Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1120 lines
38 KiB
1120 lines
38 KiB
/* |
|
* upb - a minimalist implementation of protocol buffers. |
|
* |
|
* Copyright (c) 2011-2012 Google Inc. See LICENSE for details. |
|
* Author: Josh Haberman <jhaberman@gmail.com> |
|
* |
|
* Inline definitions for handlers.h, which are particularly long and a bit |
|
* tricky. |
|
*/ |
|
|
|
#ifndef UPB_HANDLERS_INL_H_ |
|
#define UPB_HANDLERS_INL_H_ |
|
|
|
#include <limits.h> |
|
|
|
// Type detection and typedefs for integer types. |
|
// For platforms where there are multiple 32-bit or 64-bit types, we need to be |
|
// able to enumerate them so we can properly create overloads for all variants. |
|
// |
|
// If any platform existed where there were three integer types with the same |
|
// size, this would have to become more complicated. For example, short, int, |
|
// and long could all be 32-bits. Even more diabolically, short, int, long, |
|
// and long long could all be 64 bits and still be standard-compliant. |
|
// However, few platforms are this strange, and it's unlikely that upb will be |
|
// used on the strangest ones. |
|
|
|
// Can't count on stdint.h limits like INT32_MAX, because in C++ these are |
|
// only defined when __STDC_LIMIT_MACROS are defined before the *first* include |
|
// of stdint.h. We can't guarantee that someone else didn't include these first |
|
// without defining __STDC_LIMIT_MACROS. |
|
#define UPB_INT32_MAX 0x7fffffffLL |
|
#define UPB_INT32_MIN (-UPB_INT32_MAX - 1) |
|
#define UPB_INT64_MAX 0x7fffffffffffffffLL |
|
#define UPB_INT64_MIN (-UPB_INT64_MAX - 1) |
|
|
|
#if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN |
|
#define UPB_INT_IS_32BITS 1 |
|
#endif |
|
|
|
#if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN |
|
#define UPB_LONG_IS_32BITS 1 |
|
#endif |
|
|
|
#if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN |
|
#define UPB_LONG_IS_64BITS 1 |
|
#endif |
|
|
|
#if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN |
|
#define UPB_LLONG_IS_64BITS 1 |
|
#endif |
|
|
|
// We use macros instead of typedefs so we can undefine them later and avoid |
|
// leaking them outside this header file. |
|
#if UPB_INT_IS_32BITS |
|
#define UPB_INT32_T int |
|
#define UPB_UINT32_T unsigned int |
|
|
|
#if UPB_LONG_IS_32BITS |
|
#define UPB_TWO_32BIT_TYPES 1 |
|
#define UPB_INT32ALT_T long |
|
#define UPB_UINT32ALT_T unsigned long |
|
#endif // UPB_LONG_IS_32BITS |
|
|
|
#elif UPB_LONG_IS_32BITS // && !UPB_INT_IS_32BITS |
|
#define UPB_INT32_T long |
|
#define UPB_UINT32_T unsigned long |
|
#endif // UPB_INT_IS_32BITS |
|
|
|
|
|
#if UPB_LONG_IS_64BITS |
|
#define UPB_INT64_T long |
|
#define UPB_UINT64_T unsigned long |
|
|
|
#if UPB_LLONG_IS_64BITS |
|
#define UPB_TWO_64BIT_TYPES 1 |
|
#define UPB_INT64ALT_T long long |
|
#define UPB_UINT64ALT_T unsigned long long |
|
#endif // UPB_LLONG_IS_64BITS |
|
|
|
#elif UPB_LLONG_IS_64BITS // && !UPB_LONG_IS_64BITS |
|
#define UPB_INT64_T long long |
|
#define UPB_UINT64_T unsigned long long |
|
#endif // UPB_LONG_IS_64BITS |
|
|
|
#undef UPB_INT32_MAX |
|
#undef UPB_INT32_MIN |
|
#undef UPB_INT64_MAX |
|
#undef UPB_INT64_MIN |
|
#undef UPB_INT_IS_32BITS |
|
#undef UPB_LONG_IS_32BITS |
|
#undef UPB_LONG_IS_64BITS |
|
#undef UPB_LLONG_IS_64BITS |
|
|
|
// C inline methods. |
|
|
|
// upb_bufhandle |
|
UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) { |
|
h->obj_ = NULL; |
|
h->objtype_ = NULL; |
|
h->buf_ = NULL; |
|
h->objofs_ = 0; |
|
} |
|
UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) { |
|
UPB_UNUSED(h); |
|
} |
|
UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj, |
|
const void *type) { |
|
h->obj_ = obj; |
|
h->objtype_ = type; |
|
} |
|
UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf, |
|
size_t ofs) { |
|
h->buf_ = buf; |
|
h->objofs_ = ofs; |
|
} |
|
UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) { |
|
return h->obj_; |
|
} |
|
UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) { |
|
return h->objtype_; |
|
} |
|
UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) { |
|
return h->buf_; |
|
} |
|
|
|
|
|
#ifdef __cplusplus |
|
|
|
namespace upb { |
|
|
|
template<> |
|
class Pointer<Handlers> { |
|
public: |
|
explicit Pointer(Handlers* ptr) : ptr_(ptr) {} |
|
operator Handlers*() { return ptr_; } |
|
operator RefCounted*() { return UPB_UPCAST(ptr_); } |
|
private: |
|
Handlers* ptr_; |
|
}; |
|
|
|
template<> |
|
class Pointer<const Handlers> { |
|
public: |
|
explicit Pointer(const Handlers* ptr) : ptr_(ptr) {} |
|
operator const Handlers*() { return ptr_; } |
|
operator const RefCounted*() { return UPB_UPCAST(ptr_); } |
|
private: |
|
const Handlers* ptr_; |
|
}; |
|
|
|
typedef void CleanupFunc(void *ptr); |
|
|
|
// Template to remove "const" from "const T*" and just return "T*". |
|
// |
|
// We define a nonsense default because otherwise it will fail to instantiate as |
|
// a function parameter type even in cases where we don't expect any caller to |
|
// actually match the overload. |
|
class CouldntRemoveConst {}; |
|
template <class T> struct remove_constptr { typedef CouldntRemoveConst type; }; |
|
template <class T> struct remove_constptr<const T *> { typedef T *type; }; |
|
|
|
// Template that we use below to remove a template specialization from |
|
// consideration if it matches a specific type. |
|
template <class T, class U> struct disable_if_same { typedef void Type; }; |
|
template <class T> struct disable_if_same<T, T> {}; |
|
|
|
template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); } |
|
|
|
template <class T1, class T2> |
|
struct FirstUnlessVoid { |
|
typedef T1 value; |
|
}; |
|
|
|
template <class T2> |
|
struct FirstUnlessVoid<void, T2> { |
|
typedef T2 value; |
|
}; |
|
|
|
template<class T, class U> |
|
struct is_same { |
|
static bool value; |
|
}; |
|
|
|
template<class T> |
|
struct is_same<T, T> { |
|
static bool value; |
|
}; |
|
|
|
template<class T, class U> |
|
bool is_same<T, U>::value = false; |
|
|
|
template<class T> |
|
bool is_same<T, T>::value = true; |
|
|
|
// FuncInfo //////////////////////////////////////////////////////////////////// |
|
|
|
// Info about the user's original, pre-wrapped function. |
|
template <class C, class R = void> |
|
struct FuncInfo { |
|
// The type of the closure that the function takes (its first param). |
|
typedef C Closure; |
|
|
|
// The return type. |
|
typedef R Return; |
|
}; |
|
|
|
// Func //////////////////////////////////////////////////////////////////////// |
|
|
|
// Func1, Func2, Func3: Template classes representing a function and its |
|
// signature. |
|
// |
|
// Since the function is a template parameter, calling the function can be |
|
// inlined at compile-time and does not require a function pointer at runtime. |
|
// These functions are not bound to a handler data so have no data or cleanup |
|
// handler. |
|
struct UnboundFunc { |
|
CleanupFunc *GetCleanup() { return NULL; } |
|
void *GetData() { return NULL; } |
|
}; |
|
|
|
template <class R, class P1, R F(P1), class I> |
|
struct Func1 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1) { return F(p1); } |
|
}; |
|
|
|
template <class R, class P1, class P2, R F(P1, P2), class I> |
|
struct Func2 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1, P2 p2) { return F(p1, p2); } |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I> |
|
struct Func3 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); } |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), |
|
class I> |
|
struct Func4 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); } |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5, |
|
R F(P1, P2, P3, P4, P5), class I> |
|
struct Func5 : public UnboundFunc { |
|
typedef R Return; |
|
typedef I FuncInfo; |
|
static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) { |
|
return F(p1, p2, p3, p4, p5); |
|
} |
|
}; |
|
|
|
// BoundFunc /////////////////////////////////////////////////////////////////// |
|
|
|
// BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that |
|
// shall be bound to the function's second parameter. |
|
// |
|
// Note that the second parameter is a const pointer, but our stored bound value |
|
// is non-const so we can free it when the handlers are destroyed. |
|
template <class T> |
|
struct BoundFunc { |
|
typedef typename remove_constptr<T>::type MutableP2; |
|
explicit BoundFunc(MutableP2 data_) : data(data_) {} |
|
CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; } |
|
MutableP2 GetData() { return data; } |
|
MutableP2 data; |
|
}; |
|
|
|
template <class R, class P1, class P2, R F(P1, P2), class I> |
|
struct BoundFunc2 : public BoundFunc<P2> { |
|
typedef BoundFunc<P2> Base; |
|
typedef I FuncInfo; |
|
explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I> |
|
struct BoundFunc3 : public BoundFunc<P2> { |
|
typedef BoundFunc<P2> Base; |
|
typedef I FuncInfo; |
|
explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), |
|
class I> |
|
struct BoundFunc4 : public BoundFunc<P2> { |
|
typedef BoundFunc<P2> Base; |
|
typedef I FuncInfo; |
|
explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5, |
|
R F(P1, P2, P3, P4, P5), class I> |
|
struct BoundFunc5 : public BoundFunc<P2> { |
|
typedef BoundFunc<P2> Base; |
|
typedef I FuncInfo; |
|
explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {} |
|
}; |
|
|
|
// FuncSig ///////////////////////////////////////////////////////////////////// |
|
|
|
// FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function |
|
// *signature*, but without a specific function attached. |
|
// |
|
// These classes contain member functions that can be invoked with a |
|
// specific function to return a Func/BoundFunc class. |
|
template <class R, class P1> |
|
struct FuncSig1 { |
|
template <R F(P1)> |
|
Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func1<R, P1, F, FuncInfo<P1, R> >(); |
|
} |
|
}; |
|
|
|
template <class R, class P1, class P2> |
|
struct FuncSig2 { |
|
template <R F(P1, P2)> |
|
Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func2<R, P1, P2, F, FuncInfo<P1, R> >(); |
|
} |
|
|
|
template <R F(P1, P2)> |
|
BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc( |
|
typename remove_constptr<P2>::type param2) { |
|
return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2); |
|
} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3> |
|
struct FuncSig3 { |
|
template <R F(P1, P2, P3)> |
|
Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >(); |
|
} |
|
|
|
template <R F(P1, P2, P3)> |
|
BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc( |
|
typename remove_constptr<P2>::type param2) { |
|
return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2); |
|
} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4> |
|
struct FuncSig4 { |
|
template <R F(P1, P2, P3, P4)> |
|
Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(); |
|
} |
|
|
|
template <R F(P1, P2, P3, P4)> |
|
BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc( |
|
typename remove_constptr<P2>::type param2) { |
|
return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2); |
|
} |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5> |
|
struct FuncSig5 { |
|
template <R F(P1, P2, P3, P4, P5)> |
|
Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() { |
|
return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(); |
|
} |
|
|
|
template <R F(P1, P2, P3, P4, P5)> |
|
BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc( |
|
typename remove_constptr<P2>::type param2) { |
|
return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2); |
|
} |
|
}; |
|
|
|
// Overloaded template function that can construct the appropriate FuncSig* |
|
// class given a function pointer by deducing the template parameters. |
|
template <class R, class P1> |
|
inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return FuncSig1<R, P1>(); |
|
} |
|
|
|
template <class R, class P1, class P2> |
|
inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return FuncSig2<R, P1, P2>(); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3> |
|
inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return FuncSig3<R, P1, P2, P3>(); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, class P4> |
|
inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return FuncSig4<R, P1, P2, P3, P4>(); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5> |
|
inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return FuncSig5<R, P1, P2, P3, P4, P5>(); |
|
} |
|
|
|
// MethodSig /////////////////////////////////////////////////////////////////// |
|
|
|
// CallMethod*: a function template that calls a given method. |
|
template <class R, class C, R (C::*F)()> |
|
R CallMethod0(C *obj) { |
|
return ((*obj).*F)(); |
|
} |
|
|
|
template <class R, class C, class P1, R (C::*F)(P1)> |
|
R CallMethod1(C *obj, P1 arg1) { |
|
return ((*obj).*F)(arg1); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)> |
|
R CallMethod2(C *obj, P1 arg1, P2 arg2) { |
|
return ((*obj).*F)(arg1, arg2); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)> |
|
R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) { |
|
return ((*obj).*F)(arg1, arg2, arg3); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, class P3, class P4, |
|
R (C::*F)(P1, P2, P3, P4)> |
|
R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) { |
|
return ((*obj).*F)(arg1, arg2, arg3, arg4); |
|
} |
|
|
|
// MethodSig: like FuncSig, but for member functions. |
|
// |
|
// GetFunc() returns a normal FuncN object, so after calling GetFunc() no |
|
// more logic is required to special-case methods. |
|
template <class R, class C> |
|
struct MethodSig0 { |
|
template <R (C::*F)()> |
|
Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() { |
|
return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >(); |
|
} |
|
}; |
|
|
|
template <class R, class C, class P1> |
|
struct MethodSig1 { |
|
template <R (C::*F)(P1)> |
|
Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() { |
|
return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(); |
|
} |
|
|
|
template <R (C::*F)(P1)> |
|
BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc( |
|
typename remove_constptr<P1>::type param1) { |
|
return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >( |
|
param1); |
|
} |
|
}; |
|
|
|
template <class R, class C, class P1, class P2> |
|
struct MethodSig2 { |
|
template <R (C::*F)(P1, P2)> |
|
Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> > |
|
GetFunc() { |
|
return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, |
|
FuncInfo<C *, R> >(); |
|
} |
|
|
|
template <R (C::*F)(P1, P2)> |
|
BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> > |
|
GetFunc(typename remove_constptr<P1>::type param1) { |
|
return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, |
|
FuncInfo<C *, R> >(param1); |
|
} |
|
}; |
|
|
|
template <class R, class C, class P1, class P2, class P3> |
|
struct MethodSig3 { |
|
template <R (C::*F)(P1, P2, P3)> |
|
Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> > |
|
GetFunc() { |
|
return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, |
|
FuncInfo<C *, R> >(); |
|
} |
|
|
|
template <R (C::*F)(P1, P2, P3)> |
|
BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, |
|
FuncInfo<C *, R> > |
|
GetFunc(typename remove_constptr<P1>::type param1) { |
|
return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, |
|
FuncInfo<C *, R> >(param1); |
|
} |
|
}; |
|
|
|
template <class R, class C, class P1, class P2, class P3, class P4> |
|
struct MethodSig4 { |
|
template <R (C::*F)(P1, P2, P3, P4)> |
|
Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, |
|
FuncInfo<C *, R> > |
|
GetFunc() { |
|
return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, |
|
FuncInfo<C *, R> >(); |
|
} |
|
|
|
template <R (C::*F)(P1, P2, P3, P4)> |
|
BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, |
|
FuncInfo<C *, R> > |
|
GetFunc(typename remove_constptr<P1>::type param1) { |
|
return BoundFunc5<R, C *, P1, P2, P3, P4, |
|
CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >( |
|
param1); |
|
} |
|
}; |
|
|
|
template <class R, class C> |
|
inline MethodSig0<R, C> MatchFunc(R (C::*f)()) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return MethodSig0<R, C>(); |
|
} |
|
|
|
template <class R, class C, class P1> |
|
inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return MethodSig1<R, C, P1>(); |
|
} |
|
|
|
template <class R, class C, class P1, class P2> |
|
inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return MethodSig2<R, C, P1, P2>(); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, class P3> |
|
inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return MethodSig3<R, C, P1, P2, P3>(); |
|
} |
|
|
|
template <class R, class C, class P1, class P2, class P3, class P4> |
|
inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) { |
|
UPB_UNUSED(f); // Only used for template parameter deduction. |
|
return MethodSig4<R, C, P1, P2, P3, P4>(); |
|
} |
|
|
|
// MaybeWrapReturn ///////////////////////////////////////////////////////////// |
|
|
|
// Template class that attempts to wrap the return value of the function so it |
|
// matches the expected type. There are two main adjustments it may make: |
|
// |
|
// 1. If the function returns void, make it return the expected type and with |
|
// a value that always indicates success. |
|
// 2. If the function is expected to return void* but doesn't, wrap it so it |
|
// does (either by returning the closure param if the wrapped function |
|
// returns void or by casting a different pointer type to void* for |
|
// return). |
|
|
|
// Template parameters are FuncN type and desired return type. |
|
template <class F, class R, class Enable = void> |
|
struct MaybeWrapReturn; |
|
|
|
// If the return type matches, return the given function unwrapped. |
|
template <class F> |
|
struct MaybeWrapReturn<F, typename F::Return> { |
|
typedef F Func; |
|
}; |
|
|
|
// Function wrapper that munges the return value from void to (bool)true. |
|
template <class P1, class P2, void F(P1, P2)> |
|
bool ReturnTrue2(P1 p1, P2 p2) { |
|
F(p1, p2); |
|
return true; |
|
} |
|
|
|
template <class P1, class P2, class P3, void F(P1, P2, P3)> |
|
bool ReturnTrue3(P1 p1, P2 p2, P3 p3) { |
|
F(p1, p2, p3); |
|
return true; |
|
} |
|
|
|
// Function wrapper that munges the return value from void to (void*)arg1 |
|
template <class P1, class P2, void F(P1, P2)> |
|
void *ReturnClosure2(P1 p1, P2 p2) { |
|
F(p1, p2); |
|
return p1; |
|
} |
|
|
|
template <class P1, class P2, class P3, void F(P1, P2, P3)> |
|
void *ReturnClosure3(P1 p1, P2 p2, P3 p3) { |
|
F(p1, p2, p3); |
|
return p1; |
|
} |
|
|
|
// Function wrapper that munges the return value from R to void*. |
|
template <class R, class P1, class P2, R F(P1, P2)> |
|
void *CastReturnToVoidPtr2(P1 p1, P2 p2) { |
|
return F(p1, p2); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)> |
|
void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) { |
|
return F(p1, p2, p3); |
|
} |
|
|
|
// For the string callback, which takes five params, returns the size param. |
|
template <class P1, class P2, |
|
void F(P1, P2, const char *, size_t, const BufferHandle *)> |
|
size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4, |
|
const BufferHandle *p5) { |
|
F(p1, p2, p3, p4, p5); |
|
return p4; |
|
} |
|
|
|
// If we have a function returning void but want a function returning bool, wrap |
|
// it in a function that returns true. |
|
template <class P1, class P2, void F(P1, P2), class I> |
|
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> { |
|
typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func; |
|
}; |
|
|
|
template <class P1, class P2, class P3, void F(P1, P2, P3), class I> |
|
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> { |
|
typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func; |
|
}; |
|
|
|
// If our function returns void but we want one returning void*, wrap it in a |
|
// function that returns the first argument. |
|
template <class P1, class P2, void F(P1, P2), class I> |
|
struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> { |
|
typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func; |
|
}; |
|
|
|
template <class P1, class P2, class P3, void F(P1, P2, P3), class I> |
|
struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> { |
|
typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func; |
|
}; |
|
|
|
// If our function returns void but we want one returning size_t, wrap it in a |
|
// function that returns the size argument. |
|
template <class P1, class P2, |
|
void F(P1, P2, const char *, size_t, const BufferHandle *), class I> |
|
struct MaybeWrapReturn< |
|
Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>, |
|
size_t> { |
|
typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *, |
|
ReturnStringLen<P1, P2, F>, I> Func; |
|
}; |
|
|
|
// If our function returns R* but we want one returning void*, wrap it in a |
|
// function that casts to void*. |
|
template <class R, class P1, class P2, R *F(P1, P2), class I> |
|
struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *, |
|
typename disable_if_same<R *, void *>::Type> { |
|
typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I> |
|
struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *, |
|
typename disable_if_same<R *, void *>::Type> { |
|
typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I> |
|
Func; |
|
}; |
|
|
|
// ConvertParams /////////////////////////////////////////////////////////////// |
|
|
|
// Template class that converts the function parameters if necessary, and |
|
// ignores the HandlerData parameter if appropriate. |
|
// |
|
// Template parameter is the are FuncN function type. |
|
template <class F> |
|
struct ConvertParams; |
|
|
|
// Function that discards the handler data parameter. |
|
template <class R, class P1, R F(P1)> |
|
R IgnoreHandlerData2(void *p1, const void *hd) { |
|
UPB_UNUSED(hd); |
|
return F(static_cast<P1>(p1)); |
|
} |
|
|
|
template <class R, class P1, class P2Wrapper, class P2Wrapped, |
|
R F(P1, P2Wrapped)> |
|
R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) { |
|
UPB_UNUSED(hd); |
|
return F(static_cast<P1>(p1), p2); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3)> |
|
R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) { |
|
UPB_UNUSED(hd); |
|
return F(static_cast<P1>(p1), p2, p3); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)> |
|
R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) { |
|
UPB_UNUSED(hd); |
|
return F(static_cast<P1>(p1), p2, p3, p4); |
|
} |
|
|
|
template <class R, class P1, R F(P1, const char*, size_t)> |
|
R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2, |
|
size_t p3, const BufferHandle *handle) { |
|
UPB_UNUSED(hd); |
|
UPB_UNUSED(handle); |
|
return F(static_cast<P1>(p1), p2, p3); |
|
} |
|
|
|
// Function that casts the handler data parameter. |
|
template <class R, class P1, class P2, R F(P1, P2)> |
|
R CastHandlerData2(void *c, const void *hd) { |
|
return F(static_cast<P1>(c), static_cast<P2>(hd)); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped, |
|
R F(P1, P2, P3Wrapped)> |
|
R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) { |
|
return F(static_cast<P1>(c), static_cast<P2>(hd), p3); |
|
} |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5, |
|
R F(P1, P2, P3, P4, P5)> |
|
R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) { |
|
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5); |
|
} |
|
|
|
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)> |
|
R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3, |
|
size_t p4, const BufferHandle *handle) { |
|
UPB_UNUSED(handle); |
|
return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4); |
|
} |
|
|
|
// For unbound functions, ignore the handler data. |
|
template <class R, class P1, R F(P1), class I> |
|
struct ConvertParams<Func1<R, P1, F, I> > { |
|
typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, R F(P1, P2), class I> |
|
struct ConvertParams<Func2<R, P1, P2, F, I> > { |
|
typedef typename CanonicalType<P2>::Type CanonicalP2; |
|
typedef Func3<R, void *, const void *, CanonicalP2, |
|
IgnoreHandlerData3<R, P1, CanonicalP2, P2, F>, I> Func; |
|
}; |
|
|
|
// For StringBuffer only; this ignores both the handler data and the |
|
// BufferHandle. |
|
template <class R, class P1, R F(P1, const char *, size_t), class I> |
|
struct ConvertParams<Func3<R, P1, const char *, size_t, F, I> > { |
|
typedef Func5<R, void *, const void *, const char *, size_t, |
|
const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>, |
|
I> Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), class I> |
|
struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I> > { |
|
typedef Func5<R, void *, const void *, P2, P3, P4, |
|
IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func; |
|
}; |
|
|
|
// For bound functions, cast the handler data. |
|
template <class R, class P1, class P2, R F(P1, P2), class I> |
|
struct ConvertParams<BoundFunc2<R, P1, P2, F, I> > { |
|
typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I> |
|
Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I> |
|
struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I> > { |
|
typedef typename CanonicalType<P3>::Type CanonicalP3; |
|
typedef Func3<R, void *, const void *, CanonicalP3, |
|
CastHandlerData3<R, P1, P2, CanonicalP3, P3, F>, I> Func; |
|
}; |
|
|
|
// For StringBuffer only; this ignores the BufferHandle. |
|
template <class R, class P1, class P2, R F(P1, P2, const char *, size_t), |
|
class I> |
|
struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I> > { |
|
typedef Func5<R, void *, const void *, const char *, size_t, |
|
const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>, |
|
I> Func; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5, |
|
R F(P1, P2, P3, P4, P5), class I> |
|
struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I> > { |
|
typedef Func5<R, void *, const void *, P3, P4, P5, |
|
CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func; |
|
}; |
|
|
|
// utype/ltype are upper/lower-case, ctype is canonical C type, vtype is |
|
// variant C type. |
|
#define TYPE_METHODS(utype, ltype, ctype, vtype) \ |
|
template <> struct CanonicalType<vtype> { \ |
|
typedef ctype Type; \ |
|
}; \ |
|
template <> \ |
|
inline bool Handlers::SetValueHandler<vtype>( \ |
|
const FieldDef *f, \ |
|
const Handlers::utype ## Handler& handler) { \ |
|
assert(!handler.registered_); \ |
|
handler.AddCleanup(this); \ |
|
handler.registered_ = true; \ |
|
return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \ |
|
} \ |
|
|
|
TYPE_METHODS(Double, double, double, double); |
|
TYPE_METHODS(Float, float, float, float); |
|
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T); |
|
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T); |
|
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64_T); |
|
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32_T); |
|
TYPE_METHODS(Bool, bool, bool, bool); |
|
|
|
#ifdef UPB_TWO_32BIT_TYPES |
|
TYPE_METHODS(Int32, int32, int32_t, UPB_INT32ALT_T); |
|
TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T); |
|
#endif |
|
|
|
#ifdef UPB_TWO_64BIT_TYPES |
|
TYPE_METHODS(Int64, int64, int64_t, UPB_INT64ALT_T); |
|
TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T); |
|
#endif |
|
#undef TYPE_METHODS |
|
|
|
template <> struct CanonicalType<Status*> { |
|
typedef Status* Type; |
|
}; |
|
|
|
// Type methods that are only one-per-canonical-type and not one-per-cvariant. |
|
|
|
#define TYPE_METHODS(utype, ctype) \ |
|
inline bool Handlers::Set##utype##Handler(const FieldDef *f, \ |
|
const utype##Handler &h) { \ |
|
return SetValueHandler<ctype>(f, h); \ |
|
} \ |
|
|
|
TYPE_METHODS(Double, double); |
|
TYPE_METHODS(Float, float); |
|
TYPE_METHODS(UInt64, uint64_t); |
|
TYPE_METHODS(UInt32, uint32_t); |
|
TYPE_METHODS(Int64, int64_t); |
|
TYPE_METHODS(Int32, int32_t); |
|
TYPE_METHODS(Bool, bool); |
|
#undef TYPE_METHODS |
|
|
|
template <class F> struct ReturnOf; |
|
|
|
template <class R, class P1, class P2> |
|
struct ReturnOf<R (*)(P1, P2)> { |
|
typedef R Return; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3> |
|
struct ReturnOf<R (*)(P1, P2, P3)> { |
|
typedef R Return; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4> |
|
struct ReturnOf<R (*)(P1, P2, P3, P4)> { |
|
typedef R Return; |
|
}; |
|
|
|
template <class R, class P1, class P2, class P3, class P4, class P5> |
|
struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> { |
|
typedef R Return; |
|
}; |
|
|
|
template<class T> const void *UniquePtrForType() { |
|
static const char ch = 0; |
|
return &ch; |
|
} |
|
|
|
template <class T> |
|
template <class F> |
|
inline Handler<T>::Handler(F func) |
|
: registered_(false), |
|
cleanup_data_(func.GetData()), |
|
cleanup_func_(func.GetCleanup()) { |
|
upb_handlerattr_sethandlerdata(&attr_, func.GetData()); |
|
typedef typename ReturnOf<T>::Return Return; |
|
typedef typename ConvertParams<F>::Func ConvertedParamsFunc; |
|
typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func |
|
ReturnWrappedFunc; |
|
handler_ = ReturnWrappedFunc().Call; |
|
|
|
// Set attributes based on what templates can statically tell us about the |
|
// user's function. |
|
|
|
// If the original function returns void, then we know that we wrapped it to |
|
// always return ok. |
|
bool always_ok = is_same<typename F::FuncInfo::Return, void>::value; |
|
attr_.SetAlwaysOk(always_ok); |
|
|
|
// Closure parameter and return type. |
|
attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>()); |
|
|
|
// We use the closure type (from the first parameter) if the return type is |
|
// void. This is all nonsense for non START* handlers, but it doesn't matter |
|
// because in that case the value will be ignored. |
|
typedef typename FirstUnlessVoid<typename F::FuncInfo::Return, |
|
typename F::FuncInfo::Closure>::value |
|
EffectiveReturn; |
|
attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>()); |
|
} |
|
|
|
template <class T> |
|
inline Handler<T>::~Handler() { |
|
assert(registered_); |
|
} |
|
|
|
inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); } |
|
inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); } |
|
inline bool HandlerAttributes::SetHandlerData(const void *hd) { |
|
return upb_handlerattr_sethandlerdata(this, hd); |
|
} |
|
inline const void* HandlerAttributes::handler_data() const { |
|
return upb_handlerattr_handlerdata(this); |
|
} |
|
inline bool HandlerAttributes::SetClosureType(const void *type) { |
|
return upb_handlerattr_setclosuretype(this, type); |
|
} |
|
inline const void* HandlerAttributes::closure_type() const { |
|
return upb_handlerattr_closuretype(this); |
|
} |
|
inline bool HandlerAttributes::SetReturnClosureType(const void *type) { |
|
return upb_handlerattr_setreturnclosuretype(this, type); |
|
} |
|
inline const void* HandlerAttributes::return_closure_type() const { |
|
return upb_handlerattr_returnclosuretype(this); |
|
} |
|
inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) { |
|
return upb_handlerattr_setalwaysok(this, always_ok); |
|
} |
|
inline bool HandlerAttributes::always_ok() const { |
|
return upb_handlerattr_alwaysok(this); |
|
} |
|
|
|
inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); } |
|
inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); } |
|
inline const char* BufferHandle::buffer() const { |
|
return upb_bufhandle_buf(this); |
|
} |
|
inline size_t BufferHandle::object_offset() const { |
|
return upb_bufhandle_objofs(this); |
|
} |
|
inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) { |
|
upb_bufhandle_setbuf(this, buf, ofs); |
|
} |
|
template <class T> |
|
void BufferHandle::SetAttachedObject(const T* obj) { |
|
upb_bufhandle_setobj(this, obj, UniquePtrForType<T>()); |
|
} |
|
template <class T> |
|
const T* BufferHandle::GetAttachedObject() const { |
|
return upb_bufhandle_objtype(this) == UniquePtrForType<T>() |
|
? static_cast<const T *>(upb_bufhandle_obj(this)) |
|
: NULL; |
|
} |
|
|
|
inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) { |
|
upb_handlers *h = upb_handlers_new(m, &h); |
|
return reffed_ptr<Handlers>(h, &h); |
|
} |
|
inline reffed_ptr<const Handlers> Handlers::NewFrozen( |
|
const MessageDef *m, upb_handlers_callback *callback, |
|
const void *closure) { |
|
const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure); |
|
return reffed_ptr<const Handlers>(h, &h); |
|
} |
|
inline bool Handlers::IsFrozen() const { return upb_handlers_isfrozen(this); } |
|
inline void Handlers::Ref(const void *owner) const { |
|
upb_handlers_ref(this, owner); |
|
} |
|
inline void Handlers::Unref(const void *owner) const { |
|
upb_handlers_unref(this, owner); |
|
} |
|
inline void Handlers::DonateRef(const void *from, const void *to) const { |
|
upb_handlers_donateref(this, from, to); |
|
} |
|
inline void Handlers::CheckRef(const void *owner) const { |
|
upb_handlers_checkref(this, owner); |
|
} |
|
inline const Status* Handlers::status() { |
|
return upb_handlers_status(this); |
|
} |
|
inline void Handlers::ClearError() { |
|
return upb_handlers_clearerr(this); |
|
} |
|
inline bool Handlers::Freeze(Status *s) { |
|
upb::Handlers* h = this; |
|
return upb_handlers_freeze(&h, 1, s); |
|
} |
|
inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) { |
|
return upb_handlers_freeze(handlers, n, s); |
|
} |
|
inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) { |
|
return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status); |
|
} |
|
inline const MessageDef *Handlers::message_def() const { |
|
return upb_handlers_msgdef(this); |
|
} |
|
inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) { |
|
return upb_handlers_addcleanup(this, p, func); |
|
} |
|
inline bool Handlers::SetStartMessageHandler( |
|
const Handlers::StartMessageHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetEndMessageHandler( |
|
const Handlers::EndMessageHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetStartStringHandler(const FieldDef *f, |
|
const StartStringHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetEndStringHandler(const FieldDef *f, |
|
const EndFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetStringHandler(const FieldDef *f, |
|
const StringHandler& handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetStartSequenceHandler( |
|
const FieldDef *f, const StartFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetStartSubMessageHandler( |
|
const FieldDef *f, const StartFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f, |
|
const EndFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetEndSequenceHandler(const FieldDef *f, |
|
const EndFieldHandler &handler) { |
|
assert(!handler.registered_); |
|
handler.registered_ = true; |
|
handler.AddCleanup(this); |
|
return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_); |
|
} |
|
inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) { |
|
return upb_handlers_setsubhandlers(this, f, sub); |
|
} |
|
inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const { |
|
return upb_handlers_getsubhandlers(this, f); |
|
} |
|
inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const { |
|
return upb_handlers_getsubhandlers_sel(this, sel); |
|
} |
|
inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type, |
|
Handlers::Selector *s) { |
|
return upb_handlers_getselector(f, type, s); |
|
} |
|
inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) { |
|
return upb_handlers_getendselector(start); |
|
} |
|
inline Handlers::GenericFunction *Handlers::GetHandler( |
|
Handlers::Selector selector) { |
|
return upb_handlers_gethandler(this, selector); |
|
} |
|
inline const void *Handlers::GetHandlerData(Handlers::Selector selector) { |
|
return upb_handlers_gethandlerdata(this, selector); |
|
} |
|
|
|
inline BytesHandler::BytesHandler() { |
|
upb_byteshandler_init(this); |
|
} |
|
|
|
inline BytesHandler::~BytesHandler() { |
|
upb_byteshandler_uninit(this); |
|
} |
|
|
|
} // namespace upb |
|
|
|
#endif // __cplusplus |
|
|
|
|
|
#undef UPB_TWO_32BIT_TYPES |
|
#undef UPB_TWO_64BIT_TYPES |
|
#undef UPB_INT32_T |
|
#undef UPB_UINT32_T |
|
#undef UPB_INT32ALT_T |
|
#undef UPB_UINT32ALT_T |
|
#undef UPB_INT64_T |
|
#undef UPB_UINT64_T |
|
#undef UPB_INT64ALT_T |
|
#undef UPB_UINT64ALT_T |
|
|
|
#endif // UPB_HANDLERS_INL_H_
|
|
|