array slice. |
|
/// </summary> |
|
public CodedInputStream(byte[] buffer, int offset, int length) |
|
: this(null, ProtoPreconditions.CheckNotNull(buffer, "buffer"), offset, offset + length, true) |
|
{ |
|
if (offset < 0 || offset > buffer.Length) |
|
{ |
|
throw new ArgumentOutOfRangeException("offset", "Offset must be within the buffer"); |
|
} |
|
if (length < 0 || offset + length > buffer.Length) |
|
{ |
|
throw new ArgumentOutOfRangeException("length", "Length must be non-negative and within the buffer"); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Creates a new <see cref="CodedInputStream"/> reading data from the given stream, which will be disposed |
|
/// when the returned object is disposed. |
|
/// </summary> |
|
/// <param name="input">The stream to read from.</param> |
|
public CodedInputStream(Stream input) : this(input, false) |
|
{ |
|
} |
|
|
|
/// <summary> |
|
/// Creates a new <see cref="CodedInputStream"/> reading data from the given stream. |
|
/// </summary> |
|
/// <param name="input">The stream to read from.</param> |
|
/// <param name="leaveOpen"><c>true</c> to leave <paramref name="input"/> open when the returned |
|
/// <c cref="CodedInputStream"/> is disposed; <c>false</c> to dispose of the given stream when the |
|
/// returned object is disposed.</param> |
|
public CodedInputStream(Stream input, bool leaveOpen) |
|
: this(ProtoPreconditions.CheckNotNull(input, "input"), new byte[BufferSize], 0, 0, leaveOpen) |
|
{ |
|
} |
|
|
|
/// <summary> |
|
/// Creates a new CodedInputStream reading data from the given |
|
/// stream and buffer, using the default limits. |
|
/// </summary> |
|
internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, bool leaveOpen) |
|
{ |
|
this.input = input; |
|
this.buffer = buffer; |
|
this.bufferPos = bufferPos; |
|
this.bufferSize = bufferSize; |
|
this.sizeLimit = DefaultSizeLimit; |
|
this.recursionLimit = DefaultRecursionLimit; |
|
this.leaveOpen = leaveOpen; |
|
} |
|
|
|
/// <summary> |
|
/// Creates a new CodedInputStream reading data from the given |
|
/// stream and buffer, using the specified limits. |
|
/// </summary> |
|
/// <remarks> |
|
/// This chains to the version with the default limits instead of vice versa to avoid |
|
/// having to check that the default values are valid every time. |
|
/// </remarks> |
|
internal CodedInputStream(Stream input, byte[] buffer, int bufferPos, int bufferSize, int sizeLimit, int recursionLimit, bool leaveOpen) |
|
: this(input, buffer, bufferPos, bufferSize, leaveOpen) |
|
{ |
|
if (sizeLimit <= 0) |
|
{ |
|
throw new ArgumentOutOfRangeException("sizeLimit", "Size limit must be positive"); |
|
} |
|
if (recursionLimit <= 0) |
|
{ |
|
throw new ArgumentOutOfRangeException("recursionLimit!", "Recursion limit must be positive"); |
|
} |
|
this.sizeLimit = sizeLimit; |
|
this.recursionLimit = recursionLimit; |
|
} |
|
#endregion |
|
|
|
/// <summary> |
|
/// Creates a <see cref="CodedInputStream"/> with the specified size and recursion limits, reading |
|
/// from an input stream. |
|
/// </summary> |
|
/// <remarks> |
|
/// This method exists separately from the constructor to reduce the number of constructor overloads. |
|
/// It is likely to be used considerably less frequently than the constructors, as the default limits |
|
/// are suitable for most use cases. |
|
/// </remarks> |
|
/// <param name="input">The input stream to read from</param> |
|
/// <param name="sizeLimit">The total limit of data to read from the stream.</param> |
|
/// <param name="recursionLimit">The maximum recursion depth to allow while reading.</param> |
|
/// <returns>A <c>CodedInputStream</c> reading from <paramref name="input"/> with the specified size |
|
/// and recursion limits.</returns> |
|
public static CodedInputStream CreateWithLimits(Stream input, int sizeLimit, int recursionLimit) |
|
{ |
|
// Note: we may want an overload accepting leaveOpen |
|
return new CodedInputStream(input, new byte[BufferSize], 0, 0, sizeLimit, recursionLimit, false); |
|
} |
|
|
|
/// <summary> |
|
/// Returns the current position in the input stream, or the position in the input buffer |
|
/// </summary> |
|
public long Position |
|
{ |
|
get |
|
{ |
|
if (input != null) |
|
{ |
|
return input.Position - ((bufferSize + bufferSizeAfterLimit) - bufferPos); |
|
} |
|
return bufferPos; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Returns the last tag read, or 0 if no tags have been read or we've read beyond |
|
/// the end of the stream. |
|
/// </summary> |
|
internal uint LastTag { get { return lastTag; } } |
|
|
|
/// <summary> |
|
/// Returns the size limit for this stream. |
|
/// </summary> |
|
/// <remarks> |
|
/// This limit is applied when reading from the underlying stream, as a sanity check. It is |
|
/// not applied when reading from a byte array data source without an underlying stream. |
|
/// The default value is 64MB. |
|
/// </remarks> |
|
/// <value> |
|
/// The size limit. |
|
/// </value> |
|
public int SizeLimit { get { return sizeLimit; } } |
|
|
|
/// <summary> |
|
/// Returns the recursion limit for this stream. This limit is applied whilst reading messages, |
|
/// to avoid maliciously-recursive data. |
|
/// </summary> |
|
/// <remarks> |
|
/// The default limit is 64. |
|
/// </remarks> |
|
/// <value> |
|
/// The recursion limit for this stream. |
|
/// </value> |
|
public int RecursionLimit { get { return recursionLimit; } } |
|
|
|
/// <summary> |
|
/// Internal-only property; when set to true, unknown fields will be discarded while parsing. |
|
/// </summary> |
|
internal bool DiscardUnknownFields { get; set; } |
|
|
|
/// <summary> |
|
/// Disposes of this instance, potentially closing any underlying stream. |
|
/// </summary> |
|
/// <remarks> |
|
/// As there is no flushing to perform here, disposing of a <see cref="CodedInputStream"/> which |
|
/// was constructed with the <c>leaveOpen</c> option parameter set to <c>true</c> (or one which |
|
/// was constructed to read from a byte array) has no effect. |
|
/// </remarks> |
|
public void Dispose() |
|
{ |
|
if (!leaveOpen) |
|
{ |
|
input.Dispose(); |
|
} |
|
} |
|
|
|
#region Validation |
|
/// <summary> |
|
/// Verifies that the last call to ReadTag() returned tag 0 - in other words, |
|
/// we've reached the end of the stream when we expected to. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException">The |
|
/// tag read was not the one specified</exception> |
|
internal void CheckReadEndOfStreamTag() |
|
{ |
|
if (lastTag != 0) |
|
{ |
|
throw InvalidProtocolBufferException.MoreDataAvailable(); |
|
} |
|
} |
|
#endregion |
|
|
|
#region Reading of tags etc |
|
|
|
/// <summary> |
|
/// Peeks at the next field tag. This is like calling <see cref="ReadTag"/>, but the |
|
/// tag is not consumed. (So a subsequent call to <see cref="ReadTag"/> will return the |
|
/// same value.) |
|
/// </summary> |
|
public uint PeekTag() |
|
{ |
|
if (hasNextTag) |
|
{ |
|
return nextTag; |
|
} |
|
|
|
uint savedLast = lastTag; |
|
nextTag = ReadTag(); |
|
hasNextTag = true; |
|
lastTag = savedLast; // Undo the side effect of ReadTag |
|
return nextTag; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a field tag, returning the tag of 0 for "end of stream". |
|
/// </summary> |
|
/// <remarks> |
|
/// If this method returns 0, it doesn't necessarily mean the end of all |
|
/// the data in this CodedInputStream; it may be the end of the logical stream |
|
/// for an embedded message, for example. |
|
/// </remarks> |
|
/// <returns>The next field tag, or 0 for end of stream. (0 is never a valid tag.)</returns> |
|
public uint ReadTag() |
|
{ |
|
if (hasNextTag) |
|
{ |
|
lastTag = nextTag; |
|
hasNextTag = false; |
|
return lastTag; |
|
} |
|
|
|
// Optimize for the incredibly common case of having at least two bytes left in the buffer, |
|
// and those two bytes being enough to get the tag. This will be true for fields up to 4095. |
|
if (bufferPos + 2 <= bufferSize) |
|
{ |
|
int tmp = buffer[bufferPos++]; |
|
if (tmp < 128) |
|
{ |
|
lastTag = (uint)tmp; |
|
} |
|
else |
|
{ |
|
int result = tmp & 0x7f; |
|
if ((tmp = buffer[bufferPos++]) < 128) |
|
{ |
|
result |= tmp << 7; |
|
lastTag = (uint) result; |
|
} |
|
else |
|
{ |
|
// Nope, rewind and go the potentially slow route. |
|
bufferPos -= 2; |
|
lastTag = ReadRawVarint32(); |
|
} |
|
} |
|
} |
|
else |
|
{ |
|
if (IsAtEnd) |
|
{ |
|
lastTag = 0; |
|
return 0; // This is the only case in which we return 0. |
|
} |
|
|
|
lastTag = ReadRawVarint32(); |
|
} |
|
if (WireFormat.GetTagFieldNumber(lastTag) == 0) |
|
{ |
|
// If we actually read a tag with a field of 0, that's not a valid tag. |
|
throw InvalidProtocolBufferException.InvalidTag(); |
|
} |
|
return lastTag; |
|
} |
|
|
|
/// <summary> |
|
/// Skips the data for the field with the tag we've just read. |
|
/// This should be called directly after <see cref="ReadTag"/>, when |
|
/// the caller wishes to skip an unknown field. |
|
/// </summary> |
|
/// <remarks> |
|
/// This method throws <see cref="InvalidProtocolBufferException"/> if the last-read tag was an end-group tag. |
|
/// If a caller wishes to skip a group, they should skip the whole group, by calling this method after reading the |
|
/// start-group tag. This behavior allows callers to call this method on any field they don't understand, correctly |
|
/// resulting in an error if an end-group tag has not been paired with an earlier start-group tag. |
|
/// </remarks> |
|
/// <exception cref="InvalidProtocolBufferException">The last tag was an end-group tag</exception> |
|
/// <exception cref="InvalidOperationException">The last read operation read to the end of the logical stream</exception> |
|
public void SkipLastField() |
|
{ |
|
if (lastTag == 0) |
|
{ |
|
throw new InvalidOperationException("SkipLastField cannot be called at the end of a stream"); |
|
} |
|
switch (WireFormat.GetTagWireType(lastTag)) |
|
{ |
|
case WireFormat.WireType.StartGroup: |
|
SkipGroup(lastTag); |
|
break; |
|
case WireFormat.WireType.EndGroup: |
|
throw new InvalidProtocolBufferException( |
|
"SkipLastField called on an end-group tag, indicating that the corresponding start-group was missing"); |
|
case WireFormat.WireType.Fixed32: |
|
ReadFixed32(); |
|
break; |
|
case WireFormat.WireType.Fixed64: |
|
ReadFixed64(); |
|
break; |
|
case WireFormat.WireType.LengthDelimited: |
|
var length = ReadLength(); |
|
SkipRawBytes(length); |
|
break; |
|
case WireFormat.WireType.Varint: |
|
ReadRawVarint32(); |
|
break; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Skip a group. |
|
/// </summary> |
|
internal void SkipGroup(uint startGroupTag) |
|
{ |
|
// Note: Currently we expect this to be the way that groups are read. We could put the recursion |
|
// depth changes into the ReadTag method instead, potentially... |
|
recursionDepth++; |
|
if (recursionDepth >= recursionLimit) |
|
{ |
|
throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
|
} |
|
uint tag; |
|
while (true) |
|
{ |
|
tag = ReadTag(); |
|
if (tag == 0) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
// Can't call SkipLastField for this case- that would throw. |
|
if (WireFormat.GetTagWireType(tag) == WireFormat.WireType.EndGroup) |
|
{ |
|
break; |
|
} |
|
// This recursion will allow us to handle nested groups. |
|
SkipLastField(); |
|
} |
|
int startField = WireFormat.GetTagFieldNumber(startGroupTag); |
|
int endField = WireFormat.GetTagFieldNumber(tag); |
|
if (startField != endField) |
|
{ |
|
throw new InvalidProtocolBufferException( |
|
$"Mismatched end-group tag. Started with field {startField}; ended with field {endField}"); |
|
} |
|
recursionDepth--; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a double field from the stream. |
|
/// </summary> |
|
public double ReadDouble() |
|
{ |
|
return BitConverter.Int64BitsToDouble((long) ReadRawLittleEndian64()); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a float field from the stream. |
|
/// </summary> |
|
public float ReadFloat() |
|
{ |
|
if (BitConverter.IsLittleEndian && 4 <= bufferSize - bufferPos) |
|
{ |
|
float ret = BitConverter.ToSingle(buffer, bufferPos); |
|
bufferPos += 4; |
|
return ret; |
|
} |
|
else |
|
{ |
|
byte[] rawBytes = ReadRawBytes(4); |
|
if (!BitConverter.IsLittleEndian) |
|
{ |
|
ByteArray.Reverse(rawBytes); |
|
} |
|
return BitConverter.ToSingle(rawBytes, 0); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads a uint64 field from the stream. |
|
/// </summary> |
|
public ulong ReadUInt64() |
|
{ |
|
return ReadRawVarint64(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an int64 field from the stream. |
|
/// </summary> |
|
public long ReadInt64() |
|
{ |
|
return (long) ReadRawVarint64(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an int32 field from the stream. |
|
/// </summary> |
|
public int ReadInt32() |
|
{ |
|
return (int) ReadRawVarint32(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a fixed64 field from the stream. |
|
/// </summary> |
|
public ulong ReadFixed64() |
|
{ |
|
return ReadRawLittleEndian64(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a fixed32 field from the stream. |
|
/// </summary> |
|
public uint ReadFixed32() |
|
{ |
|
return ReadRawLittleEndian32(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a bool field from the stream. |
|
/// </summary> |
|
public bool ReadBool() |
|
{ |
|
return ReadRawVarint32() != 0; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a string field from the stream. |
|
/// </summary> |
|
public string ReadString() |
|
{ |
|
int length = ReadLength(); |
|
// No need to read any data for an empty string. |
|
if (length == 0) |
|
{ |
|
return ""; |
|
} |
|
if (length <= bufferSize - bufferPos) |
|
{ |
|
// Fast path: We already have the bytes in a contiguous buffer, so |
|
// just copy directly from it. |
|
String result = CodedOutputStream.Utf8Encoding.GetString(buffer, bufferPos, length); |
|
bufferPos += length; |
|
return result; |
|
} |
|
// Slow path: Build a byte array first then copy it. |
|
return CodedOutputStream.Utf8Encoding.GetString(ReadRawBytes(length), 0, length); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an embedded message field value from the stream. |
|
/// </summary> |
|
public void ReadMessage(IMessage builder) |
|
{ |
|
int length = ReadLength(); |
|
if (recursionDepth >= recursionLimit) |
|
{ |
|
throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
|
} |
|
int oldLimit = PushLimit(length); |
|
++recursionDepth; |
|
builder.MergeFrom(this); |
|
CheckReadEndOfStreamTag(); |
|
// Check that we've read exactly as much data as expected. |
|
if (!ReachedLimit) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
--recursionDepth; |
|
PopLimit(oldLimit); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a bytes field value from the stream. |
|
/// </summary> |
|
public ByteString ReadBytes() |
|
{ |
|
int length = ReadLength(); |
|
if (length <= bufferSize - bufferPos && length > 0) |
|
{ |
|
// Fast path: We already have the bytes in a contiguous buffer, so |
|
// just copy directly from it. |
|
ByteString result = ByteString.CopyFrom(buffer, bufferPos, length); |
|
bufferPos += length; |
|
return result; |
|
} |
|
else |
|
{ |
|
// Slow path: Build a byte array and attach it to a new ByteString. |
|
return ByteString.AttachBytes(ReadRawBytes(length)); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads a uint32 field value from the stream. |
|
/// </summary> |
|
public uint ReadUInt32() |
|
{ |
|
return ReadRawVarint32(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an enum field value from the stream. |
|
/// </summary> |
|
public int ReadEnum() |
|
{ |
|
// Currently just a pass-through, but it's nice to separate it logically from WriteInt32. |
|
return (int) ReadRawVarint32(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sfixed32 field value from the stream. |
|
/// </summary> |
|
public int ReadSFixed32() |
|
{ |
|
return (int) ReadRawLittleEndian32(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sfixed64 field value from the stream. |
|
/// </summary> |
|
public long ReadSFixed64() |
|
{ |
|
return (long) ReadRawLittleEndian64(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sint32 field value from the stream. |
|
/// </summary> |
|
public int ReadSInt32() |
|
{ |
|
return DecodeZigZag32(ReadRawVarint32()); |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sint64 field value from the stream. |
|
/// </summary> |
|
public long ReadSInt64() |
|
{ |
|
return DecodeZigZag64(ReadRawVarint64()); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a length for length-delimited data. |
|
/// </summary> |
|
/// <remarks> |
|
/// This is internally just reading a varint, but this method exists |
|
/// to make the calling code clearer. |
|
/// </remarks> |
|
public int ReadLength() |
|
{ |
|
return (int) ReadRawVarint32(); |
|
} |
|
|
|
/// <summary> |
|
/// Peeks at the next tag in the stream. If it matches <paramref name="tag"/>, |
|
/// the tag is consumed and the method returns <c>true</c>; otherwise, the |
|
/// stream is left in the original position and the method returns <c>false</c>. |
|
/// </summary> |
|
public bool MaybeConsumeTag(uint tag) |
|
{ |
|
if (PeekTag() == tag) |
|
{ |
|
hasNextTag = false; |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
#endregion |
|
|
|
#region Underlying reading primitives |
|
|
|
/// <summary> |
|
/// Same code as ReadRawVarint32, but read each byte individually, checking for |
|
/// buffer overflow. |
|
/// </summary> |
|
private uint SlowReadRawVarint32() |
|
{ |
|
int tmp = ReadRawByte(); |
|
if (tmp < 128) |
|
{ |
|
return (uint) tmp; |
|
} |
|
int result = tmp & 0x7f; |
|
if ((tmp = ReadRawByte()) < 128) |
|
{ |
|
result |= tmp << 7; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 7; |
|
if ((tmp = ReadRawByte()) < 128) |
|
{ |
|
result |= tmp << 14; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 14; |
|
if ((tmp = ReadRawByte()) < 128) |
|
{ |
|
result |= tmp << 21; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 21; |
|
result |= (tmp = ReadRawByte()) << 28; |
|
if (tmp >= 128) |
|
{ |
|
// Discard upper 32 bits. |
|
for (int i = 0; i < 5; i++) |
|
{ |
|
if (ReadRawByte() < 128) |
|
{ |
|
return (uint) result; |
|
} |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
} |
|
} |
|
} |
|
return (uint) result; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a raw Varint from the stream. If larger than 32 bits, discard the upper bits. |
|
/// This method is optimised for the case where we've got lots of data in the buffer. |
|
/// That means we can check the size just once, then just read directly from the buffer |
|
/// without constant rechecking of the buffer length. |
|
/// </summary> |
|
internal uint ReadRawVarint32() |
|
{ |
|
if (bufferPos + 5 > bufferSize) |
|
{ |
|
return SlowReadRawVarint32(); |
|
} |
|
|
|
int tmp = buffer[bufferPos++]; |
|
if (tmp < 128) |
|
{ |
|
return (uint) tmp; |
|
} |
|
int result = tmp & 0x7f; |
|
if ((tmp = buffer[bufferPos++]) < 128) |
|
{ |
|
result |= tmp << 7; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 7; |
|
if ((tmp = buffer[bufferPos++]) < 128) |
|
{ |
|
result |= tmp << 14; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 14; |
|
if ((tmp = buffer[bufferPos++]) < 128) |
|
{ |
|
result |= tmp << 21; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 21; |
|
result |= (tmp = buffer[bufferPos++]) << 28; |
|
if (tmp >= 128) |
|
{ |
|
// Discard upper 32 bits. |
|
// Note that this has to use ReadRawByte() as we only ensure we've |
|
// got at least 5 bytes at the start of the method. This lets us |
|
// use the fast path in more cases, and we rarely hit this section of code. |
|
for (int i = 0; i < 5; i++) |
|
{ |
|
if (ReadRawByte() < 128) |
|
{ |
|
return (uint) result; |
|
} |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
} |
|
} |
|
} |
|
return (uint) result; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a varint from the input one byte at a time, so that it does not |
|
/// read any bytes after the end of the varint. If you simply wrapped the |
|
/// stream in a CodedInputStream and used ReadRawVarint32(Stream) |
|
/// then you would probably end up reading past the end of the varint since |
|
/// CodedInputStream buffers its input. |
|
/// </summary> |
|
/// <param name="input"></param> |
|
/// <returns></returns> |
|
internal static uint ReadRawVarint32(Stream input) |
|
{ |
|
int result = 0; |
|
int offset = 0; |
|
for (; offset < 32; offset += 7) |
|
{ |
|
int b = input.ReadByte(); |
|
if (b == -1) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
result |= (b & 0x7f) << offset; |
|
if ((b & 0x80) == 0) |
|
{ |
|
return (uint) result; |
|
} |
|
} |
|
// Keep reading up to 64 bits. |
|
for (; offset < 64; offset += 7) |
|
{ |
|
int b = input.ReadByte(); |
|
if (b == -1) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
if ((b & 0x80) == 0) |
|
{ |
|
return (uint) result; |
|
} |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a raw varint from the stream. |
|
/// </summary> |
|
internal ulong ReadRawVarint64() |
|
{ |
|
int shift = 0; |
|
ulong result = 0; |
|
while (shift < 64) |
|
{ |
|
byte b = ReadRawByte(); |
|
result |= (ulong) (b & 0x7F) << shift; |
|
if ((b & 0x80) == 0) |
|
{ |
|
return result; |
|
} |
|
shift += 7; |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a 32-bit little-endian integer from the stream. |
|
/// </summary> |
|
internal uint ReadRawLittleEndian32() |
|
{ |
|
uint b1 = ReadRawByte(); |
|
uint b2 = ReadRawByte(); |
|
uint b3 = ReadRawByte(); |
|
uint b4 = ReadRawByte(); |
|
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a 64-bit little-endian integer from the stream. |
|
/// </summary> |
|
internal ulong ReadRawLittleEndian64() |
|
{ |
|
ulong b1 = ReadRawByte(); |
|
ulong b2 = ReadRawByte(); |
|
ulong b3 = ReadRawByte(); |
|
ulong b4 = ReadRawByte(); |
|
ulong b5 = ReadRawByte(); |
|
ulong b6 = ReadRawByte(); |
|
ulong b7 = ReadRawByte(); |
|
ulong b8 = ReadRawByte(); |
|
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24) |
|
| (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56); |
|
} |
|
|
|
/// <summary> |
|
/// Decode a 32-bit value with ZigZag encoding. |
|
/// </summary> |
|
/// <remarks> |
|
/// ZigZag encodes signed integers into values that can be efficiently |
|
/// encoded with varint. (Otherwise, negative values must be |
|
/// sign-extended to 64 bits to be varint encoded, thus always taking |
|
/// 10 bytes on the wire.) |
|
/// </remarks> |
|
internal static int DecodeZigZag32(uint n) |
|
{ |
|
return (int)(n >> 1) ^ -(int)(n & 1); |
|
} |
|
|
|
/// <summary> |
|
/// Decode a 32-bit value with ZigZag encoding. |
|
/// </summary> |
|
/// <remarks> |
|
/// ZigZag encodes signed integers into values that can be efficiently |
|
/// encoded with varint. (Otherwise, negative values must be |
|
/// sign-extended to 64 bits to be varint encoded, thus always taking |
|
/// 10 bytes on the wire.) |
|
/// </remarks> |
|
internal static long DecodeZigZag64(ulong n) |
|
{ |
|
return (long)(n >> 1) ^ -(long)(n & 1); |
|
} |
|
#endregion |
|
|
|
#region Internal reading and buffer management |
|
|
|
/// <summary> |
|
/// Sets currentLimit to (current position) + byteLimit. This is called |
|
/// when descending into a length-delimited embedded message. The previous |
|
/// limit is returned. |
|
/// </summary> |
|
/// <returns>The old limit.</returns> |
|
internal int PushLimit(int byteLimit) |
|
{ |
|
if (byteLimit < 0) |
|
{ |
|
throw InvalidProtocolBufferException.NegativeSize(); |
|
} |
|
byteLimit += totalBytesRetired + bufferPos; |
|
int oldLimit = currentLimit; |
|
if (byteLimit > oldLimit) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
currentLimit = byteLimit; |
|
|
|
RecomputeBufferSizeAfterLimit(); |
|
|
|
return oldLimit; |
|
} |
|
|
|
private void RecomputeBufferSizeAfterLimit() |
|
{ |
|
bufferSize += bufferSizeAfterLimit; |
|
int bufferEnd = totalBytesRetired + bufferSize; |
|
if (bufferEnd > currentLimit) |
|
{ |
|
// Limit is in current buffer. |
|
bufferSizeAfterLimit = bufferEnd - currentLimit; |
|
bufferSize -= bufferSizeAfterLimit; |
|
} |
|
else |
|
{ |
|
bufferSizeAfterLimit = 0; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Discards the current limit, returning the previous limit. |
|
/// </summary> |
|
internal void PopLimit(int oldLimit) |
|
{ |
|
currentLimit = oldLimit; |
|
RecomputeBufferSizeAfterLimit(); |
|
} |
|
|
|
/// <summary> |
|
/// Returns whether or not all the data before the limit has been read. |
|
/// </summary> |
|
/// <returns></returns> |
|
internal bool ReachedLimit |
|
{ |
|
get |
|
{ |
|
if (currentLimit == int.MaxValue) |
|
{ |
|
return false; |
|
} |
|
int currentAbsolutePosition = totalBytesRetired + bufferPos; |
|
return currentAbsolutePosition >= currentLimit; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Returns true if the stream has reached the end of the input. This is the |
|
/// case if either the end of the underlying input source has been reached or |
|
/// the stream has reached a limit created using PushLimit. |
|
/// </summary> |
|
public bool IsAtEnd |
|
{ |
|
get { return bufferPos == bufferSize && !RefillBuffer(false); } |
|
} |
|
|
|
/// <summary> |
|
/// Called when buffer is empty to read more bytes from the |
|
/// input. If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that |
|
/// either there will be at least one byte in the buffer when it returns |
|
/// or it will throw an exception. If <paramref name="mustSucceed"/> is false, |
|
/// RefillBuffer() returns false if no more bytes were available. |
|
/// </summary> |
|
/// <param name="mustSucceed"></param> |
|
/// <returns></returns> |
|
private bool RefillBuffer(bool mustSucceed) |
|
{ |
|
if (bufferPos < bufferSize) |
|
{ |
|
throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty."); |
|
} |
|
|
|
if (totalBytesRetired + bufferSize == currentLimit) |
|
{ |
|
// Oops, we hit a limit. |
|
if (mustSucceed) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
else |
|
{ |
|
return false; |
|
} |
|
} |
|
|
|
totalBytesRetired += bufferSize; |
|
|
|
bufferPos = 0; |
|
bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length); |
|
if (bufferSize < 0) |
|
{ |
|
throw new InvalidOperationException("Stream.Read returned a negative count"); |
|
} |
|
if (bufferSize == 0) |
|
{ |
|
if (mustSucceed) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
else |
|
{ |
|
return false; |
|
} |
|
} |
|
else |
|
{ |
|
RecomputeBufferSizeAfterLimit(); |
|
int totalBytesRead = |
|
totalBytesRetired + bufferSize + bufferSizeAfterLimit; |
|
if (totalBytesRead > sizeLimit || totalBytesRead < 0) |
|
{ |
|
throw InvalidProtocolBufferException.SizeLimitExceeded(); |
|
} |
|
return true; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Read one byte from the input. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException"> |
|
/// the end of the stream or the current limit was reached |
|
/// </exception> |
|
internal byte ReadRawByte() |
|
{ |
|
if (bufferPos == bufferSize) |
|
{ |
|
RefillBuffer(true); |
|
} |
|
return buffer[bufferPos++]; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a fixed size of bytes from the input. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException"> |
|
/// the end of the stream or the current limit was reached |
|
/// </exception> |
|
internal byte[] ReadRawBytes(int size) |
|
{ |
|
if (size < 0) |
|
{ |
|
throw InvalidProtocolBufferException.NegativeSize(); |
|
} |
|
|
|
if (totalBytesRetired + bufferPos + size > currentLimit) |
|
{ |
|
// Read to the end of the stream (up to the current limit) anyway. |
|
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
|
// Then fail. |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
|
|
if (size <= bufferSize - bufferPos) |
|
{ |
|
// We have all the bytes we need already. |
|
byte[] bytes = new byte[size]; |
|
ByteArray.Copy(buffer, bufferPos, bytes, 0, size); |
|
bufferPos += size; |
|
return bytes; |
|
} |
|
else if (size < buffer.Length) |
|
{ |
|
// Reading more bytes than are in the buffer, but not an excessive number |
|
// of bytes. We can safely allocate the resulting array ahead of time. |
|
|
|
// First copy what we have. |
|
byte[] bytes = new byte[size]; |
|
int pos = bufferSize - bufferPos; |
|
ByteArray.Copy(buffer, bufferPos, bytes, 0, pos); |
|
bufferPos = bufferSize; |
|
|
|
// We want to use RefillBuffer() and then copy from the buffer into our |
|
// byte array rather than reading directly into our byte array because |
|
// the input may be unbuffered. |
|
RefillBuffer(true); |
|
|
|
while (size - pos > bufferSize) |
|
{ |
|
Buffer.BlockCopy(buffer, 0, bytes, pos, bufferSize); |
|
pos += bufferSize; |
|
bufferPos = bufferSize; |
|
RefillBuffer(true); |
|
} |
|
|
|
ByteArray.Copy(buffer, 0, bytes, pos, size - pos); |
|
bufferPos = size - pos; |
|
|
|
return bytes; |
|
} |
|
else |
|
{ |
|
// The size is very large. For security reasons, we can't allocate the |
|
// entire byte array yet. The size comes directly from the input, so a |
|
// maliciously-crafted message could provide a bogus very large size in |
|
// order to trick the app into allocating a lot of memory. We avoid this |
|
// by allocating and reading only a small chunk at a time, so that the |
|
// malicious message must actually *be* extremely large to cause |
|
// problems. Meanwhile, we limit the allowed size of a message elsewhere. |
|
|
|
// Remember the buffer markers since we'll have to copy the bytes out of |
|
// it later. |
|
int originalBufferPos = bufferPos; |
|
int originalBufferSize = bufferSize; |
|
|
|
// Mark the current buffer consumed. |
|
totalBytesRetired += bufferSize; |
|
bufferPos = 0; |
|
bufferSize = 0; |
|
|
|
// Read all the rest of the bytes we need. |
|
int sizeLeft = size - (originalBufferSize - originalBufferPos); |
|
List<byte[]> chunks = new List<byte[]>(); |
|
|
|
while (sizeLeft > 0) |
|
{ |
|
byte[] chunk = new byte[Math.Min(sizeLeft, buffer.Length)]; |
|
int pos = 0; |
|
while (pos < chunk.Length) |
|
{ |
|
int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos); |
|
if (n <= 0) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
totalBytesRetired += n; |
|
pos += n; |
|
} |
|
sizeLeft -= chunk.Length; |
|
chunks.Add(chunk); |
|
} |
|
|
|
// OK, got everything. Now concatenate it all into one buffer. |
|
byte[] bytes = new byte[size]; |
|
|
|
// Start by copying the leftover bytes from this.buffer. |
|
int newPos = originalBufferSize - originalBufferPos; |
|
ByteArray.Copy(buffer, originalBufferPos, bytes, 0, newPos); |
|
|
|
// And now all the chunks. |
|
foreach (byte[] chunk in chunks) |
|
{ |
|
Buffer.BlockCopy(chunk, 0, bytes, newPos, chunk.Length); |
|
newPos += chunk.Length; |
|
} |
|
|
|
// Done. |
|
return bytes; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads and discards <paramref name="size"/> bytes. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException">the end of the stream |
|
/// or the current limit was reached</exception> |
|
private void SkipRawBytes(int size) |
|
{ |
|
if (size < 0) |
|
{ |
|
throw InvalidProtocolBufferException.NegativeSize(); |
|
} |
|
|
|
if (totalBytesRetired + bufferPos + size > currentLimit) |
|
{ |
|
// Read to the end of the stream anyway. |
|
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
|
// Then fail. |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
|
|
if (size <= bufferSize - bufferPos) |
|
{ |
|
// We have all the bytes we need already. |
|
bufferPos += size; |
|
} |
|
else |
|
{ |
|
// Skipping more bytes than are in the buffer. First skip what we have. |
|
int pos = bufferSize - bufferPos; |
|
|
|
// ROK 5/7/2013 Issue #54: should retire all bytes in buffer (bufferSize) |
|
// totalBytesRetired += pos; |
|
totalBytesRetired += bufferSize; |
|
|
|
bufferPos = 0; |
|
bufferSize = 0; |
|
|
|
// Then skip directly from the InputStream for the rest. |
|
if (pos < size) |
|
{ |
|
if (input == null) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
SkipImpl(size - pos); |
|
totalBytesRetired += size - pos; |
|
} |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Abstraction of skipping to cope with streams which can't really skip. |
|
/// </summary> |
|
private void SkipImpl(int amountToSkip) |
|
{ |
|
if (input.CanSeek) |
|
{ |
|
long previousPosition = input.Position; |
|
input.Position += amountToSkip; |
|
if (input.Position != previousPosition + amountToSkip) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
} |
|
else |
|
{ |
|
byte[] skipBuffer = new byte[Math.Min(1024, amountToSkip)]; |
|
while (amountToSkip > 0) |
|
{ |
|
int bytesRead = input.Read(skipBuffer, 0, Math.Min(skipBuffer.Length, amountToSkip)); |
|
if (bytesRead <= 0) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
amountToSkip -= bytesRead; |
|
} |
|
} |
|
} |
|
#endregion |
|
} |
|
} |