Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

327 lines
11 KiB

/*
* upb - a minimalist implementation of protocol buffers.
*
* Copyright (c) 2009 Joshua Haberman. See LICENSE for details.
*
* Provides definitions of .proto constructs:
* - upb_msgdef: describes a "message" construct.
* - upb_fielddef: describes a message field.
* - upb_enumdef: describes an enum.
* (TODO: definitions of extensions and services).
*
* Defs are obtained from a upb_symtab object. A upb_symtab is empty when
* constructed, and definitions can be added by supplying serialized
* descriptors.
*
* Defs are immutable and reference-counted. Symbol tables reference any defs
* that are the "current" definitions. If an extension is loaded that adds a
* field to an existing message, a new msgdef is constructed that includes the
* new field and the old msgdef is unref'd. The old msgdef will still be ref'd
* by messages (if any) that were constructed with that msgdef.
*
* This file contains routines for creating and manipulating the definitions
* themselves. To create and manipulate actual messages, see upb_msg.h.
*/
#ifndef UPB_DEF_H_
#define UPB_DEF_H_
#include "upb_atomic.h"
#include "upb_stream.h"
#include "upb_table.h"
#ifdef __cplusplus
extern "C" {
#endif
/* upb_def: base class for defs **********************************************/
// All the different kind of defs we support. These correspond 1:1 with
// declarations in a .proto file.
typedef enum {
UPB_DEF_MSG = 0,
UPB_DEF_ENUM,
UPB_DEF_SVC,
UPB_DEF_EXT,
// Internal-only, placeholder for a def that hasn't be resolved yet.
UPB_DEF_UNRESOLVED,
// For specifying that defs of any type are requsted from getdefs.
UPB_DEF_ANY = -1
} upb_deftype;
// This typedef is more space-efficient than declaring an enum var directly.
typedef int8_t upb_deftype_t;
typedef struct {
upb_string *fqname; // Fully qualified.
upb_atomic_refcount_t refcount;
upb_deftype_t type;
// The is_cyclic flag could go in upb_msgdef instead of here, because only
// messages can be involved in cycles. However, putting them here is free
// from a space perspective because structure alignment will otherwise leave
// three bytes empty after type. It is also makes ref and unref more
// efficient, because we don't have to downcast to msgdef before checking the
// is_cyclic flag.
bool is_cyclic;
uint16_t search_depth; // Used during initialization dfs.
} upb_def;
// These must not be called directly!
void _upb_def_cyclic_ref(upb_def *def);
void _upb_def_reftozero(upb_def *def);
// Call to ref/deref a def.
INLINE void upb_def_ref(upb_def *def) {
if(upb_atomic_ref(&def->refcount) && def->is_cyclic) _upb_def_cyclic_ref(def);
}
INLINE void upb_def_unref(upb_def *def) {
if(upb_atomic_unref(&def->refcount)) _upb_def_reftozero(def);
}
/* upb_fielddef ***************************************************************/
// A upb_fielddef describes a single field in a message. It isn't a full def
// in the sense that it derives from upb_def. It cannot stand on its own; it
// is either a field of a upb_msgdef or contained inside a upb_extensiondef.
// It is also reference-counted.
typedef struct _upb_fielddef {
upb_value default_value;
upb_string *name;
struct _upb_msgdef *msgdef;
// For the case of an enum or a submessage, points to the def for that type.
upb_def *def;
upb_atomic_refcount_t refcount;
uint32_t byte_offset; // Where in a upb_msg to find the data.
// These are set only when this fielddef is part of a msgdef.
upb_field_count_t field_index; // Indicates set bit.
upb_field_number_t number;
upb_field_type_t type;
upb_label_t label;
// True if we own a ref on "def" (above). This is true unless this edge is
// part of a cycle.
bool owned;
} upb_fielddef;
// A variety of tests about the type of a field.
INLINE bool upb_issubmsg(upb_fielddef *f) {
return upb_issubmsgtype(f->type);
}
INLINE bool upb_isstring(upb_fielddef *f) {
return upb_isstringtype(f->type);
}
INLINE bool upb_isarray(upb_fielddef *f) {
return f->label == UPB_LABEL(REPEATED);
}
// Does the type of this field imply that it should contain an associated def?
INLINE bool upb_hasdef(upb_fielddef *f) {
return upb_issubmsg(f) || f->type == UPB_TYPE(ENUM);
}
INLINE bool upb_field_ismm(upb_fielddef *f) {
return upb_isarray(f) || upb_isstring(f) || upb_issubmsg(f);
}
INLINE bool upb_elem_ismm(upb_fielddef *f) {
return upb_isstring(f) || upb_issubmsg(f);
}
/* upb_msgdef *****************************************************************/
// Structure that describes a single .proto message type.
typedef struct _upb_msgdef {
upb_def base;
upb_atomic_refcount_t cycle_refcount;
// Tables for looking up fields by number and name.
upb_inttable itof; // int to field
upb_strtable ntof; // name to field
} upb_msgdef;
// Hash table entries for looking up fields by name or number.
typedef struct {
upb_inttable_entry e;
upb_fielddef *f;
} upb_itof_ent;
typedef struct {
upb_strtable_entry e;
upb_fielddef *f;
} upb_ntof_ent;
// Looks up a field by name or number. While these are written to be as fast
// as possible, it will still be faster to cache the results of this lookup if
// possible. These return NULL if no such field is found.
INLINE upb_fielddef *upb_msg_itof(upb_msgdef *m, uint32_t num) {
upb_itof_ent *e =
(upb_itof_ent*)upb_inttable_fastlookup(&m->itof, num, sizeof(*e));
return e ? e->f : NULL;
}
INLINE upb_fielddef *upb_msg_ntof(upb_msgdef *m, upb_string *name) {
upb_ntof_ent *e = (upb_ntof_ent*)upb_strtable_lookup(&m->ntof, name);
return e ? e->f : NULL;
}
// Iteration over fields. The order is undefined.
// upb_msg_iter i;
// for(i = upb_msg_begin(m); !upb_msg_done(&i); i = upb_msg_next(&i)) {
// // ...
// }
typedef upb_itof_ent *upb_msg_iter;
upb_msg_iter upb_msg_begin(upb_msgdef *m);
upb_msg_iter upb_msg_next(upb_msgdef *m, upb_msg_iter iter);
INLINE bool upb_msg_done(upb_msg_iter iter) { return iter == NULL; }
INLINE upb_fielddef *upb_msg_iter_field(upb_msg_iter iter) {
return iter->f;
}
/* upb_enumdef ****************************************************************/
typedef struct _upb_enumdef {
upb_def base;
upb_strtable ntoi;
upb_inttable iton;
} upb_enumdef;
typedef struct {
upb_strtable_entry e;
uint32_t value;
} upb_ntoi_ent;
typedef struct {
upb_inttable_entry e;
upb_string *string;
} upb_iton_ent;
typedef int32_t upb_enumval_t;
// Lookups from name to integer and vice-versa.
bool upb_enumdef_ntoi(upb_enumdef *e, upb_string *name, upb_enumval_t *num);
// Caller does not own a ref on the returned string.
upb_string *upb_enumdef_iton(upb_enumdef *e, upb_enumval_t num);
// Iteration over name/value pairs. The order is undefined.
// upb_enum_iter i;
// for(i = upb_enum_begin(e); !upb_enum_done(i); i = upb_enum_next(e, i)) {
// // ...
// }
typedef upb_iton_ent *upb_enum_iter;
upb_enum_iter upb_enum_begin(upb_enumdef *e);
upb_enum_iter upb_enum_next(upb_enumdef *e, upb_enum_iter iter);
INLINE bool upb_enum_done(upb_enum_iter iter) { return iter == NULL; }
INLINE upb_string *upb_enum_iter_name(upb_enum_iter iter) {
return iter->string;
}
INLINE int32_t upb_enum_iter_number(upb_enum_iter iter) {
return iter->e.key;
}
/* upb_symtab *****************************************************************/
// A SymbolTable is where upb_defs live. It is empty when first constructed.
// Clients add definitions to the symtab by supplying unserialized or
// serialized descriptors (as defined in descriptor.proto).
typedef struct {
upb_atomic_refcount_t refcount;
upb_rwlock_t lock; // Protects all members except the refcount.
upb_strtable symtab; // The symbol table.
} upb_symtab;
// Initializes a upb_symtab. Contexts are not freed explicitly, but unref'd
// when the caller is done with them.
upb_symtab *upb_symtab_new(void);
void _upb_symtab_free(upb_symtab *s); // Must not be called directly!
INLINE void upb_symtab_ref(upb_symtab *s) { upb_atomic_ref(&s->refcount); }
INLINE void upb_symtab_unref(upb_symtab *s) {
if(upb_atomic_unref(&s->refcount)) _upb_symtab_free(s);
}
// Resolves the given symbol using the rules described in descriptor.proto,
// namely:
//
// If the name starts with a '.', it is fully-qualified. Otherwise, C++-like
// scoping rules are used to find the type (i.e. first the nested types
// within this message are searched, then within the parent, on up to the
// root namespace).
//
// If a def is found, the caller owns one ref on the returned def. Otherwise
// returns NULL.
upb_def *upb_symtab_resolve(upb_symtab *s, upb_string *base, upb_string *sym);
// Find an entry in the symbol table with this exact name. If a def is found,
// the caller owns one ref on the returned def. Otherwise returns NULL.
upb_def *upb_symtab_lookup(upb_symtab *s, upb_string *sym);
// Gets an array of pointers to all currently active defs in this symtab. The
// caller owns the returned array (which is of length *count) as well as a ref
// to each symbol inside. If type is UPB_DEF_ANY then defs of all types are
// returned, otherwise only defs of the required type are returned.
upb_def **upb_symtab_getdefs(upb_symtab *s, int *count, upb_deftype_t type);
// "fds" is a upb_src that will yield data from the
// google.protobuf.FileDescriptorSet message type. upb_symtab_addfds() adds
// all the definitions from the given FileDescriptorSet and adds them to the
// symtab. status indicates whether the operation was successful or not, and
// the error message (if any).
//
// TODO: should this allow redefinition? Either is possible, but which is
// more useful? Maybe it should be an option.
void upb_symtab_addfds(upb_symtab *s, upb_src *desc, upb_status *status);
// Adds defs for google.protobuf.FileDescriptorSet and friends to this symtab.
// This is necessary for bootstrapping, since these are the upb_defs that
// specify other defs and allow them to be loaded.
void upb_symtab_add_descriptorproto(upb_symtab *s);
/* upb_def casts **************************************************************/
// Dynamic casts, for determining if a def is of a particular type at runtime.
#define UPB_DYNAMIC_CAST_DEF(lower, upper) \
struct _upb_ ## lower; /* Forward-declare. */ \
INLINE struct _upb_ ## lower *upb_dyncast_ ## lower(upb_def *def) { \
if(def->type != UPB_DEF_ ## upper) return NULL; \
return (struct _upb_ ## lower*)def; \
}
UPB_DYNAMIC_CAST_DEF(msgdef, MSG);
UPB_DYNAMIC_CAST_DEF(enumdef, ENUM);
UPB_DYNAMIC_CAST_DEF(svcdef, SVC);
UPB_DYNAMIC_CAST_DEF(extdef, EXT);
UPB_DYNAMIC_CAST_DEF(unresolveddef, UNRESOLVED);
#undef UPB_DYNAMIC_CAST_DEF
// Downcasts, for when some wants to assert that a def is of a particular type.
// These are only checked if we are building debug.
#define UPB_DOWNCAST_DEF(lower, upper) \
struct _upb_ ## lower; /* Forward-declare. */ \
INLINE struct _upb_ ## lower *upb_downcast_ ## lower(upb_def *def) { \
assert(def->type == UPB_DEF_ ## upper); \
return (struct _upb_ ## lower*)def; \
}
UPB_DOWNCAST_DEF(msgdef, MSG);
UPB_DOWNCAST_DEF(enumdef, ENUM);
UPB_DOWNCAST_DEF(svcdef, SVC);
UPB_DOWNCAST_DEF(extdef, EXT);
UPB_DOWNCAST_DEF(unresolveddef, UNRESOLVED);
#undef UPB_DOWNCAST_DEF
#define UPB_UPCAST(ptr) (&(ptr)->base)
#ifdef __cplusplus
} /* extern "C" */
#endif
#endif /* UPB_DEF_H_ */