Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

811 lines
25 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2011 Google Inc. See LICENSE for details.
*
* An exhaustive set of tests for parsing both valid and invalid protobuf
* input, with buffer breaks in arbitrary places.
*
* Tests to add:
* - unknown field handler called appropriately
* - unknown fields can be inserted in random places
* - fuzzing of valid input
* - resource limits (max stack depth, max string len)
* - testing of groups
* - more throrough testing of sequences
* - test skipping of submessages
* - test suspending the decoder
* - buffers that are close enough to the end of the address space that
* pointers overflow (this might be difficult).
* - a few "kitchen sink" examples (one proto that uses all types, lots
* of submsg/sequences, etc.
*/
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS // For PRIuS, etc.
#endif
#include <inttypes.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include "upb/handlers.h"
#include "upb/pb/decoder.h"
#include "upb/pb/varint.h"
#include "upb/upb.h"
#include "upb_test.h"
// Copied from decoder.c, since this is not a public interface.
typedef struct {
uint8_t native_wire_type;
bool is_numeric;
} upb_decoder_typeinfo;
static const upb_decoder_typeinfo upb_decoder_types[] = {
{UPB_WIRE_TYPE_END_GROUP, false}, // ENDGROUP
{UPB_WIRE_TYPE_64BIT, true}, // DOUBLE
{UPB_WIRE_TYPE_32BIT, true}, // FLOAT
{UPB_WIRE_TYPE_VARINT, true}, // INT64
{UPB_WIRE_TYPE_VARINT, true}, // UINT64
{UPB_WIRE_TYPE_VARINT, true}, // INT32
{UPB_WIRE_TYPE_64BIT, true}, // FIXED64
{UPB_WIRE_TYPE_32BIT, true}, // FIXED32
{UPB_WIRE_TYPE_VARINT, true}, // BOOL
{UPB_WIRE_TYPE_DELIMITED, false}, // STRING
{UPB_WIRE_TYPE_START_GROUP, false}, // GROUP
{UPB_WIRE_TYPE_DELIMITED, false}, // MESSAGE
{UPB_WIRE_TYPE_DELIMITED, false}, // BYTES
{UPB_WIRE_TYPE_VARINT, true}, // UINT32
{UPB_WIRE_TYPE_VARINT, true}, // ENUM
{UPB_WIRE_TYPE_32BIT, true}, // SFIXED32
{UPB_WIRE_TYPE_64BIT, true}, // SFIXED64
{UPB_WIRE_TYPE_VARINT, true}, // SINT32
{UPB_WIRE_TYPE_VARINT, true}, // SINT64
};
class buffer {
public:
buffer(const void *data, size_t len) : len_(0) { append(data, len); }
explicit buffer(const char *data) : len_(0) { append(data); }
explicit buffer(size_t len) : len_(len) { memset(buf_, 0, len); }
buffer(const buffer& buf) : len_(0) { append(buf); }
buffer() : len_(0) {}
void append(const void *data, size_t len) {
ASSERT_NOCOUNT(len + len_ < sizeof(buf_));
memcpy(buf_ + len_, data, len);
len_ += len;
buf_[len_] = NULL;
}
void append(const buffer& buf) {
append(buf.buf_, buf.len_);
}
void append(const char *str) {
append(str, strlen(str));
}
void vappendf(const char *fmt, va_list args) {
size_t avail = sizeof(buf_) - len_;
size_t size = vsnprintf(buf_ + len_, avail, fmt, args);
ASSERT_NOCOUNT(avail > size);
len_ += size;
}
void appendf(const char *fmt, ...) {
va_list args;
va_start(args, fmt);
vappendf(fmt, args);
va_end(args);
}
void assign(const buffer& buf) {
clear();
append(buf);
}
bool eql(const buffer& other) const {
return len_ == other.len_ && memcmp(buf_, other.buf_, len_) == 0;
}
void clear() { len_ = 0; }
size_t len() const { return len_; }
const char *buf() const { return buf_; }
private:
// Has to be big enough for the largest string used in the test.
char buf_[32768];
size_t len_;
};
/* Routines for building arbitrary protos *************************************/
const buffer empty;
buffer cat(const buffer& a, const buffer& b,
const buffer& c = empty,
const buffer& d = empty,
const buffer& e = empty) {
buffer ret;
ret.append(a);
ret.append(b);
ret.append(c);
ret.append(d);
ret.append(e);
return ret;
}
buffer varint(uint64_t x) {
char buf[UPB_PB_VARINT_MAX_LEN];
size_t len = upb_vencode64(x, buf);
return buffer(buf, len);
}
// TODO: proper byte-swapping for big-endian machines.
buffer fixed32(void *data) { return buffer(data, 4); }
buffer fixed64(void *data) { return buffer(data, 8); }
buffer delim(const buffer& buf) { return cat(varint(buf.len()), buf); }
buffer uint32(uint32_t u32) { return fixed32(&u32); }
buffer uint64(uint64_t u64) { return fixed64(&u64); }
buffer flt(float f) { return fixed32(&f); }
buffer dbl(double d) { return fixed64(&d); }
buffer zz32(int32_t x) { return varint(upb_zzenc_32(x)); }
buffer zz64(int64_t x) { return varint(upb_zzenc_64(x)); }
buffer tag(uint32_t fieldnum, char wire_type) {
return varint((fieldnum << 3) | wire_type);
}
buffer submsg(uint32_t fn, const buffer& buf) {
return cat( tag(fn, UPB_WIRE_TYPE_DELIMITED), delim(buf) );
}
/* A set of handlers that covers all .proto types *****************************/
// The handlers simply append to a string indicating what handlers were called.
// This string is similar to protobuf text format but fields are referred to by
// number instead of name and sequences are explicitly delimited. We indent
// using the closure depth to test that the stack of closures is properly
// handled.
int closures[UPB_MAX_NESTING];
buffer output;
void indentbuf(buffer *buf, int depth) {
for (int i = 0; i < depth; i++)
buf->append(" ", 2);
}
void indent(void *depth) {
indentbuf(&output, *(int*)depth);
}
#define VALUE_HANDLER(member, fmt) \
upb_flow_t value_ ## member(void *closure, upb_value fval, upb_value val) { \
indent(closure); \
output.appendf("%" PRIu32 ":%" fmt "\n", \
upb_value_getuint32(fval), upb_value_get ## member(val)); \
return UPB_CONTINUE; \
}
VALUE_HANDLER(uint32, PRIu32)
VALUE_HANDLER(uint64, PRIu64)
VALUE_HANDLER(int32, PRId32)
VALUE_HANDLER(int64, PRId64)
VALUE_HANDLER(float, "g")
VALUE_HANDLER(double, "g")
upb_flow_t value_bool(void *closure, upb_value fval, upb_value val) {
indent(closure);
output.appendf("%" PRIu32 ":%s\n",
upb_value_getuint32(fval),
upb_value_getbool(val) ? "true" : "false");
return UPB_CONTINUE;
}
upb_flow_t value_string(void *closure, upb_value fval, upb_value val) {
// Note: won't work with strings that contain NULL.
indent(closure);
char *str = upb_byteregion_strdup(upb_value_getbyteregion(val));
output.appendf("%" PRIu32 ":%s\n", upb_value_getuint32(fval), str);
free(str);
return UPB_CONTINUE;
}
upb_sflow_t startsubmsg(void *closure, upb_value fval) {
indent(closure);
output.appendf("%" PRIu32 ":{\n", upb_value_getuint32(fval));
return UPB_CONTINUE_WITH(((int*)closure) + 1);
}
upb_flow_t endsubmsg(void *closure, upb_value fval) {
indent(closure);
output.append("}\n");
return UPB_CONTINUE;
}
upb_sflow_t startseq(void *closure, upb_value fval) {
indent(closure);
output.appendf("%" PRIu32 ":[\n", upb_value_getuint32(fval));
return UPB_CONTINUE_WITH(((int*)closure) + 1);
}
upb_flow_t endseq(void *closure, upb_value fval) {
indent(closure);
output.append("]\n");
return UPB_CONTINUE;
}
upb_flow_t startmsg(void *closure) {
indent(closure);
output.append("<\n");
return UPB_CONTINUE;
}
void endmsg(void *closure, upb_status *status) {
(void)status;
indent(closure);
output.append(">\n");
}
void doreg(upb_mhandlers *m, uint32_t num, upb_fieldtype_t type, bool repeated,
upb_value_handler *handler) {
upb_fhandlers *f = upb_mhandlers_newfhandlers(m, num, type, repeated);
ASSERT(f);
upb_fhandlers_setvalue(f, handler);
upb_fhandlers_setstartseq(f, &startseq);
upb_fhandlers_setendseq(f, &endseq);
upb_fhandlers_setfval(f, upb_value_uint32(num));
}
// The repeated field number to correspond to the given non-repeated field
// number.
uint32_t rep_fn(uint32_t fn) {
return (UPB_MAX_FIELDNUMBER - 1000) + fn;
}
#define NOP_FIELD 40
#define UNKNOWN_FIELD 666
void reg(upb_mhandlers *m, upb_fieldtype_t type, upb_value_handler *handler) {
// We register both a repeated and a non-repeated field for every type.
// For the non-repeated field we make the field number the same as the
// type. For the repeated field we make it a function of the type.
doreg(m, type, type, false, handler);
doreg(m, rep_fn(type), type, true, handler);
}
void reg_subm(upb_mhandlers *m, uint32_t num, upb_fieldtype_t type,
bool repeated) {
upb_fhandlers *f =
upb_mhandlers_newfhandlers_subm(m, num, type, repeated, m);
ASSERT(f);
upb_fhandlers_setstartseq(f, &startseq);
upb_fhandlers_setendseq(f, &endseq);
upb_fhandlers_setstartsubmsg(f, &startsubmsg);
upb_fhandlers_setendsubmsg(f, &endsubmsg);
upb_fhandlers_setfval(f, upb_value_uint32(num));
}
void reghandlers(upb_mhandlers *m) {
upb_mhandlers_setstartmsg(m, &startmsg);
upb_mhandlers_setendmsg(m, &endmsg);
// Register handlers for each type.
reg(m, UPB_TYPE(DOUBLE), &value_double);
reg(m, UPB_TYPE(FLOAT), &value_float);
reg(m, UPB_TYPE(INT64), &value_int64);
reg(m, UPB_TYPE(UINT64), &value_uint64);
reg(m, UPB_TYPE(INT32) , &value_int32);
reg(m, UPB_TYPE(FIXED64), &value_uint64);
reg(m, UPB_TYPE(FIXED32), &value_uint32);
reg(m, UPB_TYPE(BOOL), &value_bool);
reg(m, UPB_TYPE(STRING), &value_string);
reg(m, UPB_TYPE(BYTES), &value_string);
reg(m, UPB_TYPE(UINT32), &value_uint32);
reg(m, UPB_TYPE(ENUM), &value_int32);
reg(m, UPB_TYPE(SFIXED32), &value_int32);
reg(m, UPB_TYPE(SFIXED64), &value_int64);
reg(m, UPB_TYPE(SINT32), &value_int32);
reg(m, UPB_TYPE(SINT64), &value_int64);
// Register submessage/group handlers that are self-recursive
// to this type, eg: message M { optional M m = 1; }
reg_subm(m, UPB_TYPE(MESSAGE), UPB_TYPE(MESSAGE), false);
reg_subm(m, UPB_TYPE(GROUP), UPB_TYPE(GROUP), false);
reg_subm(m, rep_fn(UPB_TYPE(MESSAGE)), UPB_TYPE(MESSAGE), true);
reg_subm(m, rep_fn(UPB_TYPE(GROUP)), UPB_TYPE(GROUP), true);
// Register a no-op string field so we can pad the proto wherever we want.
upb_mhandlers_newfhandlers(m, NOP_FIELD, UPB_TYPE(STRING), false);
}
/* Custom bytesrc that can insert buffer seams in arbitrary places ************/
typedef struct {
upb_bytesrc bytesrc;
const char *str;
size_t len, seam1, seam2;
upb_byteregion byteregion;
} upb_seamsrc;
size_t upb_seamsrc_avail(const upb_seamsrc *src, size_t ofs) {
if (ofs < src->seam1) return src->seam1 - ofs;
if (ofs < src->seam2) return src->seam2 - ofs;
return src->len - ofs;
}
upb_bytesuccess_t upb_seamsrc_fetch(void *_src, uint64_t ofs, size_t *read) {
upb_seamsrc *src = (upb_seamsrc*)_src;
assert(ofs < src->len);
if (ofs == src->len) {
upb_status_seteof(&src->bytesrc.status);
return UPB_BYTE_EOF;
}
*read = upb_seamsrc_avail(src, ofs);
return UPB_BYTE_OK;
}
void upb_seamsrc_copy(const void *_src, uint64_t ofs,
size_t len, char *dst) {
const upb_seamsrc *src = (const upb_seamsrc*)_src;
assert(ofs + len <= src->len);
memcpy(dst, src->str + ofs, len);
}
void upb_seamsrc_discard(void *src, uint64_t ofs) {
(void)src;
(void)ofs;
}
const char *upb_seamsrc_getptr(const void *_s, uint64_t ofs, size_t *len) {
const upb_seamsrc *src = (const upb_seamsrc*)_s;
*len = upb_seamsrc_avail(src, ofs);
return src->str + ofs;
}
void upb_seamsrc_init(upb_seamsrc *s, const char *str, size_t len) {
static upb_bytesrc_vtbl vtbl = {
&upb_seamsrc_fetch,
&upb_seamsrc_discard,
&upb_seamsrc_copy,
&upb_seamsrc_getptr,
};
upb_bytesrc_init(&s->bytesrc, &vtbl);
s->seam1 = 0;
s->seam2 = 0;
s->str = str;
s->len = len;
s->byteregion.bytesrc = &s->bytesrc;
s->byteregion.toplevel = true;
s->byteregion.start = 0;
s->byteregion.end = len;
}
void upb_seamsrc_resetseams(upb_seamsrc *s, size_t seam1, size_t seam2) {
assert(seam1 <= seam2);
s->seam1 = seam1;
s->seam2 = seam2;
s->byteregion.discard = 0;
s->byteregion.fetch = 0;
}
void upb_seamsrc_uninit(upb_seamsrc *s) { (void)s; }
upb_bytesrc *upb_seamsrc_bytesrc(upb_seamsrc *s) {
return &s->bytesrc;
}
// Returns the top-level upb_byteregion* for this seamsrc. Invalidated when
// the seamsrc is reset.
upb_byteregion *upb_seamsrc_allbytes(upb_seamsrc *s) {
return &s->byteregion;
}
/* Running of test cases ******************************************************/
upb_decoderplan *plan;
#define LINE(x) x "\n"
void run_decoder(const buffer& proto, const buffer* expected_output) {
upb_seamsrc src;
upb_seamsrc_init(&src, proto.buf(), proto.len());
upb_decoder d;
upb_decoder_init(&d);
upb_decoder_resetplan(&d, plan, 0);
for (size_t i = 0; i < proto.len(); i++) {
for (size_t j = i; j < UPB_MIN(proto.len(), i + 5); j++) {
upb_seamsrc_resetseams(&src, i, j);
upb_byteregion *input = upb_seamsrc_allbytes(&src);
output.clear();
upb_decoder_resetinput(&d, input, &closures[0]);
upb_success_t success = UPB_SUSPENDED;
while (success == UPB_SUSPENDED)
success = upb_decoder_decode(&d);
ASSERT(upb_ok(upb_decoder_status(&d)) == (success == UPB_OK));
if (expected_output) {
ASSERT_STATUS(success == UPB_OK, upb_decoder_status(&d));
// The input should be fully consumed.
ASSERT(upb_byteregion_fetchofs(input) == upb_byteregion_endofs(input));
ASSERT(upb_byteregion_discardofs(input) ==
upb_byteregion_endofs(input));
if (!output.eql(*expected_output)) {
fprintf(stderr, "Text mismatch: '%s' vs '%s'\n",
output.buf(), expected_output->buf());
}
ASSERT(output.eql(*expected_output));
} else {
ASSERT(success == UPB_ERROR);
}
}
}
upb_decoder_uninit(&d);
upb_seamsrc_uninit(&src);
}
const static buffer thirty_byte_nop = buffer(cat(
tag(NOP_FIELD, UPB_WIRE_TYPE_DELIMITED), delim(buffer(30)) ));
void assert_successful_parse(const buffer& proto,
const char *expected_fmt, ...) {
buffer expected_text;
va_list args;
va_start(args, expected_fmt);
expected_text.vappendf(expected_fmt, args);
va_end(args);
// The JIT is only used for data >=20 bytes from end-of-buffer, so
// repeat once with no-op padding data at the end of buffer.
run_decoder(proto, &expected_text);
run_decoder(cat( proto, thirty_byte_nop ), &expected_text);
}
void assert_does_not_parse_at_eof(const buffer& proto) {
run_decoder(proto, NULL);
}
void assert_does_not_parse(const buffer& proto) {
// The JIT is only used for data >=20 bytes from end-of-buffer, so
// repeat once with no-op padding data at the end of buffer.
assert_does_not_parse_at_eof(proto);
assert_does_not_parse_at_eof(cat( proto, thirty_byte_nop ));
}
/* The actual tests ***********************************************************/
void test_premature_eof_for_type(upb_fieldtype_t type) {
// Incomplete values for each wire type.
static const buffer incompletes[6] = {
buffer("\x80"), // UPB_WIRE_TYPE_VARINT
buffer("abcdefg"), // UPB_WIRE_TYPE_64BIT
buffer("\x80"), // UPB_WIRE_TYPE_DELIMITED (partial length)
buffer(), // UPB_WIRE_TYPE_START_GROUP (no value required)
buffer(), // UPB_WIRE_TYPE_END_GROUP (no value required)
buffer("abc") // UPB_WIRE_TYPE_32BIT
};
uint32_t fieldnum = type;
uint32_t rep_fieldnum = rep_fn(type);
int wire_type = upb_decoder_types[type].native_wire_type;
const buffer& incomplete = incompletes[wire_type];
// EOF before a known non-repeated value.
assert_does_not_parse_at_eof(tag(fieldnum, wire_type));
// EOF before a known repeated value.
assert_does_not_parse_at_eof(tag(rep_fieldnum, wire_type));
// EOF before an unknown value.
assert_does_not_parse_at_eof(tag(UNKNOWN_FIELD, wire_type));
// EOF inside a known non-repeated value.
assert_does_not_parse_at_eof(
cat( tag(fieldnum, wire_type), incomplete ));
// EOF inside a known repeated value.
assert_does_not_parse_at_eof(
cat( tag(rep_fieldnum, wire_type), incomplete ));
// EOF inside an unknown value.
assert_does_not_parse_at_eof(
cat( tag(UNKNOWN_FIELD, wire_type), incomplete ));
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
// EOF in the middle of delimited data for known non-repeated value.
assert_does_not_parse_at_eof(
cat( tag(fieldnum, wire_type), varint(1) ));
// EOF in the middle of delimited data for known repeated value.
assert_does_not_parse_at_eof(
cat( tag(rep_fieldnum, wire_type), varint(1) ));
// EOF in the middle of delimited data for unknown value.
assert_does_not_parse_at_eof(
cat( tag(UNKNOWN_FIELD, wire_type), varint(1) ));
if (type == UPB_TYPE(MESSAGE)) {
// Submessage ends in the middle of a value.
buffer incomplete_submsg =
cat ( tag(UPB_TYPE(INT32), UPB_WIRE_TYPE_VARINT),
incompletes[UPB_WIRE_TYPE_VARINT] );
assert_does_not_parse(
cat( tag(fieldnum, UPB_WIRE_TYPE_DELIMITED),
varint(incomplete_submsg.len()),
incomplete_submsg ));
}
} else {
// Packed region ends in the middle of a value.
assert_does_not_parse(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
varint(incomplete.len()),
incomplete ));
// EOF in the middle of packed region.
assert_does_not_parse_at_eof(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED), varint(1) ));
}
}
// "33" and "66" are just two random values that all numeric types can
// represent.
void test_valid_data_for_type(upb_fieldtype_t type,
const buffer& enc33, const buffer& enc66) {
uint32_t fieldnum = type;
uint32_t rep_fieldnum = rep_fn(type);
int wire_type = upb_decoder_types[type].native_wire_type;
// Non-repeated
assert_successful_parse(
cat( tag(fieldnum, wire_type), enc33,
tag(fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:33")
LINE("%u:66")
LINE(">"), fieldnum, fieldnum);
// Non-packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, wire_type), enc33,
tag(rep_fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
// Packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
delim(cat( enc33, enc66 )) ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
}
void test_valid_data_for_signed_type(upb_fieldtype_t type,
const buffer& enc33, const buffer& enc66) {
uint32_t fieldnum = type;
uint32_t rep_fieldnum = rep_fn(type);
int wire_type = upb_decoder_types[type].native_wire_type;
// Non-repeated
assert_successful_parse(
cat( tag(fieldnum, wire_type), enc33,
tag(fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:33")
LINE("%u:-66")
LINE(">"), fieldnum, fieldnum);
// Non-packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, wire_type), enc33,
tag(rep_fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:-66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
// Packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
delim(cat( enc33, enc66 )) ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:-66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
}
// Test that invalid protobufs are properly detected (without crashing) and
// have an error reported. Field numbers match registered handlers above.
void test_invalid() {
test_premature_eof_for_type(UPB_TYPE(DOUBLE));
test_premature_eof_for_type(UPB_TYPE(FLOAT));
test_premature_eof_for_type(UPB_TYPE(INT64));
test_premature_eof_for_type(UPB_TYPE(UINT64));
test_premature_eof_for_type(UPB_TYPE(INT32));
test_premature_eof_for_type(UPB_TYPE(FIXED64));
test_premature_eof_for_type(UPB_TYPE(FIXED32));
test_premature_eof_for_type(UPB_TYPE(BOOL));
test_premature_eof_for_type(UPB_TYPE(STRING));
test_premature_eof_for_type(UPB_TYPE(BYTES));
test_premature_eof_for_type(UPB_TYPE(UINT32));
test_premature_eof_for_type(UPB_TYPE(ENUM));
test_premature_eof_for_type(UPB_TYPE(SFIXED32));
test_premature_eof_for_type(UPB_TYPE(SFIXED64));
test_premature_eof_for_type(UPB_TYPE(SINT32));
test_premature_eof_for_type(UPB_TYPE(SINT64));
// EOF inside a tag's varint.
assert_does_not_parse_at_eof( buffer("\x80") );
// EOF inside a known group.
assert_does_not_parse_at_eof( tag(4, UPB_WIRE_TYPE_START_GROUP) );
// EOF inside an unknown group.
assert_does_not_parse_at_eof( tag(UNKNOWN_FIELD, UPB_WIRE_TYPE_START_GROUP) );
// End group that we are not currently in.
assert_does_not_parse( tag(4, UPB_WIRE_TYPE_END_GROUP) );
// Field number is 0.
assert_does_not_parse(
cat( tag(0, UPB_WIRE_TYPE_DELIMITED), varint(0) ));
// Field number is too large.
assert_does_not_parse(
cat( tag(UPB_MAX_FIELDNUMBER + 1, UPB_WIRE_TYPE_DELIMITED),
varint(0) ));
// Test exceeding the resource limit of stack depth.
buffer buf;
for (int i = 0; i < UPB_MAX_NESTING; i++) {
buf.assign(submsg(UPB_TYPE(MESSAGE), buf));
}
assert_does_not_parse(buf);
}
void test_valid() {
test_valid_data_for_signed_type(UPB_TYPE(DOUBLE), dbl(33), dbl(-66));
test_valid_data_for_signed_type(UPB_TYPE(FLOAT), flt(33), flt(-66));
test_valid_data_for_signed_type(UPB_TYPE(INT64), varint(33), varint(-66));
test_valid_data_for_signed_type(UPB_TYPE(INT32), varint(33), varint(-66));
test_valid_data_for_signed_type(UPB_TYPE(ENUM), varint(33), varint(-66));
test_valid_data_for_signed_type(UPB_TYPE(SFIXED32), uint32(33), uint32(-66));
test_valid_data_for_signed_type(UPB_TYPE(SFIXED64), uint64(33), uint64(-66));
test_valid_data_for_signed_type(UPB_TYPE(SINT32), zz32(33), zz32(-66));
test_valid_data_for_signed_type(UPB_TYPE(SINT64), zz64(33), zz64(-66));
test_valid_data_for_type(UPB_TYPE(UINT64), varint(33), varint(66));
test_valid_data_for_type(UPB_TYPE(UINT32), varint(33), varint(66));
test_valid_data_for_type(UPB_TYPE(FIXED64), uint64(33), uint64(66));
test_valid_data_for_type(UPB_TYPE(FIXED32), uint32(33), uint32(66));
// Test implicit startseq/endseq.
uint32_t repfl_fn = rep_fn(UPB_TYPE(FLOAT));
uint32_t repdb_fn = rep_fn(UPB_TYPE(DOUBLE));
assert_successful_parse(
cat( tag(repfl_fn, UPB_WIRE_TYPE_32BIT), flt(33),
tag(repdb_fn, UPB_WIRE_TYPE_64BIT), dbl(66) ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE("]")
LINE("%u:[")
LINE(" %u:66")
LINE("]")
LINE(">"), repfl_fn, repfl_fn, repdb_fn, repdb_fn);
// Submessage tests.
uint32_t msg_fn = UPB_TYPE(MESSAGE);
assert_successful_parse(
submsg(msg_fn, submsg(msg_fn, submsg(msg_fn, buffer()))),
LINE("<")
LINE("%u:{")
LINE(" <")
LINE(" %u:{")
LINE(" <")
LINE(" %u:{")
LINE(" <")
LINE(" >")
LINE(" }")
LINE(" >")
LINE(" }")
LINE(" >")
LINE("}")
LINE(">"), msg_fn, msg_fn, msg_fn);
uint32_t repm_fn = rep_fn(UPB_TYPE(MESSAGE));
assert_successful_parse(
submsg(repm_fn, submsg(repm_fn, buffer())),
LINE("<")
LINE("%u:[")
LINE(" %u:{")
LINE(" <")
LINE(" %u:[")
LINE(" %u:{")
LINE(" <")
LINE(" >")
LINE(" }")
LINE(" ]")
LINE(" >")
LINE(" }")
LINE("]")
LINE(">"), repm_fn, repm_fn, repm_fn, repm_fn);
// Staying within the stack limit should work properly.
buffer buf;
buffer textbuf;
int total = UPB_MAX_NESTING - 1;
for (int i = 0; i < total; i++) {
buf.assign(submsg(UPB_TYPE(MESSAGE), buf));
indentbuf(&textbuf, i);
textbuf.append("<\n");
indentbuf(&textbuf, i);
textbuf.appendf("%u:{\n", UPB_TYPE(MESSAGE));
}
indentbuf(&textbuf, total);
textbuf.append("<\n");
indentbuf(&textbuf, total);
textbuf.append(">\n");
for (int i = 0; i < total; i++) {
indentbuf(&textbuf, total - i - 1);
textbuf.append("}\n");
indentbuf(&textbuf, total - i - 1);
textbuf.append(">\n");
}
assert_successful_parse(buf, "%s", textbuf.buf());
}
void run_tests() {
test_invalid();
test_valid();
}
int main() {
for (int i = 0; i < UPB_MAX_NESTING; i++) {
closures[i] = i;
}
// Construct decoder plan.
upb_handlers *h = upb_handlers_new();
reghandlers(upb_handlers_newmhandlers(h));
// Create an empty handlers to make sure that the decoder can handle empty
// messages.
upb_handlers_newmhandlers(h);
// Test without JIT.
plan = upb_decoderplan_new(h, false);
run_tests();
upb_decoderplan_unref(plan);
// Test JIT.
plan = upb_decoderplan_new(h, true);
#ifdef UPB_USE_JIT_X64
ASSERT(upb_decoderplan_hasjitcode(plan));
#else
ASSERT(!upb_decoderplan_hasjitcode(plan));
#endif
run_tests();
upb_decoderplan_unref(plan);
plan = NULL;
printf("All tests passed, %d assertions.\n", num_assertions);
upb_handlers_unref(h);
return 0;
}