Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
638 lines
25 KiB
638 lines
25 KiB
#region Copyright notice and license |
|
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2008 Google Inc. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google Inc. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
#endregion |
|
|
|
using System; |
|
using System.Buffers.Binary; |
|
using System.Runtime.CompilerServices; |
|
using System.Runtime.InteropServices; |
|
using System.Security; |
|
using System.Text; |
|
|
|
namespace Google.Protobuf |
|
{ |
|
/// <summary> |
|
/// Primitives for encoding protobuf wire format. |
|
/// </summary> |
|
[SecuritySafeCritical] |
|
internal static class WritingPrimitives |
|
{ |
|
// "Local" copy of Encoding.UTF8, for efficiency. (Yes, it makes a difference.) |
|
internal static readonly Encoding Utf8Encoding = Encoding.UTF8; |
|
|
|
#region Writing of values (not including tags) |
|
|
|
/// <summary> |
|
/// Writes a double field value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteDouble(ref Span<byte> buffer, ref WriterInternalState state, double value) |
|
{ |
|
WriteRawLittleEndian64(ref buffer, ref state, (ulong)BitConverter.DoubleToInt64Bits(value)); |
|
} |
|
|
|
/// <summary> |
|
/// Writes a float field value, without a tag, to the stream. |
|
/// </summary> |
|
public static unsafe void WriteFloat(ref Span<byte> buffer, ref WriterInternalState state, float value) |
|
{ |
|
const int length = sizeof(float); |
|
if (buffer.Length - state.position >= length) |
|
{ |
|
// if there's enough space in the buffer, write the float directly into the buffer |
|
var floatSpan = buffer.Slice(state.position, length); |
|
Unsafe.WriteUnaligned(ref MemoryMarshal.GetReference(floatSpan), value); |
|
|
|
if (!BitConverter.IsLittleEndian) |
|
{ |
|
floatSpan.Reverse(); |
|
} |
|
state.position += length; |
|
} |
|
else |
|
{ |
|
WriteFloatSlowPath(ref buffer, ref state, value); |
|
} |
|
} |
|
|
|
[MethodImpl(MethodImplOptions.NoInlining)] |
|
private static unsafe void WriteFloatSlowPath(ref Span<byte> buffer, ref WriterInternalState state, float value) |
|
{ |
|
const int length = sizeof(float); |
|
|
|
// TODO(jtattermusch): deduplicate the code. Populating the span is the same as for the fastpath. |
|
Span<byte> floatSpan = stackalloc byte[length]; |
|
Unsafe.WriteUnaligned(ref MemoryMarshal.GetReference(floatSpan), value); |
|
if (!BitConverter.IsLittleEndian) |
|
{ |
|
floatSpan.Reverse(); |
|
} |
|
|
|
WriteRawByte(ref buffer, ref state, floatSpan[0]); |
|
WriteRawByte(ref buffer, ref state, floatSpan[1]); |
|
WriteRawByte(ref buffer, ref state, floatSpan[2]); |
|
WriteRawByte(ref buffer, ref state, floatSpan[3]); |
|
} |
|
|
|
/// <summary> |
|
/// Writes a uint64 field value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteUInt64(ref Span<byte> buffer, ref WriterInternalState state, ulong value) |
|
{ |
|
WriteRawVarint64(ref buffer, ref state, value); |
|
} |
|
|
|
/// <summary> |
|
/// Writes an int64 field value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteInt64(ref Span<byte> buffer, ref WriterInternalState state, long value) |
|
{ |
|
WriteRawVarint64(ref buffer, ref state, (ulong)value); |
|
} |
|
|
|
/// <summary> |
|
/// Writes an int32 field value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteInt32(ref Span<byte> buffer, ref WriterInternalState state, int value) |
|
{ |
|
if (value >= 0) |
|
{ |
|
WriteRawVarint32(ref buffer, ref state, (uint)value); |
|
} |
|
else |
|
{ |
|
// Must sign-extend. |
|
WriteRawVarint64(ref buffer, ref state, (ulong)value); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Writes a fixed64 field value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteFixed64(ref Span<byte> buffer, ref WriterInternalState state, ulong value) |
|
{ |
|
WriteRawLittleEndian64(ref buffer, ref state, value); |
|
} |
|
|
|
/// <summary> |
|
/// Writes a fixed32 field value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteFixed32(ref Span<byte> buffer, ref WriterInternalState state, uint value) |
|
{ |
|
WriteRawLittleEndian32(ref buffer, ref state, value); |
|
} |
|
|
|
/// <summary> |
|
/// Writes a bool field value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteBool(ref Span<byte> buffer, ref WriterInternalState state, bool value) |
|
{ |
|
WriteRawByte(ref buffer, ref state, value ? (byte)1 : (byte)0); |
|
} |
|
|
|
/// <summary> |
|
/// Writes a string field value, without a tag, to the stream. |
|
/// The data is length-prefixed. |
|
/// </summary> |
|
public static void WriteString(ref Span<byte> buffer, ref WriterInternalState state, string value) |
|
{ |
|
// Optimise the case where we have enough space to write |
|
// the string directly to the buffer, which should be common. |
|
int length = Utf8Encoding.GetByteCount(value); |
|
WriteLength(ref buffer, ref state, length); |
|
if (buffer.Length - state.position >= length) |
|
{ |
|
if (length == value.Length) // Must be all ASCII... |
|
{ |
|
for (int i = 0; i < length; i++) |
|
{ |
|
buffer[state.position + i] = (byte)value[i]; |
|
} |
|
state.position += length; |
|
} |
|
else |
|
{ |
|
#if NETSTANDARD1_1 |
|
// slowpath when Encoding.GetBytes(Char*, Int32, Byte*, Int32) is not available |
|
byte[] bytes = Utf8Encoding.GetBytes(value); |
|
WriteRawBytes(ref buffer, ref state, bytes); |
|
#else |
|
ReadOnlySpan<char> source = value.AsSpan(); |
|
int bytesUsed; |
|
unsafe |
|
{ |
|
fixed (char* sourceChars = &MemoryMarshal.GetReference(source)) |
|
fixed (byte* destinationBytes = &MemoryMarshal.GetReference(buffer.Slice(state.position))) |
|
{ |
|
bytesUsed = Utf8Encoding.GetBytes(sourceChars, source.Length, destinationBytes, buffer.Length); |
|
} |
|
} |
|
state.position += bytesUsed; |
|
#endif |
|
} |
|
} |
|
else |
|
{ |
|
// Opportunity for future optimization: |
|
// Large strings that don't fit into the current buffer segment |
|
// can probably be optimized by using Utf8Encoding.GetEncoder() |
|
// but more benchmarks would need to be added as evidence. |
|
byte[] bytes = Utf8Encoding.GetBytes(value); |
|
WriteRawBytes(ref buffer, ref state, bytes); |
|
} |
|
} |
|
|
|
/// <summary> |
|
/// Write a byte string, without a tag, to the stream. |
|
/// The data is length-prefixed. |
|
/// </summary> |
|
public static void WriteBytes(ref Span<byte> buffer, ref WriterInternalState state, ByteString value) |
|
{ |
|
WriteLength(ref buffer, ref state, value.Length); |
|
WriteRawBytes(ref buffer, ref state, value.Span); |
|
} |
|
|
|
/// <summary> |
|
/// Writes a uint32 value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteUInt32(ref Span<byte> buffer, ref WriterInternalState state, uint value) |
|
{ |
|
WriteRawVarint32(ref buffer, ref state, value); |
|
} |
|
|
|
/// <summary> |
|
/// Writes an enum value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteEnum(ref Span<byte> buffer, ref WriterInternalState state, int value) |
|
{ |
|
WriteInt32(ref buffer, ref state, value); |
|
} |
|
|
|
/// <summary> |
|
/// Writes an sfixed32 value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteSFixed32(ref Span<byte> buffer, ref WriterInternalState state, int value) |
|
{ |
|
WriteRawLittleEndian32(ref buffer, ref state, (uint)value); |
|
} |
|
|
|
/// <summary> |
|
/// Writes an sfixed64 value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteSFixed64(ref Span<byte> buffer, ref WriterInternalState state, long value) |
|
{ |
|
WriteRawLittleEndian64(ref buffer, ref state, (ulong)value); |
|
} |
|
|
|
/// <summary> |
|
/// Writes an sint32 value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteSInt32(ref Span<byte> buffer, ref WriterInternalState state, int value) |
|
{ |
|
WriteRawVarint32(ref buffer, ref state, EncodeZigZag32(value)); |
|
} |
|
|
|
/// <summary> |
|
/// Writes an sint64 value, without a tag, to the stream. |
|
/// </summary> |
|
public static void WriteSInt64(ref Span<byte> buffer, ref WriterInternalState state, long value) |
|
{ |
|
WriteRawVarint64(ref buffer, ref state, EncodeZigZag64(value)); |
|
} |
|
|
|
/// <summary> |
|
/// Writes a length (in bytes) for length-delimited data. |
|
/// </summary> |
|
/// <remarks> |
|
/// This method simply writes a rawint, but exists for clarity in calling code. |
|
/// </remarks> |
|
public static void WriteLength(ref Span<byte> buffer, ref WriterInternalState state, int length) |
|
{ |
|
WriteRawVarint32(ref buffer, ref state, (uint)length); |
|
} |
|
|
|
#endregion |
|
|
|
#region Writing primitives |
|
/// <summary> |
|
/// Writes a 32 bit value as a varint. The fast route is taken when |
|
/// there's enough buffer space left to whizz through without checking |
|
/// for each byte; otherwise, we resort to calling WriteRawByte each time. |
|
/// </summary> |
|
public static void WriteRawVarint32(ref Span<byte> buffer, ref WriterInternalState state, uint value) |
|
{ |
|
// Optimize for the common case of a single byte value |
|
if (value < 128 && state.position < buffer.Length) |
|
{ |
|
buffer[state.position++] = (byte)value; |
|
return; |
|
} |
|
|
|
// Fast path when capacity is available |
|
while (state.position < buffer.Length) |
|
{ |
|
if (value > 127) |
|
{ |
|
buffer[state.position++] = (byte)((value & 0x7F) | 0x80); |
|
value >>= 7; |
|
} |
|
else |
|
{ |
|
buffer[state.position++] = (byte)value; |
|
return; |
|
} |
|
} |
|
|
|
while (value > 127) |
|
{ |
|
WriteRawByte(ref buffer, ref state, (byte)((value & 0x7F) | 0x80)); |
|
value >>= 7; |
|
} |
|
|
|
WriteRawByte(ref buffer, ref state, (byte)value); |
|
} |
|
|
|
public static void WriteRawVarint64(ref Span<byte> buffer, ref WriterInternalState state, ulong value) |
|
{ |
|
// Optimize for the common case of a single byte value |
|
if (value < 128 && state.position < buffer.Length) |
|
{ |
|
buffer[state.position++] = (byte)value; |
|
return; |
|
} |
|
|
|
// Fast path when capacity is available |
|
while (state.position < buffer.Length) |
|
{ |
|
if (value > 127) |
|
{ |
|
buffer[state.position++] = (byte)((value & 0x7F) | 0x80); |
|
value >>= 7; |
|
} |
|
else |
|
{ |
|
buffer[state.position++] = (byte)value; |
|
return; |
|
} |
|
} |
|
|
|
while (value > 127) |
|
{ |
|
WriteRawByte(ref buffer, ref state, (byte)((value & 0x7F) | 0x80)); |
|
value >>= 7; |
|
} |
|
|
|
WriteRawByte(ref buffer, ref state, (byte)value); |
|
} |
|
|
|
public static void WriteRawLittleEndian32(ref Span<byte> buffer, ref WriterInternalState state, uint value) |
|
{ |
|
const int length = sizeof(uint); |
|
if (state.position + length > buffer.Length) |
|
{ |
|
WriteRawLittleEndian32SlowPath(ref buffer, ref state, value); |
|
} |
|
else |
|
{ |
|
BinaryPrimitives.WriteUInt32LittleEndian(buffer.Slice(state.position), value); |
|
state.position += length; |
|
} |
|
} |
|
|
|
[MethodImpl(MethodImplOptions.NoInlining)] |
|
private static void WriteRawLittleEndian32SlowPath(ref Span<byte> buffer, ref WriterInternalState state, uint value) |
|
{ |
|
WriteRawByte(ref buffer, ref state, (byte)value); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 8)); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 16)); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 24)); |
|
} |
|
|
|
public static void WriteRawLittleEndian64(ref Span<byte> buffer, ref WriterInternalState state, ulong value) |
|
{ |
|
const int length = sizeof(ulong); |
|
if (state.position + length > buffer.Length) |
|
{ |
|
WriteRawLittleEndian64SlowPath(ref buffer, ref state, value); |
|
} |
|
else |
|
{ |
|
// TODO(jtattermusch): According to the benchmarks, writing byte-by-byte is actually faster |
|
// than using BinaryPrimitives.WriteUInt64LittleEndian. |
|
// This is strange especially because WriteUInt32LittleEndian seems to be much faster |
|
// in terms of throughput. |
|
buffer[state.position++] = ((byte)value); |
|
buffer[state.position++] = ((byte)(value >> 8)); |
|
buffer[state.position++] = ((byte)(value >> 16)); |
|
buffer[state.position++] = ((byte)(value >> 24)); |
|
buffer[state.position++] = ((byte)(value >> 32)); |
|
buffer[state.position++] = ((byte)(value >> 40)); |
|
buffer[state.position++] = ((byte)(value >> 48)); |
|
buffer[state.position++] = ((byte)(value >> 56)); |
|
} |
|
} |
|
|
|
[MethodImpl(MethodImplOptions.NoInlining)] |
|
public static void WriteRawLittleEndian64SlowPath(ref Span<byte> buffer, ref WriterInternalState state, ulong value) |
|
{ |
|
WriteRawByte(ref buffer, ref state, (byte)value); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 8)); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 16)); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 24)); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 32)); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 40)); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 48)); |
|
WriteRawByte(ref buffer, ref state, (byte)(value >> 56)); |
|
} |
|
|
|
private static void WriteRawByte(ref Span<byte> buffer, ref WriterInternalState state, byte value) |
|
{ |
|
if (state.position == buffer.Length) |
|
{ |
|
WriteBufferHelper.RefreshBuffer(ref buffer, ref state); |
|
} |
|
|
|
buffer[state.position++] = value; |
|
} |
|
|
|
/// <summary> |
|
/// Writes out an array of bytes. |
|
/// </summary> |
|
public static void WriteRawBytes(ref Span<byte> buffer, ref WriterInternalState state, byte[] value) |
|
{ |
|
WriteRawBytes(ref buffer, ref state, new ReadOnlySpan<byte>(value)); |
|
} |
|
|
|
/// <summary> |
|
/// Writes out part of an array of bytes. |
|
/// </summary> |
|
public static void WriteRawBytes(ref Span<byte> buffer, ref WriterInternalState state, byte[] value, int offset, int length) |
|
{ |
|
WriteRawBytes(ref buffer, ref state, new ReadOnlySpan<byte>(value, offset, length)); |
|
} |
|
|
|
/// <summary> |
|
/// Writes out part of an array of bytes. |
|
/// </summary> |
|
public static void WriteRawBytes(ref Span<byte> buffer, ref WriterInternalState state, ReadOnlySpan<byte> value) |
|
{ |
|
if (buffer.Length - state.position >= value.Length) |
|
{ |
|
// We have room in the current buffer. |
|
value.CopyTo(buffer.Slice(state.position, value.Length)); |
|
state.position += value.Length; |
|
} |
|
else |
|
{ |
|
// When writing to a CodedOutputStream backed by a Stream, we could avoid |
|
// copying the data twice (first copying to the current buffer and |
|
// and later writing from the current buffer to the underlying Stream) |
|
// in some circumstances by writing the data directly to the underlying Stream. |
|
// Current this is not being done to avoid specialcasing the code for |
|
// CodedOutputStream vs IBufferWriter<byte>. |
|
int bytesWritten = 0; |
|
while (buffer.Length - state.position < value.Length - bytesWritten) |
|
{ |
|
int length = buffer.Length - state.position; |
|
value.Slice(bytesWritten, length).CopyTo(buffer.Slice(state.position, length)); |
|
bytesWritten += length; |
|
state.position += length; |
|
WriteBufferHelper.RefreshBuffer(ref buffer, ref state); |
|
} |
|
|
|
// copy the remaining data |
|
int remainderLength = value.Length - bytesWritten; |
|
value.Slice(bytesWritten, remainderLength).CopyTo(buffer.Slice(state.position, remainderLength)); |
|
state.position += remainderLength; |
|
} |
|
} |
|
#endregion |
|
|
|
#region Raw tag writing |
|
/// <summary> |
|
/// Encodes and writes a tag. |
|
/// </summary> |
|
public static void WriteTag(ref Span<byte> buffer, ref WriterInternalState state, int fieldNumber, WireFormat.WireType type) |
|
{ |
|
WriteRawVarint32(ref buffer, ref state, WireFormat.MakeTag(fieldNumber, type)); |
|
} |
|
|
|
/// <summary> |
|
/// Writes an already-encoded tag. |
|
/// </summary> |
|
public static void WriteTag(ref Span<byte> buffer, ref WriterInternalState state, uint tag) |
|
{ |
|
WriteRawVarint32(ref buffer, ref state, tag); |
|
} |
|
|
|
/// <summary> |
|
/// Writes the given single-byte tag directly to the stream. |
|
/// </summary> |
|
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1) |
|
{ |
|
WriteRawByte(ref buffer, ref state, b1); |
|
} |
|
|
|
/// <summary> |
|
/// Writes the given two-byte tag directly to the stream. |
|
/// </summary> |
|
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2) |
|
{ |
|
if (state.position + 2 > buffer.Length) |
|
{ |
|
WriteRawTagSlowPath(ref buffer, ref state, b1, b2); |
|
} |
|
else |
|
{ |
|
buffer[state.position++] = b1; |
|
buffer[state.position++] = b2; |
|
} |
|
} |
|
|
|
[MethodImpl(MethodImplOptions.NoInlining)] |
|
private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2) |
|
{ |
|
WriteRawByte(ref buffer, ref state, b1); |
|
WriteRawByte(ref buffer, ref state, b2); |
|
} |
|
|
|
/// <summary> |
|
/// Writes the given three-byte tag directly to the stream. |
|
/// </summary> |
|
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3) |
|
{ |
|
if (state.position + 3 > buffer.Length) |
|
{ |
|
WriteRawTagSlowPath(ref buffer, ref state, b1, b2, b3); |
|
} |
|
else |
|
{ |
|
buffer[state.position++] = b1; |
|
buffer[state.position++] = b2; |
|
buffer[state.position++] = b3; |
|
} |
|
} |
|
|
|
[MethodImpl(MethodImplOptions.NoInlining)] |
|
private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3) |
|
{ |
|
WriteRawByte(ref buffer, ref state, b1); |
|
WriteRawByte(ref buffer, ref state, b2); |
|
WriteRawByte(ref buffer, ref state, b3); |
|
} |
|
|
|
/// <summary> |
|
/// Writes the given four-byte tag directly to the stream. |
|
/// </summary> |
|
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4) |
|
{ |
|
if (state.position + 4 > buffer.Length) |
|
{ |
|
WriteRawTagSlowPath(ref buffer, ref state, b1, b2, b3, b4); |
|
} |
|
else |
|
{ |
|
buffer[state.position++] = b1; |
|
buffer[state.position++] = b2; |
|
buffer[state.position++] = b3; |
|
buffer[state.position++] = b4; |
|
} |
|
} |
|
|
|
[MethodImpl(MethodImplOptions.NoInlining)] |
|
|
|
private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4) |
|
{ |
|
WriteRawByte(ref buffer, ref state, b1); |
|
WriteRawByte(ref buffer, ref state, b2); |
|
WriteRawByte(ref buffer, ref state, b3); |
|
WriteRawByte(ref buffer, ref state, b4); |
|
} |
|
|
|
/// <summary> |
|
/// Writes the given five-byte tag directly to the stream. |
|
/// </summary> |
|
public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4, byte b5) |
|
{ |
|
if (state.position + 5 > buffer.Length) |
|
{ |
|
WriteRawTagSlowPath(ref buffer, ref state, b1, b2, b3, b4, b5); |
|
} |
|
else |
|
{ |
|
buffer[state.position++] = b1; |
|
buffer[state.position++] = b2; |
|
buffer[state.position++] = b3; |
|
buffer[state.position++] = b4; |
|
buffer[state.position++] = b5; |
|
} |
|
} |
|
|
|
[MethodImpl(MethodImplOptions.NoInlining)] |
|
private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4, byte b5) |
|
{ |
|
WriteRawByte(ref buffer, ref state, b1); |
|
WriteRawByte(ref buffer, ref state, b2); |
|
WriteRawByte(ref buffer, ref state, b3); |
|
WriteRawByte(ref buffer, ref state, b4); |
|
WriteRawByte(ref buffer, ref state, b5); |
|
} |
|
#endregion |
|
|
|
/// <summary> |
|
/// Encode a 32-bit value with ZigZag encoding. |
|
/// </summary> |
|
/// <remarks> |
|
/// ZigZag encodes signed integers into values that can be efficiently |
|
/// encoded with varint. (Otherwise, negative values must be |
|
/// sign-extended to 64 bits to be varint encoded, thus always taking |
|
/// 10 bytes on the wire.) |
|
/// </remarks> |
|
public static uint EncodeZigZag32(int n) |
|
{ |
|
// Note: the right-shift must be arithmetic |
|
return (uint)((n << 1) ^ (n >> 31)); |
|
} |
|
|
|
/// <summary> |
|
/// Encode a 64-bit value with ZigZag encoding. |
|
/// </summary> |
|
/// <remarks> |
|
/// ZigZag encodes signed integers into values that can be efficiently |
|
/// encoded with varint. (Otherwise, negative values must be |
|
/// sign-extended to 64 bits to be varint encoded, thus always taking |
|
/// 10 bytes on the wire.) |
|
/// </remarks> |
|
public static ulong EncodeZigZag64(long n) |
|
{ |
|
return (ulong)((n << 1) ^ (n >> 63)); |
|
} |
|
} |
|
} |