Protocol Buffers - Google's data interchange format (grpc依赖)
https://developers.google.com/protocol-buffers/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.7 KiB
176 lines
5.7 KiB
// Protocol Buffers - Google's data interchange format |
|
// Copyright 2023 Google LLC. All rights reserved. |
|
// https://developers.google.com/protocol-buffers/ |
|
// |
|
// Redistribution and use in source and binary forms, with or without |
|
// modification, are permitted provided that the following conditions are |
|
// met: |
|
// |
|
// * Redistributions of source code must retain the above copyright |
|
// notice, this list of conditions and the following disclaimer. |
|
// * Redistributions in binary form must reproduce the above |
|
// copyright notice, this list of conditions and the following disclaimer |
|
// in the documentation and/or other materials provided with the |
|
// distribution. |
|
// * Neither the name of Google LLC. nor the names of its |
|
// contributors may be used to endorse or promote products derived from |
|
// this software without specific prior written permission. |
|
// |
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
// Rust Protobuf runtime using the C++ kernel. |
|
|
|
use std::alloc::Layout; |
|
use std::cell::UnsafeCell; |
|
use std::fmt; |
|
use std::marker::PhantomData; |
|
use std::mem::MaybeUninit; |
|
use std::ops::Deref; |
|
use std::ptr::{self, NonNull}; |
|
|
|
/// A wrapper over a `proto2::Arena`. |
|
/// |
|
/// This is not a safe wrapper per se, because the allocation functions still |
|
/// have sharp edges (see their safety docs for more info). |
|
/// |
|
/// This is an owning type and will automatically free the arena when |
|
/// dropped. |
|
/// |
|
/// Note that this type is neither `Sync` nor `Send`. |
|
pub struct Arena { |
|
#[allow(dead_code)] |
|
ptr: NonNull<u8>, |
|
_not_sync: PhantomData<UnsafeCell<()>>, |
|
} |
|
|
|
impl Arena { |
|
/// Allocates a fresh arena. |
|
#[inline] |
|
pub fn new() -> Self { |
|
Self { ptr: NonNull::dangling(), _not_sync: PhantomData } |
|
} |
|
|
|
/// Returns the raw, C++-managed pointer to the arena. |
|
#[inline] |
|
pub fn raw(&self) -> ! { |
|
unimplemented!() |
|
} |
|
|
|
/// Allocates some memory on the arena. |
|
/// |
|
/// # Safety |
|
/// |
|
/// TODO alignment requirement for layout |
|
#[inline] |
|
pub unsafe fn alloc(&self, _layout: Layout) -> &mut [MaybeUninit<u8>] { |
|
unimplemented!() |
|
} |
|
|
|
/// Resizes some memory on the arena. |
|
/// |
|
/// # Safety |
|
/// |
|
/// After calling this function, `ptr` is essentially zapped. `old` must |
|
/// be the layout `ptr` was allocated with via [`Arena::alloc()`]. |
|
/// TODO alignment for layout |
|
#[inline] |
|
pub unsafe fn resize(&self, _ptr: *mut u8, _old: Layout, _new: Layout) -> &[MaybeUninit<u8>] { |
|
unimplemented!() |
|
} |
|
} |
|
|
|
impl Drop for Arena { |
|
#[inline] |
|
fn drop(&mut self) { |
|
// unimplemented |
|
} |
|
} |
|
|
|
/// Serialized Protobuf wire format data. It's typically produced by |
|
/// `<Message>.serialize()`. |
|
/// |
|
/// This struct is ABI-compatible with the equivalent struct on the C++ side. It |
|
/// owns (and drops) its data. |
|
#[repr(C)] |
|
pub struct SerializedData { |
|
/// Owns the memory. |
|
data: NonNull<u8>, |
|
len: usize, |
|
} |
|
|
|
impl SerializedData { |
|
/// Constructs owned serialized data from raw components. |
|
/// |
|
/// # Safety |
|
/// - `data` must be readable for `len` bytes. |
|
/// - `data` must be an owned pointer and valid until deallocated. |
|
/// - `data` must have been allocated by the Rust global allocator with a |
|
/// size of `len` and align of 1. |
|
pub unsafe fn from_raw_parts(data: NonNull<u8>, len: usize) -> Self { |
|
Self { data, len } |
|
} |
|
|
|
/// Gets a raw slice pointer. |
|
pub fn as_ptr(&self) -> *const [u8] { |
|
ptr::slice_from_raw_parts(self.data.as_ptr(), self.len) |
|
} |
|
|
|
/// Gets a mutable raw slice pointer. |
|
fn as_mut_ptr(&mut self) -> *mut [u8] { |
|
ptr::slice_from_raw_parts_mut(self.data.as_ptr(), self.len) |
|
} |
|
} |
|
|
|
impl Deref for SerializedData { |
|
type Target = [u8]; |
|
fn deref(&self) -> &Self::Target { |
|
// SAFETY: `data` is valid for `len` bytes until deallocated as promised by |
|
// `from_raw_parts`. |
|
unsafe { &*self.as_ptr() } |
|
} |
|
} |
|
|
|
impl Drop for SerializedData { |
|
fn drop(&mut self) { |
|
// SAFETY: `data` was allocated by the Rust global allocator with a |
|
// size of `len` and align of 1 as promised by `from_raw_parts`. |
|
unsafe { drop(Box::from_raw(self.as_mut_ptr())) } |
|
} |
|
} |
|
|
|
impl fmt::Debug for SerializedData { |
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
|
fmt::Debug::fmt(self.deref(), f) |
|
} |
|
} |
|
|
|
#[cfg(test)] |
|
mod tests { |
|
use super::*; |
|
use std::boxed::Box; |
|
|
|
// We need to allocate the byte array so SerializedData can own it and |
|
// deallocate it in its drop. This function makes it easier to do so for our |
|
// tests. |
|
fn allocate_byte_array(content: &'static [u8]) -> (*mut u8, usize) { |
|
let content: &mut [u8] = Box::leak(content.into()); |
|
(content.as_mut_ptr(), content.len()) |
|
} |
|
|
|
#[test] |
|
fn test_serialized_data_roundtrip() { |
|
let (ptr, len) = allocate_byte_array(b"Hello world"); |
|
let serialized_data = SerializedData { data: NonNull::new(ptr).unwrap(), len: len }; |
|
assert_eq!(&*serialized_data, b"Hello world"); |
|
} |
|
}
|
|
|