Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1943 lines
68 KiB
1943 lines
68 KiB
#region Copyright notice and license |
|
|
|
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2008 Google Inc. All rights reserved. |
|
// http://github.com/jskeet/dotnet-protobufs/ |
|
// Original C++/Java/Python code: |
|
// http://code.google.com/p/protobuf/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
#endregion |
|
|
|
using System; |
|
using System.Collections.Generic; |
|
using System.IO; |
|
using System.Text; |
|
using Google.ProtocolBuffers.Descriptors; |
|
|
|
namespace Google.ProtocolBuffers |
|
{ |
|
/// <summary> |
|
/// Readings and decodes protocol message fields. |
|
/// </summary> |
|
/// <remarks> |
|
/// This class contains two kinds of methods: methods that read specific |
|
/// protocol message constructs and field types (e.g. ReadTag and |
|
/// ReadInt32) and methods that read low-level values (e.g. |
|
/// ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol |
|
/// messages, you should use the former methods, but if you are reading some |
|
/// other format of your own design, use the latter. The names of the former |
|
/// methods are taken from the protocol buffer type names, not .NET types. |
|
/// (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.) |
|
/// |
|
/// TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly, |
|
/// set at construction time. |
|
/// </remarks> |
|
public sealed class CodedInputStream : ICodedInputStream |
|
{ |
|
private readonly byte[] buffer; |
|
private int bufferSize; |
|
private int bufferSizeAfterLimit = 0; |
|
private int bufferPos = 0; |
|
private readonly Stream input; |
|
private uint lastTag = 0; |
|
|
|
private uint nextTag = 0; |
|
private bool hasNextTag = false; |
|
|
|
internal const int DefaultRecursionLimit = 64; |
|
internal const int DefaultSizeLimit = 64 << 20; // 64MB |
|
public const int BufferSize = 4096; |
|
|
|
/// <summary> |
|
/// The total number of bytes read before the current buffer. The |
|
/// total bytes read up to the current position can be computed as |
|
/// totalBytesRetired + bufferPos. |
|
/// </summary> |
|
private int totalBytesRetired = 0; |
|
|
|
/// <summary> |
|
/// The absolute position of the end of the current message. |
|
/// </summary> |
|
private int currentLimit = int.MaxValue; |
|
|
|
/// <summary> |
|
/// <see cref="SetRecursionLimit"/> |
|
/// </summary> |
|
private int recursionDepth = 0; |
|
|
|
private int recursionLimit = DefaultRecursionLimit; |
|
|
|
/// <summary> |
|
/// <see cref="SetSizeLimit"/> |
|
/// </summary> |
|
private int sizeLimit = DefaultSizeLimit; |
|
|
|
#region Construction |
|
|
|
/// <summary> |
|
/// Creates a new CodedInputStream reading data from the given |
|
/// stream. |
|
/// </summary> |
|
public static CodedInputStream CreateInstance(Stream input) |
|
{ |
|
return new CodedInputStream(input); |
|
} |
|
/// <summary> |
|
/// Creates a new CodedInputStream reading data from the given |
|
/// stream and a pre-allocated memory buffer. |
|
/// </summary> |
|
public static CodedInputStream CreateInstance(Stream input, byte[] buffer) |
|
{ |
|
return new CodedInputStream(input, buffer); |
|
} |
|
|
|
/// <summary> |
|
/// Creates a new CodedInputStream reading data from the given |
|
/// byte array. |
|
/// </summary> |
|
public static CodedInputStream CreateInstance(byte[] buf) |
|
{ |
|
return new CodedInputStream(buf, 0, buf.Length); |
|
} |
|
|
|
/// <summary> |
|
/// Creates a new CodedInputStream that reads from the given |
|
/// byte array slice. |
|
/// </summary> |
|
public static CodedInputStream CreateInstance(byte[] buf, int offset, int length) |
|
{ |
|
return new CodedInputStream(buf, offset, length); |
|
} |
|
|
|
private CodedInputStream(byte[] buffer, int offset, int length) |
|
{ |
|
this.buffer = buffer; |
|
this.bufferPos = offset; |
|
this.bufferSize = offset + length; |
|
this.input = null; |
|
} |
|
|
|
private CodedInputStream(Stream input) |
|
{ |
|
this.buffer = new byte[BufferSize]; |
|
this.bufferSize = 0; |
|
this.input = input; |
|
} |
|
|
|
private CodedInputStream(Stream input, byte[] buffer) |
|
{ |
|
this.buffer = buffer; |
|
this.bufferSize = 0; |
|
this.input = input; |
|
} |
|
#endregion |
|
|
|
/// <summary> |
|
/// Returns the current position in the input stream, or the position in the input buffer |
|
/// </summary> |
|
public long Position |
|
{ |
|
get |
|
{ |
|
if (input != null) |
|
{ |
|
return input.Position - ((bufferSize + bufferSizeAfterLimit) - bufferPos); |
|
} |
|
return bufferPos; |
|
} |
|
} |
|
|
|
|
|
void ICodedInputStream.ReadMessageStart() { } |
|
void ICodedInputStream.ReadMessageEnd() { } |
|
|
|
#region Validation |
|
|
|
/// <summary> |
|
/// Verifies that the last call to ReadTag() returned the given tag value. |
|
/// This is used to verify that a nested group ended with the correct |
|
/// end tag. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException">The last |
|
/// tag read was not the one specified</exception> |
|
[CLSCompliant(false)] |
|
public void CheckLastTagWas(uint value) |
|
{ |
|
if (lastTag != value) |
|
{ |
|
throw InvalidProtocolBufferException.InvalidEndTag(); |
|
} |
|
} |
|
|
|
#endregion |
|
|
|
#region Reading of tags etc |
|
|
|
/// <summary> |
|
/// Attempt to peek at the next field tag. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public bool PeekNextTag(out uint fieldTag, out string fieldName) |
|
{ |
|
if (hasNextTag) |
|
{ |
|
fieldName = null; |
|
fieldTag = nextTag; |
|
return true; |
|
} |
|
|
|
uint savedLast = lastTag; |
|
hasNextTag = ReadTag(out nextTag, out fieldName); |
|
lastTag = savedLast; |
|
fieldTag = nextTag; |
|
return hasNextTag; |
|
} |
|
|
|
/// <summary> |
|
/// Attempt to read a field tag, returning false if we have reached the end |
|
/// of the input data. |
|
/// </summary> |
|
/// <param name="fieldTag">The 'tag' of the field (id * 8 + wire-format)</param> |
|
/// <param name="fieldName">Not Supported - For protobuffer streams, this parameter is always null</param> |
|
/// <returns>true if the next fieldTag was read</returns> |
|
[CLSCompliant(false)] |
|
public bool ReadTag(out uint fieldTag, out string fieldName) |
|
{ |
|
fieldName = null; |
|
|
|
if (hasNextTag) |
|
{ |
|
fieldTag = nextTag; |
|
lastTag = fieldTag; |
|
hasNextTag = false; |
|
return true; |
|
} |
|
|
|
if (IsAtEnd) |
|
{ |
|
fieldTag = 0; |
|
lastTag = fieldTag; |
|
return false; |
|
} |
|
|
|
fieldTag = ReadRawVarint32(); |
|
lastTag = fieldTag; |
|
if (lastTag == 0) |
|
{ |
|
// If we actually read zero, that's not a valid tag. |
|
throw InvalidProtocolBufferException.InvalidTag(); |
|
} |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Read a double field from the stream. |
|
/// </summary> |
|
public bool ReadDouble(ref double value) |
|
{ |
|
value = FrameworkPortability.Int64ToDouble((long) ReadRawLittleEndian64()); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Read a float field from the stream. |
|
/// </summary> |
|
public bool ReadFloat(ref float value) |
|
{ |
|
if (BitConverter.IsLittleEndian && 4 <= bufferSize - bufferPos) |
|
{ |
|
value = BitConverter.ToSingle(buffer, bufferPos); |
|
bufferPos += 4; |
|
} |
|
else |
|
{ |
|
byte[] rawBytes = ReadRawBytes(4); |
|
if (!BitConverter.IsLittleEndian) |
|
{ |
|
ByteArray.Reverse(rawBytes); |
|
} |
|
value = BitConverter.ToSingle(rawBytes, 0); |
|
} |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Read a uint64 field from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public bool ReadUInt64(ref ulong value) |
|
{ |
|
value = ReadRawVarint64(); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Read an int64 field from the stream. |
|
/// </summary> |
|
public bool ReadInt64(ref long value) |
|
{ |
|
value = (long) ReadRawVarint64(); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Read an int32 field from the stream. |
|
/// </summary> |
|
public bool ReadInt32(ref int value) |
|
{ |
|
value = (int) ReadRawVarint32(); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Read a fixed64 field from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public bool ReadFixed64(ref ulong value) |
|
{ |
|
value = ReadRawLittleEndian64(); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Read a fixed32 field from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public bool ReadFixed32(ref uint value) |
|
{ |
|
value = ReadRawLittleEndian32(); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Read a bool field from the stream. |
|
/// </summary> |
|
public bool ReadBool(ref bool value) |
|
{ |
|
value = ReadRawVarint32() != 0; |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a string field from the stream. |
|
/// </summary> |
|
public bool ReadString(ref string value) |
|
{ |
|
int size = (int) ReadRawVarint32(); |
|
// No need to read any data for an empty string. |
|
if (size == 0) |
|
{ |
|
value = ""; |
|
return true; |
|
} |
|
if (size <= bufferSize - bufferPos) |
|
{ |
|
// Fast path: We already have the bytes in a contiguous buffer, so |
|
// just copy directly from it. |
|
String result = Encoding.UTF8.GetString(buffer, bufferPos, size); |
|
bufferPos += size; |
|
value = result; |
|
return true; |
|
} |
|
// Slow path: Build a byte array first then copy it. |
|
value = Encoding.UTF8.GetString(ReadRawBytes(size), 0, size); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a group field value from the stream. |
|
/// </summary> |
|
public void ReadGroup(int fieldNumber, IBuilderLite builder, |
|
ExtensionRegistry extensionRegistry) |
|
{ |
|
if (recursionDepth >= recursionLimit) |
|
{ |
|
throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
|
} |
|
++recursionDepth; |
|
builder.WeakMergeFrom(this, extensionRegistry); |
|
CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); |
|
--recursionDepth; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a group field value from the stream and merges it into the given |
|
/// UnknownFieldSet. |
|
/// </summary> |
|
[Obsolete] |
|
public void ReadUnknownGroup(int fieldNumber, IBuilderLite builder) |
|
{ |
|
if (recursionDepth >= recursionLimit) |
|
{ |
|
throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
|
} |
|
++recursionDepth; |
|
builder.WeakMergeFrom(this); |
|
CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); |
|
--recursionDepth; |
|
} |
|
|
|
/// <summary> |
|
/// Reads an embedded message field value from the stream. |
|
/// </summary> |
|
public void ReadMessage(IBuilderLite builder, ExtensionRegistry extensionRegistry) |
|
{ |
|
int length = (int) ReadRawVarint32(); |
|
if (recursionDepth >= recursionLimit) |
|
{ |
|
throw InvalidProtocolBufferException.RecursionLimitExceeded(); |
|
} |
|
int oldLimit = PushLimit(length); |
|
++recursionDepth; |
|
builder.WeakMergeFrom(this, extensionRegistry); |
|
CheckLastTagWas(0); |
|
--recursionDepth; |
|
PopLimit(oldLimit); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a bytes field value from the stream. |
|
/// </summary> |
|
public bool ReadBytes(ref ByteString value) |
|
{ |
|
int size = (int) ReadRawVarint32(); |
|
if (size <= bufferSize - bufferPos && size > 0) |
|
{ |
|
// Fast path: We already have the bytes in a contiguous buffer, so |
|
// just copy directly from it. |
|
ByteString result = ByteString.CopyFrom(buffer, bufferPos, size); |
|
bufferPos += size; |
|
value = result; |
|
return true; |
|
} |
|
else |
|
{ |
|
// Slow path: Build a byte array and attach it to a new ByteString. |
|
value = ByteString.AttachBytes(ReadRawBytes(size)); |
|
return true; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads a uint32 field value from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public bool ReadUInt32(ref uint value) |
|
{ |
|
value = ReadRawVarint32(); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Reads an enum field value from the stream. The caller is responsible |
|
/// for converting the numeric value to an actual enum. |
|
/// </summary> |
|
public bool ReadEnum(ref IEnumLite value, out object unknown, IEnumLiteMap mapping) |
|
{ |
|
int rawValue = (int) ReadRawVarint32(); |
|
|
|
value = mapping.FindValueByNumber(rawValue); |
|
if (value != null) |
|
{ |
|
unknown = null; |
|
return true; |
|
} |
|
unknown = rawValue; |
|
return false; |
|
} |
|
|
|
/// <summary> |
|
/// Reads an enum field value from the stream. If the enum is valid for type T, |
|
/// then the ref value is set and it returns true. Otherwise the unknown output |
|
/// value is set and this method returns false. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public bool ReadEnum<T>(ref T value, out object unknown) |
|
where T : struct, IComparable, IFormattable |
|
{ |
|
int number = (int) ReadRawVarint32(); |
|
if (EnumHelper<T>.TryConvert(number, ref value)) |
|
{ |
|
unknown = null; |
|
return true; |
|
} |
|
unknown = number; |
|
return false; |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sfixed32 field value from the stream. |
|
/// </summary> |
|
public bool ReadSFixed32(ref int value) |
|
{ |
|
value = (int) ReadRawLittleEndian32(); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sfixed64 field value from the stream. |
|
/// </summary> |
|
public bool ReadSFixed64(ref long value) |
|
{ |
|
value = (long) ReadRawLittleEndian64(); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sint32 field value from the stream. |
|
/// </summary> |
|
public bool ReadSInt32(ref int value) |
|
{ |
|
value = DecodeZigZag32(ReadRawVarint32()); |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Reads an sint64 field value from the stream. |
|
/// </summary> |
|
public bool ReadSInt64(ref long value) |
|
{ |
|
value = DecodeZigZag64(ReadRawVarint64()); |
|
return true; |
|
} |
|
|
|
private bool BeginArray(uint fieldTag, out bool isPacked, out int oldLimit) |
|
{ |
|
isPacked = WireFormat.GetTagWireType(fieldTag) == WireFormat.WireType.LengthDelimited; |
|
|
|
if (isPacked) |
|
{ |
|
int length = (int) (ReadRawVarint32() & int.MaxValue); |
|
if (length > 0) |
|
{ |
|
oldLimit = PushLimit(length); |
|
return true; |
|
} |
|
oldLimit = -1; |
|
return false; //packed but empty |
|
} |
|
|
|
oldLimit = -1; |
|
return true; |
|
} |
|
|
|
/// <summary> |
|
/// Returns true if the next tag is also part of the same unpacked array. |
|
/// </summary> |
|
private bool ContinueArray(uint currentTag) |
|
{ |
|
string ignore; |
|
uint next; |
|
if (PeekNextTag(out next, out ignore)) |
|
{ |
|
if (next == currentTag) |
|
{ |
|
hasNextTag = false; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
/// <summary> |
|
/// Returns true if the next tag is also part of the same array, which may or may not be packed. |
|
/// </summary> |
|
private bool ContinueArray(uint currentTag, bool packed, int oldLimit) |
|
{ |
|
if (packed) |
|
{ |
|
if (ReachedLimit) |
|
{ |
|
PopLimit(oldLimit); |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
string ignore; |
|
uint next; |
|
if (PeekNextTag(out next, out ignore)) |
|
{ |
|
if (next == currentTag) |
|
{ |
|
hasNextTag = false; |
|
return true; |
|
} |
|
} |
|
return false; |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadPrimitiveArray(FieldType fieldType, uint fieldTag, string fieldName, ICollection<object> list) |
|
{ |
|
WireFormat.WireType normal = WireFormat.GetWireType(fieldType); |
|
WireFormat.WireType wformat = WireFormat.GetTagWireType(fieldTag); |
|
|
|
// 2.3 allows packed form even if the field is not declared packed. |
|
if (normal != wformat && wformat == WireFormat.WireType.LengthDelimited) |
|
{ |
|
int length = (int) (ReadRawVarint32() & int.MaxValue); |
|
int limit = PushLimit(length); |
|
while (!ReachedLimit) |
|
{ |
|
Object value = null; |
|
if (ReadPrimitiveField(fieldType, ref value)) |
|
{ |
|
list.Add(value); |
|
} |
|
} |
|
PopLimit(limit); |
|
} |
|
else |
|
{ |
|
Object value = null; |
|
do |
|
{ |
|
if (ReadPrimitiveField(fieldType, ref value)) |
|
{ |
|
list.Add(value); |
|
} |
|
} while (ContinueArray(fieldTag)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadStringArray(uint fieldTag, string fieldName, ICollection<string> list) |
|
{ |
|
string tmp = null; |
|
do |
|
{ |
|
ReadString(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag)); |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadBytesArray(uint fieldTag, string fieldName, ICollection<ByteString> list) |
|
{ |
|
ByteString tmp = null; |
|
do |
|
{ |
|
ReadBytes(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag)); |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadBoolArray(uint fieldTag, string fieldName, ICollection<bool> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
bool tmp = false; |
|
do |
|
{ |
|
ReadBool(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadInt32Array(uint fieldTag, string fieldName, ICollection<int> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
int tmp = 0; |
|
do |
|
{ |
|
ReadInt32(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadSInt32Array(uint fieldTag, string fieldName, ICollection<int> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
int tmp = 0; |
|
do |
|
{ |
|
ReadSInt32(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadUInt32Array(uint fieldTag, string fieldName, ICollection<uint> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
uint tmp = 0; |
|
do |
|
{ |
|
ReadUInt32(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadFixed32Array(uint fieldTag, string fieldName, ICollection<uint> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
uint tmp = 0; |
|
do |
|
{ |
|
ReadFixed32(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadSFixed32Array(uint fieldTag, string fieldName, ICollection<int> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
int tmp = 0; |
|
do |
|
{ |
|
ReadSFixed32(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadInt64Array(uint fieldTag, string fieldName, ICollection<long> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
long tmp = 0; |
|
do |
|
{ |
|
ReadInt64(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadSInt64Array(uint fieldTag, string fieldName, ICollection<long> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
long tmp = 0; |
|
do |
|
{ |
|
ReadSInt64(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadUInt64Array(uint fieldTag, string fieldName, ICollection<ulong> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
ulong tmp = 0; |
|
do |
|
{ |
|
ReadUInt64(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadFixed64Array(uint fieldTag, string fieldName, ICollection<ulong> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
ulong tmp = 0; |
|
do |
|
{ |
|
ReadFixed64(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadSFixed64Array(uint fieldTag, string fieldName, ICollection<long> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
long tmp = 0; |
|
do |
|
{ |
|
ReadSFixed64(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadDoubleArray(uint fieldTag, string fieldName, ICollection<double> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
double tmp = 0; |
|
do |
|
{ |
|
ReadDouble(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadFloatArray(uint fieldTag, string fieldName, ICollection<float> list) |
|
{ |
|
bool isPacked; |
|
int holdLimit; |
|
if (BeginArray(fieldTag, out isPacked, out holdLimit)) |
|
{ |
|
float tmp = 0; |
|
do |
|
{ |
|
ReadFloat(ref tmp); |
|
list.Add(tmp); |
|
} while (ContinueArray(fieldTag, isPacked, holdLimit)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadEnumArray(uint fieldTag, string fieldName, ICollection<IEnumLite> list, |
|
out ICollection<object> unknown, IEnumLiteMap mapping) |
|
{ |
|
unknown = null; |
|
object unkval; |
|
IEnumLite value = null; |
|
WireFormat.WireType wformat = WireFormat.GetTagWireType(fieldTag); |
|
|
|
// 2.3 allows packed form even if the field is not declared packed. |
|
if (wformat == WireFormat.WireType.LengthDelimited) |
|
{ |
|
int length = (int) (ReadRawVarint32() & int.MaxValue); |
|
int limit = PushLimit(length); |
|
while (!ReachedLimit) |
|
{ |
|
if (ReadEnum(ref value, out unkval, mapping)) |
|
{ |
|
list.Add(value); |
|
} |
|
else |
|
{ |
|
if (unknown == null) |
|
{ |
|
unknown = new List<object>(); |
|
} |
|
unknown.Add(unkval); |
|
} |
|
} |
|
PopLimit(limit); |
|
} |
|
else |
|
{ |
|
do |
|
{ |
|
if (ReadEnum(ref value, out unkval, mapping)) |
|
{ |
|
list.Add(value); |
|
} |
|
else |
|
{ |
|
if (unknown == null) |
|
{ |
|
unknown = new List<object>(); |
|
} |
|
unknown.Add(unkval); |
|
} |
|
} while (ContinueArray(fieldTag)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadEnumArray<T>(uint fieldTag, string fieldName, ICollection<T> list, |
|
out ICollection<object> unknown) |
|
where T : struct, IComparable, IFormattable |
|
{ |
|
unknown = null; |
|
object unkval; |
|
T value = default(T); |
|
WireFormat.WireType wformat = WireFormat.GetTagWireType(fieldTag); |
|
|
|
// 2.3 allows packed form even if the field is not declared packed. |
|
if (wformat == WireFormat.WireType.LengthDelimited) |
|
{ |
|
int length = (int) (ReadRawVarint32() & int.MaxValue); |
|
int limit = PushLimit(length); |
|
while (!ReachedLimit) |
|
{ |
|
if (ReadEnum<T>(ref value, out unkval)) |
|
{ |
|
list.Add(value); |
|
} |
|
else |
|
{ |
|
if (unknown == null) |
|
{ |
|
unknown = new List<object>(); |
|
} |
|
unknown.Add(unkval); |
|
} |
|
} |
|
PopLimit(limit); |
|
} |
|
else |
|
{ |
|
do |
|
{ |
|
if (ReadEnum(ref value, out unkval)) |
|
{ |
|
list.Add(value); |
|
} |
|
else |
|
{ |
|
if (unknown == null) |
|
{ |
|
unknown = new List<object>(); |
|
} |
|
unknown.Add(unkval); |
|
} |
|
} while (ContinueArray(fieldTag)); |
|
} |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadMessageArray<T>(uint fieldTag, string fieldName, ICollection<T> list, T messageType, |
|
ExtensionRegistry registry) where T : IMessageLite |
|
{ |
|
do |
|
{ |
|
IBuilderLite builder = messageType.WeakCreateBuilderForType(); |
|
ReadMessage(builder, registry); |
|
list.Add((T) builder.WeakBuildPartial()); |
|
} while (ContinueArray(fieldTag)); |
|
} |
|
|
|
[CLSCompliant(false)] |
|
public void ReadGroupArray<T>(uint fieldTag, string fieldName, ICollection<T> list, T messageType, |
|
ExtensionRegistry registry) where T : IMessageLite |
|
{ |
|
do |
|
{ |
|
IBuilderLite builder = messageType.WeakCreateBuilderForType(); |
|
ReadGroup(WireFormat.GetTagFieldNumber(fieldTag), builder, registry); |
|
list.Add((T) builder.WeakBuildPartial()); |
|
} while (ContinueArray(fieldTag)); |
|
} |
|
|
|
/// <summary> |
|
/// Reads a field of any primitive type. Enums, groups and embedded |
|
/// messages are not handled by this method. |
|
/// </summary> |
|
public bool ReadPrimitiveField(FieldType fieldType, ref object value) |
|
{ |
|
switch (fieldType) |
|
{ |
|
case FieldType.Double: |
|
{ |
|
double tmp = 0; |
|
if (ReadDouble(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.Float: |
|
{ |
|
float tmp = 0; |
|
if (ReadFloat(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.Int64: |
|
{ |
|
long tmp = 0; |
|
if (ReadInt64(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.UInt64: |
|
{ |
|
ulong tmp = 0; |
|
if (ReadUInt64(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.Int32: |
|
{ |
|
int tmp = 0; |
|
if (ReadInt32(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.Fixed64: |
|
{ |
|
ulong tmp = 0; |
|
if (ReadFixed64(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.Fixed32: |
|
{ |
|
uint tmp = 0; |
|
if (ReadFixed32(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.Bool: |
|
{ |
|
bool tmp = false; |
|
if (ReadBool(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.String: |
|
{ |
|
string tmp = null; |
|
if (ReadString(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.Bytes: |
|
{ |
|
ByteString tmp = null; |
|
if (ReadBytes(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.UInt32: |
|
{ |
|
uint tmp = 0; |
|
if (ReadUInt32(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.SFixed32: |
|
{ |
|
int tmp = 0; |
|
if (ReadSFixed32(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.SFixed64: |
|
{ |
|
long tmp = 0; |
|
if (ReadSFixed64(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.SInt32: |
|
{ |
|
int tmp = 0; |
|
if (ReadSInt32(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.SInt64: |
|
{ |
|
long tmp = 0; |
|
if (ReadSInt64(ref tmp)) |
|
{ |
|
value = tmp; |
|
return true; |
|
} |
|
return false; |
|
} |
|
case FieldType.Group: |
|
throw new ArgumentException("ReadPrimitiveField() cannot handle nested groups."); |
|
case FieldType.Message: |
|
throw new ArgumentException("ReadPrimitiveField() cannot handle embedded messages."); |
|
// We don't handle enums because we don't know what to do if the |
|
// value is not recognized. |
|
case FieldType.Enum: |
|
throw new ArgumentException("ReadPrimitiveField() cannot handle enums."); |
|
default: |
|
throw new ArgumentOutOfRangeException("Invalid field type " + fieldType); |
|
} |
|
} |
|
|
|
#endregion |
|
|
|
#region Underlying reading primitives |
|
|
|
/// <summary> |
|
/// Same code as ReadRawVarint32, but read each byte individually, checking for |
|
/// buffer overflow. |
|
/// </summary> |
|
private uint SlowReadRawVarint32() |
|
{ |
|
int tmp = ReadRawByte(); |
|
if (tmp < 128) |
|
{ |
|
return (uint) tmp; |
|
} |
|
int result = tmp & 0x7f; |
|
if ((tmp = ReadRawByte()) < 128) |
|
{ |
|
result |= tmp << 7; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 7; |
|
if ((tmp = ReadRawByte()) < 128) |
|
{ |
|
result |= tmp << 14; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 14; |
|
if ((tmp = ReadRawByte()) < 128) |
|
{ |
|
result |= tmp << 21; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 21; |
|
result |= (tmp = ReadRawByte()) << 28; |
|
if (tmp >= 128) |
|
{ |
|
// Discard upper 32 bits. |
|
for (int i = 0; i < 5; i++) |
|
{ |
|
if (ReadRawByte() < 128) |
|
{ |
|
return (uint) result; |
|
} |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
} |
|
} |
|
} |
|
return (uint) result; |
|
} |
|
|
|
/// <summary> |
|
/// Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits. |
|
/// This method is optimised for the case where we've got lots of data in the buffer. |
|
/// That means we can check the size just once, then just read directly from the buffer |
|
/// without constant rechecking of the buffer length. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public uint ReadRawVarint32() |
|
{ |
|
if (bufferPos + 5 > bufferSize) |
|
{ |
|
return SlowReadRawVarint32(); |
|
} |
|
|
|
int tmp = buffer[bufferPos++]; |
|
if (tmp < 128) |
|
{ |
|
return (uint) tmp; |
|
} |
|
int result = tmp & 0x7f; |
|
if ((tmp = buffer[bufferPos++]) < 128) |
|
{ |
|
result |= tmp << 7; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 7; |
|
if ((tmp = buffer[bufferPos++]) < 128) |
|
{ |
|
result |= tmp << 14; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 14; |
|
if ((tmp = buffer[bufferPos++]) < 128) |
|
{ |
|
result |= tmp << 21; |
|
} |
|
else |
|
{ |
|
result |= (tmp & 0x7f) << 21; |
|
result |= (tmp = buffer[bufferPos++]) << 28; |
|
if (tmp >= 128) |
|
{ |
|
// Discard upper 32 bits. |
|
// Note that this has to use ReadRawByte() as we only ensure we've |
|
// got at least 5 bytes at the start of the method. This lets us |
|
// use the fast path in more cases, and we rarely hit this section of code. |
|
for (int i = 0; i < 5; i++) |
|
{ |
|
if (ReadRawByte() < 128) |
|
{ |
|
return (uint) result; |
|
} |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
} |
|
} |
|
} |
|
return (uint) result; |
|
} |
|
|
|
/// <summary> |
|
/// Reads a varint from the input one byte at a time, so that it does not |
|
/// read any bytes after the end of the varint. If you simply wrapped the |
|
/// stream in a CodedInputStream and used ReadRawVarint32(Stream)} |
|
/// then you would probably end up reading past the end of the varint since |
|
/// CodedInputStream buffers its input. |
|
/// </summary> |
|
/// <param name="input"></param> |
|
/// <returns></returns> |
|
[CLSCompliant(false)] |
|
public static uint ReadRawVarint32(Stream input) |
|
{ |
|
int result = 0; |
|
int offset = 0; |
|
for (; offset < 32; offset += 7) |
|
{ |
|
int b = input.ReadByte(); |
|
if (b == -1) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
result |= (b & 0x7f) << offset; |
|
if ((b & 0x80) == 0) |
|
{ |
|
return (uint) result; |
|
} |
|
} |
|
// Keep reading up to 64 bits. |
|
for (; offset < 64; offset += 7) |
|
{ |
|
int b = input.ReadByte(); |
|
if (b == -1) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
if ((b & 0x80) == 0) |
|
{ |
|
return (uint) result; |
|
} |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
|
|
/// <summary> |
|
/// Read a raw varint from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public ulong ReadRawVarint64() |
|
{ |
|
int shift = 0; |
|
ulong result = 0; |
|
while (shift < 64) |
|
{ |
|
byte b = ReadRawByte(); |
|
result |= (ulong) (b & 0x7F) << shift; |
|
if ((b & 0x80) == 0) |
|
{ |
|
return result; |
|
} |
|
shift += 7; |
|
} |
|
throw InvalidProtocolBufferException.MalformedVarint(); |
|
} |
|
|
|
/// <summary> |
|
/// Read a 32-bit little-endian integer from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public uint ReadRawLittleEndian32() |
|
{ |
|
uint b1 = ReadRawByte(); |
|
uint b2 = ReadRawByte(); |
|
uint b3 = ReadRawByte(); |
|
uint b4 = ReadRawByte(); |
|
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); |
|
} |
|
|
|
/// <summary> |
|
/// Read a 64-bit little-endian integer from the stream. |
|
/// </summary> |
|
[CLSCompliant(false)] |
|
public ulong ReadRawLittleEndian64() |
|
{ |
|
ulong b1 = ReadRawByte(); |
|
ulong b2 = ReadRawByte(); |
|
ulong b3 = ReadRawByte(); |
|
ulong b4 = ReadRawByte(); |
|
ulong b5 = ReadRawByte(); |
|
ulong b6 = ReadRawByte(); |
|
ulong b7 = ReadRawByte(); |
|
ulong b8 = ReadRawByte(); |
|
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24) |
|
| (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56); |
|
} |
|
|
|
#endregion |
|
|
|
/// <summary> |
|
/// Decode a 32-bit value with ZigZag encoding. |
|
/// </summary> |
|
/// <remarks> |
|
/// ZigZag encodes signed integers into values that can be efficiently |
|
/// encoded with varint. (Otherwise, negative values must be |
|
/// sign-extended to 64 bits to be varint encoded, thus always taking |
|
/// 10 bytes on the wire.) |
|
/// </remarks> |
|
[CLSCompliant(false)] |
|
public static int DecodeZigZag32(uint n) |
|
{ |
|
return (int) (n >> 1) ^ -(int) (n & 1); |
|
} |
|
|
|
/// <summary> |
|
/// Decode a 32-bit value with ZigZag encoding. |
|
/// </summary> |
|
/// <remarks> |
|
/// ZigZag encodes signed integers into values that can be efficiently |
|
/// encoded with varint. (Otherwise, negative values must be |
|
/// sign-extended to 64 bits to be varint encoded, thus always taking |
|
/// 10 bytes on the wire.) |
|
/// </remarks> |
|
[CLSCompliant(false)] |
|
public static long DecodeZigZag64(ulong n) |
|
{ |
|
return (long) (n >> 1) ^ -(long) (n & 1); |
|
} |
|
|
|
/// <summary> |
|
/// Set the maximum message recursion depth. |
|
/// </summary> |
|
/// <remarks> |
|
/// In order to prevent malicious |
|
/// messages from causing stack overflows, CodedInputStream limits |
|
/// how deeply messages may be nested. The default limit is 64. |
|
/// </remarks> |
|
public int SetRecursionLimit(int limit) |
|
{ |
|
if (limit < 0) |
|
{ |
|
throw new ArgumentOutOfRangeException("Recursion limit cannot be negative: " + limit); |
|
} |
|
int oldLimit = recursionLimit; |
|
recursionLimit = limit; |
|
return oldLimit; |
|
} |
|
|
|
/// <summary> |
|
/// Set the maximum message size. |
|
/// </summary> |
|
/// <remarks> |
|
/// In order to prevent malicious messages from exhausting memory or |
|
/// causing integer overflows, CodedInputStream limits how large a message may be. |
|
/// The default limit is 64MB. You should set this limit as small |
|
/// as you can without harming your app's functionality. Note that |
|
/// size limits only apply when reading from an InputStream, not |
|
/// when constructed around a raw byte array (nor with ByteString.NewCodedInput). |
|
/// If you want to read several messages from a single CodedInputStream, you |
|
/// can call ResetSizeCounter() after each message to avoid hitting the |
|
/// size limit. |
|
/// </remarks> |
|
public int SetSizeLimit(int limit) |
|
{ |
|
if (limit < 0) |
|
{ |
|
throw new ArgumentOutOfRangeException("Size limit cannot be negative: " + limit); |
|
} |
|
int oldLimit = sizeLimit; |
|
sizeLimit = limit; |
|
return oldLimit; |
|
} |
|
|
|
#region Internal reading and buffer management |
|
|
|
/// <summary> |
|
/// Resets the current size counter to zero (see SetSizeLimit). |
|
/// </summary> |
|
public void ResetSizeCounter() |
|
{ |
|
totalBytesRetired = 0; |
|
} |
|
|
|
/// <summary> |
|
/// Sets currentLimit to (current position) + byteLimit. This is called |
|
/// when descending into a length-delimited embedded message. The previous |
|
/// limit is returned. |
|
/// </summary> |
|
/// <returns>The old limit.</returns> |
|
public int PushLimit(int byteLimit) |
|
{ |
|
if (byteLimit < 0) |
|
{ |
|
throw InvalidProtocolBufferException.NegativeSize(); |
|
} |
|
byteLimit += totalBytesRetired + bufferPos; |
|
int oldLimit = currentLimit; |
|
if (byteLimit > oldLimit) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
currentLimit = byteLimit; |
|
|
|
RecomputeBufferSizeAfterLimit(); |
|
|
|
return oldLimit; |
|
} |
|
|
|
private void RecomputeBufferSizeAfterLimit() |
|
{ |
|
bufferSize += bufferSizeAfterLimit; |
|
int bufferEnd = totalBytesRetired + bufferSize; |
|
if (bufferEnd > currentLimit) |
|
{ |
|
// Limit is in current buffer. |
|
bufferSizeAfterLimit = bufferEnd - currentLimit; |
|
bufferSize -= bufferSizeAfterLimit; |
|
} |
|
else |
|
{ |
|
bufferSizeAfterLimit = 0; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Discards the current limit, returning the previous limit. |
|
/// </summary> |
|
public void PopLimit(int oldLimit) |
|
{ |
|
currentLimit = oldLimit; |
|
RecomputeBufferSizeAfterLimit(); |
|
} |
|
|
|
/// <summary> |
|
/// Returns whether or not all the data before the limit has been read. |
|
/// </summary> |
|
/// <returns></returns> |
|
public bool ReachedLimit |
|
{ |
|
get |
|
{ |
|
if (currentLimit == int.MaxValue) |
|
{ |
|
return false; |
|
} |
|
int currentAbsolutePosition = totalBytesRetired + bufferPos; |
|
return currentAbsolutePosition >= currentLimit; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Returns true if the stream has reached the end of the input. This is the |
|
/// case if either the end of the underlying input source has been reached or |
|
/// the stream has reached a limit created using PushLimit. |
|
/// </summary> |
|
public bool IsAtEnd |
|
{ |
|
get { return bufferPos == bufferSize && !RefillBuffer(false); } |
|
} |
|
|
|
/// <summary> |
|
/// Called when buffer is empty to read more bytes from the |
|
/// input. If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that |
|
/// either there will be at least one byte in the buffer when it returns |
|
/// or it will throw an exception. If <paramref name="mustSucceed"/> is false, |
|
/// RefillBuffer() returns false if no more bytes were available. |
|
/// </summary> |
|
/// <param name="mustSucceed"></param> |
|
/// <returns></returns> |
|
private bool RefillBuffer(bool mustSucceed) |
|
{ |
|
if (bufferPos < bufferSize) |
|
{ |
|
throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty."); |
|
} |
|
|
|
if (totalBytesRetired + bufferSize == currentLimit) |
|
{ |
|
// Oops, we hit a limit. |
|
if (mustSucceed) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
else |
|
{ |
|
return false; |
|
} |
|
} |
|
|
|
totalBytesRetired += bufferSize; |
|
|
|
bufferPos = 0; |
|
bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length); |
|
if (bufferSize < 0) |
|
{ |
|
throw new InvalidOperationException("Stream.Read returned a negative count"); |
|
} |
|
if (bufferSize == 0) |
|
{ |
|
if (mustSucceed) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
else |
|
{ |
|
return false; |
|
} |
|
} |
|
else |
|
{ |
|
RecomputeBufferSizeAfterLimit(); |
|
int totalBytesRead = |
|
totalBytesRetired + bufferSize + bufferSizeAfterLimit; |
|
if (totalBytesRead > sizeLimit || totalBytesRead < 0) |
|
{ |
|
throw InvalidProtocolBufferException.SizeLimitExceeded(); |
|
} |
|
return true; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Read one byte from the input. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException"> |
|
/// the end of the stream or the current limit was reached |
|
/// </exception> |
|
public byte ReadRawByte() |
|
{ |
|
if (bufferPos == bufferSize) |
|
{ |
|
RefillBuffer(true); |
|
} |
|
return buffer[bufferPos++]; |
|
} |
|
|
|
/// <summary> |
|
/// Read a fixed size of bytes from the input. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException"> |
|
/// the end of the stream or the current limit was reached |
|
/// </exception> |
|
public byte[] ReadRawBytes(int size) |
|
{ |
|
if (size < 0) |
|
{ |
|
throw InvalidProtocolBufferException.NegativeSize(); |
|
} |
|
|
|
if (totalBytesRetired + bufferPos + size > currentLimit) |
|
{ |
|
// Read to the end of the stream anyway. |
|
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
|
// Then fail. |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
|
|
if (size <= bufferSize - bufferPos) |
|
{ |
|
// We have all the bytes we need already. |
|
byte[] bytes = new byte[size]; |
|
ByteArray.Copy(buffer, bufferPos, bytes, 0, size); |
|
bufferPos += size; |
|
return bytes; |
|
} |
|
else if (size < buffer.Length) |
|
{ |
|
// Reading more bytes than are in the buffer, but not an excessive number |
|
// of bytes. We can safely allocate the resulting array ahead of time. |
|
|
|
// First copy what we have. |
|
byte[] bytes = new byte[size]; |
|
int pos = bufferSize - bufferPos; |
|
ByteArray.Copy(buffer, bufferPos, bytes, 0, pos); |
|
bufferPos = bufferSize; |
|
|
|
// We want to use RefillBuffer() and then copy from the buffer into our |
|
// byte array rather than reading directly into our byte array because |
|
// the input may be unbuffered. |
|
RefillBuffer(true); |
|
|
|
while (size - pos > bufferSize) |
|
{ |
|
Buffer.BlockCopy(buffer, 0, bytes, pos, bufferSize); |
|
pos += bufferSize; |
|
bufferPos = bufferSize; |
|
RefillBuffer(true); |
|
} |
|
|
|
ByteArray.Copy(buffer, 0, bytes, pos, size - pos); |
|
bufferPos = size - pos; |
|
|
|
return bytes; |
|
} |
|
else |
|
{ |
|
// The size is very large. For security reasons, we can't allocate the |
|
// entire byte array yet. The size comes directly from the input, so a |
|
// maliciously-crafted message could provide a bogus very large size in |
|
// order to trick the app into allocating a lot of memory. We avoid this |
|
// by allocating and reading only a small chunk at a time, so that the |
|
// malicious message must actually *be* extremely large to cause |
|
// problems. Meanwhile, we limit the allowed size of a message elsewhere. |
|
|
|
// Remember the buffer markers since we'll have to copy the bytes out of |
|
// it later. |
|
int originalBufferPos = bufferPos; |
|
int originalBufferSize = bufferSize; |
|
|
|
// Mark the current buffer consumed. |
|
totalBytesRetired += bufferSize; |
|
bufferPos = 0; |
|
bufferSize = 0; |
|
|
|
// Read all the rest of the bytes we need. |
|
int sizeLeft = size - (originalBufferSize - originalBufferPos); |
|
List<byte[]> chunks = new List<byte[]>(); |
|
|
|
while (sizeLeft > 0) |
|
{ |
|
byte[] chunk = new byte[Math.Min(sizeLeft, buffer.Length)]; |
|
int pos = 0; |
|
while (pos < chunk.Length) |
|
{ |
|
int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos); |
|
if (n <= 0) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
totalBytesRetired += n; |
|
pos += n; |
|
} |
|
sizeLeft -= chunk.Length; |
|
chunks.Add(chunk); |
|
} |
|
|
|
// OK, got everything. Now concatenate it all into one buffer. |
|
byte[] bytes = new byte[size]; |
|
|
|
// Start by copying the leftover bytes from this.buffer. |
|
int newPos = originalBufferSize - originalBufferPos; |
|
ByteArray.Copy(buffer, originalBufferPos, bytes, 0, newPos); |
|
|
|
// And now all the chunks. |
|
foreach (byte[] chunk in chunks) |
|
{ |
|
Buffer.BlockCopy(chunk, 0, bytes, newPos, chunk.Length); |
|
newPos += chunk.Length; |
|
} |
|
|
|
// Done. |
|
return bytes; |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads and discards a single field, given its tag value. |
|
/// </summary> |
|
/// <returns>false if the tag is an end-group tag, in which case |
|
/// nothing is skipped. Otherwise, returns true.</returns> |
|
[CLSCompliant(false)] |
|
public bool SkipField() |
|
{ |
|
uint tag = lastTag; |
|
switch (WireFormat.GetTagWireType(tag)) |
|
{ |
|
case WireFormat.WireType.Varint: |
|
ReadRawVarint64(); |
|
return true; |
|
case WireFormat.WireType.Fixed64: |
|
ReadRawLittleEndian64(); |
|
return true; |
|
case WireFormat.WireType.LengthDelimited: |
|
SkipRawBytes((int) ReadRawVarint32()); |
|
return true; |
|
case WireFormat.WireType.StartGroup: |
|
SkipMessage(); |
|
CheckLastTagWas( |
|
WireFormat.MakeTag(WireFormat.GetTagFieldNumber(tag), |
|
WireFormat.WireType.EndGroup)); |
|
return true; |
|
case WireFormat.WireType.EndGroup: |
|
return false; |
|
case WireFormat.WireType.Fixed32: |
|
ReadRawLittleEndian32(); |
|
return true; |
|
default: |
|
throw InvalidProtocolBufferException.InvalidWireType(); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads and discards an entire message. This will read either until EOF |
|
/// or until an endgroup tag, whichever comes first. |
|
/// </summary> |
|
public void SkipMessage() |
|
{ |
|
uint tag; |
|
string name; |
|
while (ReadTag(out tag, out name)) |
|
{ |
|
if (!SkipField()) |
|
{ |
|
return; |
|
} |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Reads and discards <paramref name="size"/> bytes. |
|
/// </summary> |
|
/// <exception cref="InvalidProtocolBufferException">the end of the stream |
|
/// or the current limit was reached</exception> |
|
public void SkipRawBytes(int size) |
|
{ |
|
if (size < 0) |
|
{ |
|
throw InvalidProtocolBufferException.NegativeSize(); |
|
} |
|
|
|
if (totalBytesRetired + bufferPos + size > currentLimit) |
|
{ |
|
// Read to the end of the stream anyway. |
|
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); |
|
// Then fail. |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
|
|
if (size <= bufferSize - bufferPos) |
|
{ |
|
// We have all the bytes we need already. |
|
bufferPos += size; |
|
} |
|
else |
|
{ |
|
// Skipping more bytes than are in the buffer. First skip what we have. |
|
int pos = bufferSize - bufferPos; |
|
|
|
// ROK 5/7/2013 Issue #54: should retire all bytes in buffer (bufferSize) |
|
// totalBytesRetired += pos; |
|
totalBytesRetired += bufferSize; |
|
|
|
bufferPos = 0; |
|
bufferSize = 0; |
|
|
|
// Then skip directly from the InputStream for the rest. |
|
if (pos < size) |
|
{ |
|
if (input == null) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
SkipImpl(size - pos); |
|
totalBytesRetired += size - pos; |
|
} |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Abstraction of skipping to cope with streams which can't really skip. |
|
/// </summary> |
|
private void SkipImpl(int amountToSkip) |
|
{ |
|
if (input.CanSeek) |
|
{ |
|
long previousPosition = input.Position; |
|
input.Position += amountToSkip; |
|
if (input.Position != previousPosition + amountToSkip) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
} |
|
else |
|
{ |
|
byte[] skipBuffer = new byte[1024]; |
|
while (amountToSkip > 0) |
|
{ |
|
int bytesRead = input.Read(skipBuffer, 0, skipBuffer.Length); |
|
if (bytesRead <= 0) |
|
{ |
|
throw InvalidProtocolBufferException.TruncatedMessage(); |
|
} |
|
amountToSkip -= bytesRead; |
|
} |
|
} |
|
} |
|
|
|
#endregion |
|
|
|
/// <summary> |
|
/// Helper class to make parsing enums faster. |
|
/// </summary> |
|
private static class EnumHelper<T> where T : struct |
|
{ |
|
/// <summary> |
|
/// We use the array form if all values are in the range [0, LimitForArray), |
|
/// otherwise we build a dictionary. |
|
/// </summary> |
|
private const int LimitForArray = 32; |
|
// Only one of these will be populated. |
|
private static readonly Dictionary<int, T> dictionary; |
|
private static readonly T?[] values; |
|
|
|
static EnumHelper() |
|
{ |
|
// It will actually be a T[], but the CLR will let us convert. |
|
int[] array = (int[]) Enum.GetValues(typeof (T)); |
|
if (array.Length == 0) |
|
{ |
|
// Empty enum; model with an empty values array. |
|
values = new T?[0]; |
|
return; |
|
} |
|
int min = int.MaxValue; |
|
int max = int.MinValue; |
|
foreach (int number in array) |
|
{ |
|
min = Math.Min(number, min); |
|
max = Math.Max(number, max); |
|
} |
|
if (min >= 0 && max < LimitForArray) |
|
{ |
|
values = new T?[max + 1]; |
|
foreach (int number in array) |
|
{ |
|
values[number] = (T)(object)number; |
|
} |
|
} |
|
else |
|
{ |
|
dictionary = new Dictionary<int, T>(); |
|
foreach (int number in array) |
|
{ |
|
dictionary[number] = (T)(object)number; |
|
} |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Tries to convert an integer to its enum representation. This would take an out parameter, |
|
/// but the caller uses ref, so this approach is simpler. |
|
/// </summary> |
|
internal static bool TryConvert(int number, ref T value) |
|
{ |
|
if (values != null) |
|
{ |
|
if (number < 0 || number >= values.Length) |
|
{ |
|
return false; |
|
} |
|
T? maybeValue = values[number]; |
|
if (maybeValue != null) |
|
{ |
|
value = maybeValue.Value; |
|
return true; |
|
} |
|
return false; |
|
} |
|
T converted; |
|
if (dictionary.TryGetValue(number, out converted)) |
|
{ |
|
value = converted; |
|
return true; |
|
} |
|
return false; |
|
} |
|
} |
|
} |
|
} |