Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

750 lines
25 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2023 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
//! UPB FFI wrapper code for use by Rust Protobuf.
use crate::__internal::{Private, PtrAndLen, RawArena, RawMap, RawMessage, RawRepeatedField};
use std::alloc;
use std::alloc::Layout;
use std::cell::UnsafeCell;
use std::fmt;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ops::Deref;
use std::ptr::{self, NonNull};
use std::slice;
use std::sync::Once;
/// See `upb/port/def.inc`.
const UPB_MALLOC_ALIGN: usize = 8;
/// A wrapper over a `upb_Arena`.
///
/// This is not a safe wrapper per se, because the allocation functions still
/// have sharp edges (see their safety docs for more info).
///
/// This is an owning type and will automatically free the arena when
/// dropped.
///
/// Note that this type is neither `Sync` nor `Send`.
#[derive(Debug)]
pub struct Arena {
// Safety invariant: this must always be a valid arena
raw: RawArena,
_not_sync: PhantomData<UnsafeCell<()>>,
}
extern "C" {
// `Option<NonNull<T: Sized>>` is ABI-compatible with `*mut T`
fn upb_Arena_New() -> Option<RawArena>;
fn upb_Arena_Free(arena: RawArena);
fn upb_Arena_Malloc(arena: RawArena, size: usize) -> *mut u8;
fn upb_Arena_Realloc(arena: RawArena, ptr: *mut u8, old: usize, new: usize) -> *mut u8;
}
impl Arena {
/// Allocates a fresh arena.
#[inline]
pub fn new() -> Self {
#[inline(never)]
#[cold]
fn arena_new_failed() -> ! {
panic!("Could not create a new UPB arena");
}
// SAFETY:
// - `upb_Arena_New` is assumed to be implemented correctly and always sound to
// call; if it returned a non-null pointer, it is a valid arena.
unsafe {
let Some(raw) = upb_Arena_New() else { arena_new_failed() };
Self { raw, _not_sync: PhantomData }
}
}
/// Returns the raw, UPB-managed pointer to the arena.
#[inline]
pub fn raw(&self) -> RawArena {
self.raw
}
/// Allocates some memory on the arena.
///
/// # Safety
///
/// - `layout`'s alignment must be less than `UPB_MALLOC_ALIGN`.
#[inline]
pub unsafe fn alloc(&self, layout: Layout) -> &mut [MaybeUninit<u8>] {
debug_assert!(layout.align() <= UPB_MALLOC_ALIGN);
// SAFETY: `self.raw` is a valid UPB arena
let ptr = unsafe { upb_Arena_Malloc(self.raw, layout.size()) };
if ptr.is_null() {
alloc::handle_alloc_error(layout);
}
// SAFETY:
// - `upb_Arena_Malloc` promises that if the return pointer is non-null, it is
// dereferencable for `size` bytes and has an alignment of `UPB_MALLOC_ALIGN`
// until the arena is destroyed.
// - `[MaybeUninit<u8>]` has no alignment requirement, and `ptr` is aligned to a
// `UPB_MALLOC_ALIGN` boundary.
unsafe { slice::from_raw_parts_mut(ptr.cast(), layout.size()) }
}
/// Resizes some memory on the arena.
///
/// # Safety
///
/// - `ptr` must be the data pointer returned by a previous call to `alloc`
/// or `resize` on `self`.
/// - After calling this function, `ptr` is no longer dereferencable - it is
/// zapped.
/// - `old` must be the layout `ptr` was allocated with via `alloc` or
/// `realloc`.
/// - `new`'s alignment must be less than `UPB_MALLOC_ALIGN`.
#[inline]
pub unsafe fn resize(&self, ptr: *mut u8, old: Layout, new: Layout) -> &mut [MaybeUninit<u8>] {
debug_assert!(new.align() <= UPB_MALLOC_ALIGN);
// SAFETY:
// - `self.raw` is a valid UPB arena
// - `ptr` was allocated by a previous call to `alloc` or `realloc` as promised
// by the caller.
let ptr = unsafe { upb_Arena_Realloc(self.raw, ptr, old.size(), new.size()) };
if ptr.is_null() {
alloc::handle_alloc_error(new);
}
// SAFETY:
// - `upb_Arena_Realloc` promises that if the return pointer is non-null, it is
// dereferencable for the new `size` in bytes until the arena is destroyed.
// - `[MaybeUninit<u8>]` has no alignment requirement, and `ptr` is aligned to a
// `UPB_MALLOC_ALIGN` boundary.
unsafe { slice::from_raw_parts_mut(ptr.cast(), new.size()) }
}
}
impl Drop for Arena {
#[inline]
fn drop(&mut self) {
unsafe {
upb_Arena_Free(self.raw);
}
}
}
static mut INTERNAL_PTR: Option<RawMessage> = None;
static INIT: Once = Once::new();
// TODO:(b/304577017)
const ALIGN: usize = 32;
const UPB_SCRATCH_SPACE_BYTES: usize = 64_000;
/// Holds a zero-initialized block of memory for use by upb.
/// By default, if a message is not set in cpp, a default message is created.
/// upb departs from this and returns a null ptr. However, since contiguous
/// chunks of memory filled with zeroes are legit messages from upb's point of
/// view, we can allocate a large block and refer to that when dealing
/// with readonly access.
pub struct ScratchSpace;
impl ScratchSpace {
pub fn zeroed_block(_private: Private) -> RawMessage {
unsafe {
INIT.call_once(|| {
let layout =
std::alloc::Layout::from_size_align(UPB_SCRATCH_SPACE_BYTES, ALIGN).unwrap();
let Some(ptr) =
crate::__internal::RawMessage::new(std::alloc::alloc_zeroed(layout).cast())
else {
std::alloc::handle_alloc_error(layout)
};
INTERNAL_PTR = Some(ptr)
});
INTERNAL_PTR.unwrap()
}
}
}
/// Serialized Protobuf wire format data.
///
/// It's typically produced by `<Message>::serialize()`.
pub struct SerializedData {
data: NonNull<u8>,
len: usize,
// The arena that owns `data`.
_arena: Arena,
}
impl SerializedData {
/// Construct `SerializedData` from raw pointers and its owning arena.
///
/// # Safety
/// - `arena` must be have allocated `data`
/// - `data` must be readable for `len` bytes and not mutate while this
/// struct exists
pub unsafe fn from_raw_parts(arena: Arena, data: NonNull<u8>, len: usize) -> Self {
SerializedData { _arena: arena, data, len }
}
/// Gets a raw slice pointer.
pub fn as_ptr(&self) -> *const [u8] {
ptr::slice_from_raw_parts(self.data.as_ptr(), self.len)
}
}
impl Deref for SerializedData {
type Target = [u8];
fn deref(&self) -> &Self::Target {
// SAFETY: `data` is valid for `len` bytes as promised by
// the caller of `SerializedData::from_raw_parts`.
unsafe { slice::from_raw_parts(self.data.as_ptr(), self.len) }
}
}
impl fmt::Debug for SerializedData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(self.deref(), f)
}
}
// TODO: Investigate replacing this with direct access to UPB bits.
pub type BytesPresentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>;
pub type BytesAbsentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>;
pub type InnerBytesMut<'msg> = crate::vtable::RawVTableMutator<'msg, [u8]>;
pub type InnerPrimitiveMut<'a, T> = crate::vtable::RawVTableMutator<'a, T>;
/// The raw contents of every generated message.
#[derive(Debug)]
pub struct MessageInner {
pub msg: RawMessage,
pub arena: Arena,
}
/// Mutators that point to their original message use this to do so.
///
/// Since UPB expects runtimes to manage their own arenas, this needs to have
/// access to an `Arena`.
///
/// This has two possible designs:
/// - Store two pointers here, `RawMessage` and `&'msg Arena`. This doesn't
/// place any restriction on the layout of generated messages and their
/// mutators. This makes a vtable-based mutator three pointers, which can no
/// longer be returned in registers on most platforms.
/// - Store one pointer here, `&'msg MessageInner`, where `MessageInner` stores
/// a `RawMessage` and an `Arena`. This would require all generated messages
/// to store `MessageInner`, and since their mutators need to be able to
/// generate `BytesMut`, would also require `BytesMut` to store a `&'msg
/// MessageInner` since they can't store an owned `Arena`.
///
/// Note: even though this type is `Copy`, it should only be copied by
/// protobuf internals that can maintain mutation invariants:
///
/// - No concurrent mutation for any two fields in a message: this means
/// mutators cannot be `Send` but are `Sync`.
/// - If there are multiple accessible `Mut` to a single message at a time, they
/// must be different fields, and not be in the same oneof. As such, a `Mut`
/// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which
/// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`.
#[derive(Clone, Copy, Debug)]
pub struct MutatorMessageRef<'msg> {
msg: RawMessage,
arena: &'msg Arena,
}
impl<'msg> MutatorMessageRef<'msg> {
#[doc(hidden)]
#[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access.
pub fn new(_private: Private, msg: &'msg mut MessageInner) -> Self {
MutatorMessageRef { msg: msg.msg, arena: &msg.arena }
}
pub fn msg(&self) -> RawMessage {
self.msg
}
}
pub fn copy_bytes_in_arena_if_needed_by_runtime<'a>(
msg_ref: MutatorMessageRef<'a>,
val: &'a [u8],
) -> &'a [u8] {
// SAFETY: the alignment of `[u8]` is less than `UPB_MALLOC_ALIGN`.
let new_alloc = unsafe { msg_ref.arena.alloc(Layout::for_value(val)) };
debug_assert_eq!(new_alloc.len(), val.len());
let start: *mut u8 = new_alloc.as_mut_ptr().cast();
// SAFETY:
// - `new_alloc` is writeable for `val.len()` bytes.
// - After the copy, `new_alloc` is initialized for `val.len()` bytes.
unsafe {
val.as_ptr().copy_to_nonoverlapping(start, val.len());
&*(new_alloc as *mut _ as *mut [u8])
}
}
/// RepeatedFieldInner contains a `upb_Array*` as well as a reference to an
/// `Arena`, most likely that of the containing `Message`. upb requires an Arena
/// to perform mutations on a repeated field.
#[derive(Clone, Copy, Debug)]
pub struct RepeatedFieldInner<'msg> {
pub raw: RawRepeatedField,
pub arena: &'msg Arena,
}
#[derive(Debug)]
pub struct RepeatedField<'msg, T: ?Sized> {
inner: RepeatedFieldInner<'msg>,
_phantom: PhantomData<&'msg mut T>,
}
// These use manual impls instead of derives to avoid unnecessary bounds on `T`.
// This problem is referred to as "perfect derive".
// https://smallcultfollowing.com/babysteps/blog/2022/04/12/implied-bounds-and-perfect-derive/
impl<'msg, T: ?Sized> Copy for RepeatedField<'msg, T> {}
impl<'msg, T: ?Sized> Clone for RepeatedField<'msg, T> {
fn clone(&self) -> RepeatedField<'msg, T> {
*self
}
}
impl<'msg, T: ?Sized> RepeatedField<'msg, T> {
pub fn len(&self) -> usize {
unsafe { upb_Array_Size(self.inner.raw) }
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn from_inner(_private: Private, inner: RepeatedFieldInner<'msg>) -> Self {
Self { inner, _phantom: PhantomData }
}
}
// Transcribed from google3/third_party/upb/upb/message/value.h
#[repr(C)]
#[derive(Clone, Copy)]
pub union upb_MessageValue {
bool_val: bool,
float_val: std::ffi::c_float,
double_val: std::ffi::c_double,
uint32_val: u32,
int32_val: i32,
uint64_val: u64,
int64_val: i64,
array_val: *const std::ffi::c_void,
map_val: *const std::ffi::c_void,
msg_val: *const std::ffi::c_void,
str_val: PtrAndLen,
}
// Transcribed from google3/third_party/upb/upb/base/descriptor_constants.h
#[repr(C)]
#[allow(dead_code)]
pub enum UpbCType {
Bool = 1,
Float = 2,
Int32 = 3,
UInt32 = 4,
Enum = 5,
Message = 6,
Double = 7,
Int64 = 8,
UInt64 = 9,
String = 10,
Bytes = 11,
}
extern "C" {
#[allow(dead_code)]
fn upb_Array_New(a: RawArena, r#type: std::ffi::c_int) -> RawRepeatedField;
fn upb_Array_Size(arr: RawRepeatedField) -> usize;
fn upb_Array_Set(arr: RawRepeatedField, i: usize, val: upb_MessageValue);
fn upb_Array_Get(arr: RawRepeatedField, i: usize) -> upb_MessageValue;
fn upb_Array_Append(arr: RawRepeatedField, val: upb_MessageValue, arena: RawArena);
fn upb_Array_Resize(arr: RawRepeatedField, size: usize, arena: RawArena);
}
macro_rules! impl_repeated_primitives {
($(($rs_type:ty, $union_field:ident, $upb_tag:expr)),*) => {
$(
impl<'msg> RepeatedField<'msg, $rs_type> {
#[allow(dead_code)]
fn new(arena: &'msg Arena) -> Self {
Self {
inner: RepeatedFieldInner {
raw: unsafe { upb_Array_New(arena.raw, $upb_tag as std::ffi::c_int) },
arena,
},
_phantom: PhantomData,
}
}
pub fn push(&mut self, val: $rs_type) {
unsafe { upb_Array_Append(
self.inner.raw,
upb_MessageValue { $union_field: val },
self.inner.arena.raw(),
) }
}
pub fn get(&self, i: usize) -> Option<$rs_type> {
if i >= self.len() {
None
} else {
unsafe { Some(upb_Array_Get(self.inner.raw, i).$union_field) }
}
}
pub fn set(&self, i: usize, val: $rs_type) {
if i >= self.len() {
return;
}
unsafe { upb_Array_Set(
self.inner.raw,
i,
upb_MessageValue { $union_field: val },
) }
}
pub fn copy_from(&mut self, src: &RepeatedField<'_, $rs_type>) {
// TODO: Optimize this copy_from implementation using memcopy.
// NOTE: `src` cannot be `self` because this would violate borrowing rules.
unsafe { upb_Array_Resize(self.inner.raw, 0, self.inner.arena.raw()) };
// `upb_Array_DeepClone` is not used here because it returns
// a new `upb_Array*`. The contained `RawRepeatedField` must
// then be set to this new pointer, but other copies of this
// pointer may exist because of re-borrowed `RepeatedMut`s.
// Alternatively, a `clone_into` method could be exposed by upb.
for i in 0..src.len() {
self.push(src.get(i).unwrap());
}
}
}
)*
}
}
impl_repeated_primitives!(
(bool, bool_val, UpbCType::Bool),
(f32, float_val, UpbCType::Float),
(f64, double_val, UpbCType::Double),
(i32, int32_val, UpbCType::Int32),
(u32, uint32_val, UpbCType::UInt32),
(i64, int64_val, UpbCType::Int64),
(u64, uint64_val, UpbCType::UInt64)
);
/// Returns a static thread-local empty RepeatedFieldInner for use in a
/// RepeatedView.
///
/// # Safety
/// The returned array must never be mutated.
///
/// TODO: Split RepeatedFieldInner into mut and const variants to
/// enforce safety. The returned array must never be mutated.
pub unsafe fn empty_array() -> RepeatedFieldInner<'static> {
// TODO: Consider creating empty array in C.
fn new_repeated_field_inner() -> RepeatedFieldInner<'static> {
let arena = Box::leak::<'static>(Box::new(Arena::new()));
// Provide `i32` as a placeholder type.
RepeatedField::<'static, i32>::new(arena).inner
}
thread_local! {
static REPEATED_FIELD: RepeatedFieldInner<'static> = new_repeated_field_inner();
}
REPEATED_FIELD.with(|inner| *inner)
}
/// Returns a static thread-local empty MapInner for use in a
/// MapView.
///
/// # Safety
/// The returned map must never be mutated.
///
/// TODO: Split MapInner into mut and const variants to
/// enforce safety. The returned array must never be mutated.
pub unsafe fn empty_map() -> MapInner<'static> {
fn new_map_inner() -> MapInner<'static> {
// TODO: Consider creating empty map in C.
let arena = Box::leak::<'static>(Box::new(Arena::new()));
// Provide `i32` as a placeholder type.
Map::<'static, i32, i32>::new(arena).inner
}
thread_local! {
static MAP: MapInner<'static> = new_map_inner();
}
MAP.with(|inner| *inner)
}
#[derive(Clone, Copy, Debug)]
pub struct MapInner<'msg> {
pub raw: RawMap,
pub arena: &'msg Arena,
}
#[derive(Debug)]
pub struct Map<'msg, K: ?Sized, V: ?Sized> {
inner: MapInner<'msg>,
_phantom_key: PhantomData<&'msg mut K>,
_phantom_value: PhantomData<&'msg mut V>,
}
// These use manual impls instead of derives to avoid unnecessary bounds on `K`
// and `V`. This problem is referred to as "perfect derive".
// https://smallcultfollowing.com/babysteps/blog/2022/04/12/implied-bounds-and-perfect-derive/
impl<'msg, K: ?Sized, V: ?Sized> Copy for Map<'msg, K, V> {}
impl<'msg, K: ?Sized, V: ?Sized> Clone for Map<'msg, K, V> {
fn clone(&self) -> Map<'msg, K, V> {
*self
}
}
impl<'msg, K: ?Sized, V: ?Sized> Map<'msg, K, V> {
pub fn len(&self) -> usize {
unsafe { upb_Map_Size(self.inner.raw) }
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn from_inner(_private: Private, inner: MapInner<'msg>) -> Self {
Map { inner, _phantom_key: PhantomData, _phantom_value: PhantomData }
}
pub fn clear(&mut self) {
unsafe { upb_Map_Clear(self.inner.raw) }
}
}
/// # Safety
/// Implementers of this trait must ensure that `pack_message_value` returns
/// a `upb_MessageValue` with the active variant indicated by `Self`.
pub unsafe trait MapType {
/// # Safety
/// The active variant of `outer` must be the `type PrimitiveValue`
unsafe fn unpack_message_value(_private: Private, outer: upb_MessageValue) -> Self;
fn pack_message_value(_private: Private, inner: Self) -> upb_MessageValue;
fn upb_ctype(_private: Private) -> UpbCType;
fn zero_value(_private: Private) -> Self;
}
/// Types implementing this trait can be used as map keys.
pub trait MapKeyType: MapType {}
/// Types implementing this trait can be used as map values.
pub trait MapValueType: MapType {}
macro_rules! impl_scalar_map_value_types {
($($type:ty, $union_field:ident, $upb_tag:expr, $zero_val:literal;)*) => {
$(
unsafe impl MapType for $type {
unsafe fn unpack_message_value(_private: Private, outer: upb_MessageValue) -> Self {
unsafe { outer.$union_field }
}
fn pack_message_value(_private: Private, inner: Self) -> upb_MessageValue {
upb_MessageValue { $union_field: inner }
}
fn upb_ctype(_private: Private) -> UpbCType {
$upb_tag
}
fn zero_value(_private: Private) -> Self {
$zero_val
}
}
impl MapValueType for $type {}
)*
};
}
impl_scalar_map_value_types!(
f32, float_val, UpbCType::Float, 0f32;
f64, double_val, UpbCType::Double, 0f64;
i32, int32_val, UpbCType::Int32, 0i32;
u32, uint32_val, UpbCType::UInt32, 0u32;
i64, int64_val, UpbCType::Int64, 0i64;
u64, uint64_val, UpbCType::UInt64, 0u64;
bool, bool_val, UpbCType::Bool, false;
);
macro_rules! impl_scalar_map_key_types {
($($type:ty;)*) => {
$(
impl MapKeyType for $type {}
)*
};
}
impl_scalar_map_key_types!(
i32; u32; i64; u64; bool;
);
impl<'msg, K: MapKeyType, V: MapValueType> Map<'msg, K, V> {
pub fn new(arena: &'msg Arena) -> Self {
unsafe {
let raw_map = upb_Map_New(arena.raw(), K::upb_ctype(Private), V::upb_ctype(Private));
Map {
inner: MapInner { raw: raw_map, arena },
_phantom_key: PhantomData,
_phantom_value: PhantomData,
}
}
}
pub fn get(&self, key: K) -> Option<V> {
let mut val = V::pack_message_value(Private, V::zero_value(Private));
let found =
unsafe { upb_Map_Get(self.inner.raw, K::pack_message_value(Private, key), &mut val) };
if !found {
return None;
}
Some(unsafe { V::unpack_message_value(Private, val) })
}
pub fn insert(&mut self, key: K, value: V) -> bool {
unsafe {
upb_Map_Set(
self.inner.raw,
K::pack_message_value(Private, key),
V::pack_message_value(Private, value),
self.inner.arena.raw(),
)
}
}
pub fn remove(&mut self, key: K) -> Option<V> {
let mut val = V::pack_message_value(Private, V::zero_value(Private));
let removed = unsafe {
upb_Map_Delete(self.inner.raw, K::pack_message_value(Private, key), &mut val)
};
if !removed {
return None;
}
Some(unsafe { V::unpack_message_value(Private, val) })
}
}
extern "C" {
fn upb_Map_New(arena: RawArena, key_type: UpbCType, value_type: UpbCType) -> RawMap;
fn upb_Map_Size(map: RawMap) -> usize;
fn upb_Map_Set(
map: RawMap,
key: upb_MessageValue,
value: upb_MessageValue,
arena: RawArena,
) -> bool;
fn upb_Map_Get(map: RawMap, key: upb_MessageValue, value: *mut upb_MessageValue) -> bool;
fn upb_Map_Delete(
map: RawMap,
key: upb_MessageValue,
removed_value: *mut upb_MessageValue,
) -> bool;
fn upb_Map_Clear(map: RawMap);
}
#[cfg(test)]
mod tests {
use super::*;
use googletest::prelude::*;
#[test]
fn test_arena_new_and_free() {
let arena = Arena::new();
drop(arena);
}
#[test]
fn test_serialized_data_roundtrip() {
let arena = Arena::new();
let original_data = b"Hello world";
let len = original_data.len();
let serialized_data = unsafe {
SerializedData::from_raw_parts(
arena,
NonNull::new(original_data as *const _ as *mut _).unwrap(),
len,
)
};
assert_that!(&*serialized_data, eq(b"Hello world"));
}
#[test]
fn i32_array() {
let arena = Arena::new();
let mut arr = RepeatedField::<i32>::new(&arena);
assert_that!(arr.len(), eq(0));
arr.push(1);
assert_that!(arr.get(0), eq(Some(1)));
assert_that!(arr.len(), eq(1));
arr.set(0, 3);
assert_that!(arr.get(0), eq(Some(3)));
for i in 0..2048 {
arr.push(i);
assert_that!(arr.get(arr.len() - 1), eq(Some(i)));
}
}
#[test]
fn u32_array() {
let mut arena = Arena::new();
let mut arr = RepeatedField::<u32>::new(&mut arena);
assert_that!(arr.len(), eq(0));
arr.push(1);
assert_that!(arr.get(0), eq(Some(1)));
assert_that!(arr.len(), eq(1));
arr.set(0, 3);
assert_that!(arr.get(0), eq(Some(3)));
for i in 0..2048 {
arr.push(i);
assert_that!(arr.get(arr.len() - 1), eq(Some(i)));
}
}
#[test]
fn i32_i32_map() {
let arena = Arena::new();
let mut map = Map::<'_, i32, i32>::new(&arena);
assert_that!(map.len(), eq(0));
assert_that!(map.insert(1, 2), eq(true));
assert_that!(map.get(1), eq(Some(2)));
assert_that!(map.get(3), eq(None));
assert_that!(map.len(), eq(1));
assert_that!(map.remove(1), eq(Some(2)));
assert_that!(map.len(), eq(0));
assert_that!(map.remove(1), eq(None));
assert_that!(map.insert(4, 5), eq(true));
assert_that!(map.insert(6, 7), eq(true));
map.clear();
assert_that!(map.len(), eq(0));
}
#[test]
fn i64_f64_map() {
let arena = Arena::new();
let mut map = Map::<'_, i64, f64>::new(&arena);
assert_that!(map.len(), eq(0));
assert_that!(map.insert(1, 2.5), eq(true));
assert_that!(map.get(1), eq(Some(2.5)));
assert_that!(map.get(3), eq(None));
assert_that!(map.len(), eq(1));
assert_that!(map.remove(1), eq(Some(2.5)));
assert_that!(map.len(), eq(0));
assert_that!(map.remove(1), eq(None));
assert_that!(map.insert(4, 5.1), eq(true));
assert_that!(map.insert(6, 7.2), eq(true));
map.clear();
assert_that!(map.len(), eq(0));
}
}