Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1331 lines
44 KiB

/*
*
* An exhaustive set of tests for parsing both valid and invalid protobuf
* input, with buffer breaks in arbitrary places.
*
* Tests to add:
* - string/bytes
* - unknown field handler called appropriately
* - unknown fields can be inserted in random places
* - fuzzing of valid input
* - resource limits (max stack depth, max string len)
* - testing of groups
* - more throrough testing of sequences
* - test skipping of submessages
* - test suspending the decoder
* - buffers that are close enough to the end of the address space that
* pointers overflow (this might be difficult).
* - a few "kitchen sink" examples (one proto that uses all types, lots
* of submsg/sequences, etc.
* - test different handlers at every level and whether handlers fire at
* the correct field path.
* - test skips that extend past the end of current buffer (where decoder
* returns value greater than the size param).
*/
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS // For PRIuS, etc.
#endif
#include <inttypes.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <sstream>
#include "tests/test_util.h"
#include "tests/upb_test.h"
#ifdef AMALGAMATED
#include "upb.h"
#else // AMALGAMATED
#include "upb/handlers.h"
#include "upb/pb/decoder.h"
#include "upb/pb/varint.int.h"
#include "upb/upb.h"
#endif // !AMALGAMATED
#undef PRINT_FAILURE
#define PRINT_FAILURE(expr) \
fprintf(stderr, "Assertion failed: %s:%d\n", __FILE__, __LINE__); \
fprintf(stderr, "expr: %s\n", #expr); \
if (testhash) { \
fprintf(stderr, "assertion failed running test %x.\n", testhash); \
if (!filter_hash) { \
fprintf(stderr, \
"Run with the arg %x to run only this test. " \
"(This will also turn on extra debugging output)\n", \
testhash); \
} \
fprintf(stderr, "Failed at %02.2f%% through tests.\n", \
(float)completed * 100 / total); \
}
#define MAX_NESTING 64
#define LINE(x) x "\n"
uint32_t filter_hash = 0;
double completed;
double total;
double *count;
enum TestMode {
COUNT_ONLY = 1,
NO_HANDLERS = 2,
ALL_HANDLERS = 3
} test_mode;
// Copied from decoder.c, since this is not a public interface.
typedef struct {
uint8_t native_wire_type;
bool is_numeric;
} upb_decoder_typeinfo;
static const upb_decoder_typeinfo upb_decoder_types[] = {
{UPB_WIRE_TYPE_END_GROUP, false}, // ENDGROUP
{UPB_WIRE_TYPE_64BIT, true}, // DOUBLE
{UPB_WIRE_TYPE_32BIT, true}, // FLOAT
{UPB_WIRE_TYPE_VARINT, true}, // INT64
{UPB_WIRE_TYPE_VARINT, true}, // UINT64
{UPB_WIRE_TYPE_VARINT, true}, // INT32
{UPB_WIRE_TYPE_64BIT, true}, // FIXED64
{UPB_WIRE_TYPE_32BIT, true}, // FIXED32
{UPB_WIRE_TYPE_VARINT, true}, // BOOL
{UPB_WIRE_TYPE_DELIMITED, false}, // STRING
{UPB_WIRE_TYPE_START_GROUP, false}, // GROUP
{UPB_WIRE_TYPE_DELIMITED, false}, // MESSAGE
{UPB_WIRE_TYPE_DELIMITED, false}, // BYTES
{UPB_WIRE_TYPE_VARINT, true}, // UINT32
{UPB_WIRE_TYPE_VARINT, true}, // ENUM
{UPB_WIRE_TYPE_32BIT, true}, // SFIXED32
{UPB_WIRE_TYPE_64BIT, true}, // SFIXED64
{UPB_WIRE_TYPE_VARINT, true}, // SINT32
{UPB_WIRE_TYPE_VARINT, true}, // SINT64
};
#ifndef USE_GOOGLE
using std::string;
#endif
void vappendf(string* str, const char *format, va_list args) {
va_list copy;
__va_copy(copy, args);
int count = vsnprintf(NULL, 0, format, args);
if (count >= 0)
{
assert(count < 32768);
char *buffer = new char[count + 1];
assert(buffer);
count = vsnprintf(buffer, count + 1, format, copy);
assert(count >= 0);
str->append(buffer, count);
delete [] buffer;
}
va_end(copy);
}
void appendf(string* str, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
vappendf(str, fmt, args);
va_end(args);
}
void PrintBinary(const string& str) {
for (size_t i = 0; i < str.size(); i++) {
if (isprint(str[i])) {
fprintf(stderr, "%c", str[i]);
} else {
fprintf(stderr, "\\x%02x", (int)(uint8_t)str[i]);
}
}
}
/* Routines for building arbitrary protos *************************************/
const string empty;
string cat(const string& a, const string& b,
const string& c = empty,
const string& d = empty,
const string& e = empty,
const string& f = empty,
const string& g = empty,
const string& h = empty,
const string& i = empty,
const string& j = empty,
const string& k = empty,
const string& l = empty) {
string ret;
ret.reserve(a.size() + b.size() + c.size() + d.size() + e.size() + f.size() +
g.size() + h.size() + i.size() + j.size() + k.size() + l.size());
ret.append(a);
ret.append(b);
ret.append(c);
ret.append(d);
ret.append(e);
ret.append(f);
ret.append(g);
ret.append(h);
ret.append(i);
ret.append(j);
ret.append(k);
ret.append(l);
return ret;
}
template <typename T>
string num2string(T num) {
std::ostringstream ss;
ss << num;
return ss.str();
}
string varint(uint64_t x) {
char buf[UPB_PB_VARINT_MAX_LEN];
size_t len = upb_vencode64(x, buf);
return string(buf, len);
}
// TODO: proper byte-swapping for big-endian machines.
string fixed32(void *data) { return string(static_cast<char*>(data), 4); }
string fixed64(void *data) { return string(static_cast<char*>(data), 8); }
string delim(const string& buf) { return cat(varint(buf.size()), buf); }
string uint32(uint32_t u32) { return fixed32(&u32); }
string uint64(uint64_t u64) { return fixed64(&u64); }
string flt(float f) { return fixed32(&f); }
string dbl(double d) { return fixed64(&d); }
string zz32(int32_t x) { return varint(upb_zzenc_32(x)); }
string zz64(int64_t x) { return varint(upb_zzenc_64(x)); }
string tag(uint32_t fieldnum, char wire_type) {
return varint((fieldnum << 3) | wire_type);
}
string submsg(uint32_t fn, const string& buf) {
return cat( tag(fn, UPB_WIRE_TYPE_DELIMITED), delim(buf) );
}
string group(uint32_t fn, const string& buf) {
return cat(tag(fn, UPB_WIRE_TYPE_START_GROUP), buf,
tag(fn, UPB_WIRE_TYPE_END_GROUP));
}
// Like delim()/submsg(), but intentionally encodes an incorrect length.
// These help test when a delimited boundary doesn't land in the right place.
string badlen_delim(int err, const string& buf) {
return cat(varint(buf.size() + err), buf);
}
string badlen_submsg(int err, uint32_t fn, const string& buf) {
return cat( tag(fn, UPB_WIRE_TYPE_DELIMITED), badlen_delim(err, buf) );
}
/* A set of handlers that covers all .proto types *****************************/
// The handlers simply append to a string indicating what handlers were called.
// This string is similar to protobuf text format but fields are referred to by
// number instead of name and sequences are explicitly delimited. We indent
// using the closure depth to test that the stack of closures is properly
// handled.
int closures[MAX_NESTING];
string output;
void indentbuf(string *buf, int depth) {
buf->append(2 * depth, ' ');
}
void check_stack_alignment() {
#ifdef UPB_USE_JIT_X64
void *rsp = __builtin_frame_address(0);
ASSERT(((uintptr_t)rsp % 16) == 0);
#endif
}
#define NUMERIC_VALUE_HANDLER(member, ctype, fmt) \
bool value_##member(int* depth, const uint32_t* num, ctype val) { \
check_stack_alignment(); \
indentbuf(&output, *depth); \
appendf(&output, "%" PRIu32 ":%" fmt "\n", *num, val); \
return true; \
}
NUMERIC_VALUE_HANDLER(uint32, uint32_t, PRIu32)
NUMERIC_VALUE_HANDLER(uint64, uint64_t, PRIu64)
NUMERIC_VALUE_HANDLER(int32, int32_t, PRId32)
NUMERIC_VALUE_HANDLER(int64, int64_t, PRId64)
NUMERIC_VALUE_HANDLER(float, float, "g")
NUMERIC_VALUE_HANDLER(double, double, "g")
bool value_bool(int* depth, const uint32_t* num, bool val) {
check_stack_alignment();
indentbuf(&output, *depth);
appendf(&output, "%" PRIu32 ":%s\n", *num, val ? "true" : "false");
return true;
}
int* startstr(int* depth, const uint32_t* num, size_t size_hint) {
check_stack_alignment();
indentbuf(&output, *depth);
appendf(&output, "%" PRIu32 ":(%zu)\"", *num, size_hint);
return depth + 1;
}
size_t value_string(int* depth, const uint32_t* num, const char* buf,
size_t n, const upb::BufferHandle* handle) {
UPB_UNUSED(num);
UPB_UNUSED(depth);
check_stack_alignment();
output.append(buf, n);
ASSERT(handle == &global_handle);
return n;
}
bool endstr(int* depth, const uint32_t* num) {
UPB_UNUSED(depth);
UPB_UNUSED(num);
check_stack_alignment();
output.append("\"\n");
return true;
}
int* startsubmsg(int* depth, const uint32_t* num) {
check_stack_alignment();
indentbuf(&output, *depth);
appendf(&output, "%" PRIu32 ":{\n", *num);
return depth + 1;
}
bool endsubmsg(int* depth, const uint32_t* num) {
UPB_UNUSED(num);
check_stack_alignment();
indentbuf(&output, *depth);
output.append("}\n");
return true;
}
int* startseq(int* depth, const uint32_t* num) {
check_stack_alignment();
indentbuf(&output, *depth);
appendf(&output, "%" PRIu32 ":[\n", *num);
return depth + 1;
}
bool endseq(int* depth, const uint32_t* num) {
UPB_UNUSED(num);
check_stack_alignment();
indentbuf(&output, *depth);
output.append("]\n");
return true;
}
bool startmsg(int* depth) {
check_stack_alignment();
indentbuf(&output, *depth);
output.append("<\n");
return true;
}
bool endmsg(int* depth, upb_status* status) {
UPB_UNUSED(status);
check_stack_alignment();
indentbuf(&output, *depth);
output.append(">\n");
return true;
}
void free_uint32(void *val) {
uint32_t *u32 = static_cast<uint32_t*>(val);
delete u32;
}
template<class T, bool F(int*, const uint32_t*, T)>
void doreg(upb_handlers *h, uint32_t num) {
const upb_fielddef *f = upb_msgdef_itof(upb_handlers_msgdef(h), num);
ASSERT(f);
ASSERT(h->SetValueHandler<T>(f, UpbBindT(F, new uint32_t(num))));
if (f->IsSequence()) {
ASSERT(h->SetStartSequenceHandler(f, UpbBind(startseq, new uint32_t(num))));
ASSERT(h->SetEndSequenceHandler(f, UpbBind(endseq, new uint32_t(num))));
}
}
// The repeated field number to correspond to the given non-repeated field
// number.
uint32_t rep_fn(uint32_t fn) {
return (UPB_MAX_FIELDNUMBER - 1000) + fn;
}
#define NOP_FIELD 40
#define UNKNOWN_FIELD 666
template <class T, bool F(int*, const uint32_t*, T)>
void reg(upb_handlers *h, upb_descriptortype_t type) {
// We register both a repeated and a non-repeated field for every type.
// For the non-repeated field we make the field number the same as the
// type. For the repeated field we make it a function of the type.
doreg<T, F>(h, type);
doreg<T, F>(h, rep_fn(type));
}
void regseq(upb::Handlers* h, const upb::FieldDef* f, uint32_t num) {
ASSERT(h->SetStartSequenceHandler(f, UpbBind(startseq, new uint32_t(num))));
ASSERT(h->SetEndSequenceHandler(f, UpbBind(endseq, new uint32_t(num))));
}
void reg_subm(upb_handlers *h, uint32_t num) {
const upb_fielddef *f = upb_msgdef_itof(upb_handlers_msgdef(h), num);
ASSERT(f);
if (f->IsSequence()) regseq(h, f, num);
ASSERT(
h->SetStartSubMessageHandler(f, UpbBind(startsubmsg, new uint32_t(num))));
ASSERT(h->SetEndSubMessageHandler(f, UpbBind(endsubmsg, new uint32_t(num))));
ASSERT(upb_handlers_setsubhandlers(h, f, h));
}
void reg_str(upb_handlers *h, uint32_t num) {
const upb_fielddef *f = upb_msgdef_itof(upb_handlers_msgdef(h), num);
ASSERT(f);
if (f->IsSequence()) regseq(h, f, num);
ASSERT(h->SetStartStringHandler(f, UpbBind(startstr, new uint32_t(num))));
ASSERT(h->SetEndStringHandler(f, UpbBind(endstr, new uint32_t(num))));
ASSERT(h->SetStringHandler(f, UpbBind(value_string, new uint32_t(num))));
}
void AddField(upb_descriptortype_t descriptor_type, const std::string& name,
uint32_t fn, bool repeated, upb::MessageDef* md) {
// TODO: Fluent interface? ie.
// ASSERT(md->AddField(upb::BuildFieldDef()
// .SetName("f_message")
// .SetNumber(UPB_DESCRIPTOR_TYPE_MESSAGE)
// .SetDescriptorType(UPB_DESCRIPTOR_TYPE_MESSAGE)
// .SetMessageSubdef(md.get())));
upb::reffed_ptr<upb::FieldDef> f = upb::FieldDef::New();
ASSERT(f->set_name(name, NULL));
ASSERT(f->set_number(fn, NULL));
f->set_label(repeated ? UPB_LABEL_REPEATED : UPB_LABEL_OPTIONAL);
f->set_descriptor_type(descriptor_type);
ASSERT(md->AddField(f.get(), NULL));
}
void AddFieldsForType(upb_descriptortype_t descriptor_type,
const char* basename, upb::MessageDef* md) {
const upb_descriptortype_t t = descriptor_type;
AddField(t, std::string("f_") + basename, t, false, md);
AddField(t, std::string("r_") + basename, rep_fn(t), true, md);
}
upb::reffed_ptr<const upb::MessageDef> NewMessageDef() {
upb::reffed_ptr<upb::MessageDef> md = upb::MessageDef::New();
md->set_full_name("DecoderTest", NULL);
AddFieldsForType(UPB_DESCRIPTOR_TYPE_DOUBLE, "double", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_FLOAT, "float", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_INT64, "int64", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_UINT64, "uint64", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_INT32, "int32", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_FIXED64, "fixed64", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_FIXED32, "fixed32", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_BOOL, "bool", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_STRING, "string", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_BYTES, "bytes", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_UINT32, "uint32", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_SFIXED32, "sfixed32", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_SFIXED64, "sfixed64", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_SINT32, "sint32", md.get());
AddFieldsForType(UPB_DESCRIPTOR_TYPE_SINT64, "sint64", md.get());
AddField(UPB_DESCRIPTOR_TYPE_STRING, "nop_field", 40, false, md.get());
upb::reffed_ptr<upb::FieldDef> f = upb::FieldDef::New();
ASSERT(f->set_name("f_message", NULL));
ASSERT(f->set_number(UPB_DESCRIPTOR_TYPE_MESSAGE, NULL));
f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_MESSAGE);
ASSERT(f->set_message_subdef(md.get(), NULL));
ASSERT(md->AddField(f.get(), NULL));
f = upb::FieldDef::New();
ASSERT(f->set_name("r_message", NULL));
ASSERT(f->set_number(rep_fn(UPB_DESCRIPTOR_TYPE_MESSAGE), NULL));
f->set_label(UPB_LABEL_REPEATED);
f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_MESSAGE);
ASSERT(f->set_message_subdef(md.get(), NULL));
ASSERT(md->AddField(f.get(), NULL));
f = upb::FieldDef::New();
ASSERT(f->set_name("f_group", NULL));
ASSERT(f->set_number(UPB_DESCRIPTOR_TYPE_GROUP, NULL));
f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_GROUP);
ASSERT(f->set_message_subdef(md.get(), NULL));
ASSERT(md->AddField(f.get(), NULL));
f = upb::FieldDef::New();
ASSERT(f->set_name("r_group", NULL));
ASSERT(f->set_number(rep_fn(UPB_DESCRIPTOR_TYPE_GROUP), NULL));
f->set_label(UPB_LABEL_REPEATED);
f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_GROUP);
ASSERT(f->set_message_subdef(md.get(), NULL));
ASSERT(md->AddField(f.get(), NULL));
upb::reffed_ptr<upb::EnumDef> e = upb::EnumDef::New();
ASSERT(e->AddValue("FOO", 1, NULL));
ASSERT(e->Freeze(NULL));
f = upb::FieldDef::New();
ASSERT(f->set_name("f_enum", NULL));
ASSERT(f->set_number(UPB_DESCRIPTOR_TYPE_ENUM, NULL));
f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_ENUM);
ASSERT(f->set_enum_subdef(e.get(), NULL));
ASSERT(md->AddField(f.get(), NULL));
f = upb::FieldDef::New();
ASSERT(f->set_name("r_enum", NULL));
ASSERT(f->set_number(rep_fn(UPB_DESCRIPTOR_TYPE_ENUM), NULL));
f->set_label(UPB_LABEL_REPEATED);
f->set_descriptor_type(UPB_DESCRIPTOR_TYPE_ENUM);
ASSERT(f->set_enum_subdef(e.get(), NULL));
ASSERT(md->AddField(f.get(), NULL));
ASSERT(md->Freeze(NULL));
return md;
}
upb::reffed_ptr<const upb::Handlers> NewHandlers(TestMode mode) {
upb::reffed_ptr<upb::Handlers> h(upb::Handlers::New(NewMessageDef().get()));
if (mode == ALL_HANDLERS) {
h->SetStartMessageHandler(UpbMakeHandler(startmsg));
h->SetEndMessageHandler(UpbMakeHandler(endmsg));
// Register handlers for each type.
reg<double, value_double>(h.get(), UPB_DESCRIPTOR_TYPE_DOUBLE);
reg<float, value_float> (h.get(), UPB_DESCRIPTOR_TYPE_FLOAT);
reg<int64_t, value_int64> (h.get(), UPB_DESCRIPTOR_TYPE_INT64);
reg<uint64_t, value_uint64>(h.get(), UPB_DESCRIPTOR_TYPE_UINT64);
reg<int32_t, value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_INT32);
reg<uint64_t, value_uint64>(h.get(), UPB_DESCRIPTOR_TYPE_FIXED64);
reg<uint32_t, value_uint32>(h.get(), UPB_DESCRIPTOR_TYPE_FIXED32);
reg<bool, value_bool> (h.get(), UPB_DESCRIPTOR_TYPE_BOOL);
reg<uint32_t, value_uint32>(h.get(), UPB_DESCRIPTOR_TYPE_UINT32);
reg<int32_t, value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_ENUM);
reg<int32_t, value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_SFIXED32);
reg<int64_t, value_int64> (h.get(), UPB_DESCRIPTOR_TYPE_SFIXED64);
reg<int32_t, value_int32> (h.get(), UPB_DESCRIPTOR_TYPE_SINT32);
reg<int64_t, value_int64> (h.get(), UPB_DESCRIPTOR_TYPE_SINT64);
reg_str(h.get(), UPB_DESCRIPTOR_TYPE_STRING);
reg_str(h.get(), UPB_DESCRIPTOR_TYPE_BYTES);
reg_str(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_STRING));
reg_str(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_BYTES));
// Register submessage/group handlers that are self-recursive
// to this type, eg: message M { optional M m = 1; }
reg_subm(h.get(), UPB_DESCRIPTOR_TYPE_MESSAGE);
reg_subm(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_MESSAGE));
reg_subm(h.get(), UPB_DESCRIPTOR_TYPE_GROUP);
reg_subm(h.get(), rep_fn(UPB_DESCRIPTOR_TYPE_GROUP));
// For NOP_FIELD we register no handlers, so we can pad a proto freely without
// changing the output.
}
bool ok = h->Freeze(NULL);
ASSERT(ok);
return h;
}
/* Running of test cases ******************************************************/
const upb::Handlers *global_handlers;
const upb::pb::DecoderMethod *global_method;
upb::pb::Decoder* CreateDecoder(upb::Environment* env,
const upb::pb::DecoderMethod* method,
upb::Sink* sink) {
upb::pb::Decoder *ret = upb::pb::Decoder::Create(env, method, sink);
ASSERT(ret != NULL);
ret->set_max_nesting(MAX_NESTING);
return ret;
}
uint32_t Hash(const string& proto, const string* expected_output, size_t seam1,
size_t seam2, bool may_skip) {
uint32_t hash = MurmurHash2(proto.c_str(), proto.size(), 0);
if (expected_output)
hash = MurmurHash2(expected_output->c_str(), expected_output->size(), hash);
hash = MurmurHash2(&seam1, sizeof(seam1), hash);
hash = MurmurHash2(&seam2, sizeof(seam2), hash);
hash = MurmurHash2(&may_skip, sizeof(may_skip), hash);
return hash;
}
void CheckBytesParsed(const upb::pb::Decoder& decoder, size_t ofs) {
// We can't have parsed more data than the decoder callback is telling us it
// parsed.
ASSERT(decoder.BytesParsed() <= ofs);
// The difference between what we've decoded and what the decoder has accepted
// represents the internally buffered amount. This amount should not exceed
// this value which comes from decoder.int.h.
ASSERT(ofs <= (decoder.BytesParsed() + UPB_DECODER_MAX_RESIDUAL_BYTES));
}
static bool parse(VerboseParserEnvironment* env,
const upb::pb::Decoder& decoder, int bytes) {
CheckBytesParsed(decoder, env->ofs());
bool ret = env->ParseBuffer(bytes);
if (ret) {
CheckBytesParsed(decoder, env->ofs());
}
return ret;
}
void do_run_decoder(VerboseParserEnvironment* env, upb::pb::Decoder* decoder,
const string& proto, const string* expected_output,
size_t i, size_t j, bool may_skip) {
env->Reset(proto.c_str(), proto.size(), may_skip, expected_output == NULL);
decoder->Reset();
testhash = Hash(proto, expected_output, i, j, may_skip);
if (filter_hash && testhash != filter_hash) return;
if (test_mode != COUNT_ONLY) {
output.clear();
if (filter_hash) {
fprintf(stderr, "RUNNING TEST CASE, hash=%x\n", testhash);
fprintf(stderr, "JIT on: %s\n",
global_method->is_native() ? "true" : "false");
fprintf(stderr, "Input (len=%u): ", (unsigned)proto.size());
PrintBinary(proto);
fprintf(stderr, "\n");
if (expected_output) {
if (test_mode == ALL_HANDLERS) {
fprintf(stderr, "Expected output: %s\n", expected_output->c_str());
} else if (test_mode == NO_HANDLERS) {
fprintf(stderr,
"No handlers are registered, BUT if they were "
"the expected output would be: %s\n",
expected_output->c_str());
}
} else {
fprintf(stderr, "Expected to FAIL\n");
}
}
bool ok = env->Start() &&
parse(env, *decoder, i) &&
parse(env, *decoder, j - i) &&
parse(env, *decoder, -1) &&
env->End();
ASSERT(env->CheckConsistency());
if (test_mode == ALL_HANDLERS) {
if (expected_output) {
if (output != *expected_output) {
fprintf(stderr, "Text mismatch: '%s' vs '%s'\n",
output.c_str(), expected_output->c_str());
}
ASSERT(ok);
ASSERT(output == *expected_output);
} else {
if (ok) {
fprintf(stderr, "Didn't expect ok result, but got output: '%s'\n",
output.c_str());
}
ASSERT(!ok);
}
}
}
(*count)++;
}
void run_decoder(const string& proto, const string* expected_output) {
VerboseParserEnvironment env(filter_hash != 0);
upb::Sink sink(global_handlers, &closures[0]);
upb::pb::Decoder *decoder = CreateDecoder(env.env(), global_method, &sink);
env.ResetBytesSink(decoder->input());
for (size_t i = 0; i < proto.size(); i++) {
for (size_t j = i; j < UPB_MIN(proto.size(), i + 5); j++) {
do_run_decoder(&env, decoder, proto, expected_output, i, j, true);
if (env.SkippedWithNull()) {
do_run_decoder(&env, decoder, proto, expected_output, i, j, false);
}
}
}
testhash = 0;
}
const static string thirty_byte_nop = cat(
tag(NOP_FIELD, UPB_WIRE_TYPE_DELIMITED), delim(string(30, 'X')) );
// Indents and wraps text as if it were a submessage with this field number
string wrap_text(int32_t fn, const string& text) {
string wrapped_text = text;
size_t pos = 0;
string replace_with = "\n ";
while ((pos = wrapped_text.find("\n", pos)) != string::npos &&
pos != wrapped_text.size() - 1) {
wrapped_text.replace(pos, 1, replace_with);
pos += replace_with.size();
}
wrapped_text = cat(
LINE("<"),
num2string(fn), LINE(":{")
" ", wrapped_text,
LINE("}")
LINE(">"));
return wrapped_text;
}
void assert_successful_parse(const string& proto,
const char *expected_fmt, ...) {
string expected_text;
va_list args;
va_start(args, expected_fmt);
vappendf(&expected_text, expected_fmt, args);
va_end(args);
// To test both middle-of-buffer and end-of-buffer code paths,
// repeat once with no-op padding data at the end of buffer.
run_decoder(proto, &expected_text);
run_decoder(cat( proto, thirty_byte_nop ), &expected_text);
// Test that this also works when wrapped in a submessage or group.
// Indent the expected text one level and wrap it.
string wrapped_text1 = wrap_text(UPB_DESCRIPTOR_TYPE_MESSAGE, expected_text);
string wrapped_text2 = wrap_text(UPB_DESCRIPTOR_TYPE_GROUP, expected_text);
run_decoder(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, proto), &wrapped_text1);
run_decoder(group(UPB_DESCRIPTOR_TYPE_GROUP, proto), &wrapped_text2);
}
void assert_does_not_parse_at_eof(const string& proto) {
run_decoder(proto, NULL);
// Also test that we fail to parse at end-of-submessage, not just
// end-of-message. But skip this if we have no handlers, because in that
// case we won't descend into the submessage.
if (test_mode != NO_HANDLERS) {
run_decoder(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, proto), NULL);
run_decoder(cat(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, proto),
thirty_byte_nop), NULL);
}
}
void assert_does_not_parse(const string& proto) {
// Test that the error is caught both at end-of-buffer and middle-of-buffer.
assert_does_not_parse_at_eof(proto);
assert_does_not_parse_at_eof(cat( proto, thirty_byte_nop ));
}
/* The actual tests ***********************************************************/
void test_premature_eof_for_type(upb_descriptortype_t type) {
// Incomplete values for each wire type.
static const string incompletes[6] = {
string("\x80"), // UPB_WIRE_TYPE_VARINT
string("abcdefg"), // UPB_WIRE_TYPE_64BIT
string("\x80"), // UPB_WIRE_TYPE_DELIMITED (partial length)
string(), // UPB_WIRE_TYPE_START_GROUP (no value required)
string(), // UPB_WIRE_TYPE_END_GROUP (no value required)
string("abc") // UPB_WIRE_TYPE_32BIT
};
uint32_t fieldnum = type;
uint32_t rep_fieldnum = rep_fn(type);
int wire_type = upb_decoder_types[type].native_wire_type;
const string& incomplete = incompletes[wire_type];
// EOF before a known non-repeated value.
assert_does_not_parse_at_eof(tag(fieldnum, wire_type));
// EOF before a known repeated value.
assert_does_not_parse_at_eof(tag(rep_fieldnum, wire_type));
// EOF before an unknown value.
assert_does_not_parse_at_eof(tag(UNKNOWN_FIELD, wire_type));
// EOF inside a known non-repeated value.
assert_does_not_parse_at_eof(
cat( tag(fieldnum, wire_type), incomplete ));
// EOF inside a known repeated value.
assert_does_not_parse_at_eof(
cat( tag(rep_fieldnum, wire_type), incomplete ));
// EOF inside an unknown value.
assert_does_not_parse_at_eof(
cat( tag(UNKNOWN_FIELD, wire_type), incomplete ));
if (wire_type == UPB_WIRE_TYPE_DELIMITED) {
// EOF in the middle of delimited data for known non-repeated value.
assert_does_not_parse_at_eof(
cat( tag(fieldnum, wire_type), varint(1) ));
// EOF in the middle of delimited data for known repeated value.
assert_does_not_parse_at_eof(
cat( tag(rep_fieldnum, wire_type), varint(1) ));
// EOF in the middle of delimited data for unknown value.
assert_does_not_parse_at_eof(
cat( tag(UNKNOWN_FIELD, wire_type), varint(1) ));
if (type == UPB_DESCRIPTOR_TYPE_MESSAGE) {
// Submessage ends in the middle of a value.
string incomplete_submsg =
cat ( tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT),
incompletes[UPB_WIRE_TYPE_VARINT] );
assert_does_not_parse(
cat( tag(fieldnum, UPB_WIRE_TYPE_DELIMITED),
varint(incomplete_submsg.size()),
incomplete_submsg ));
}
} else {
// Packed region ends in the middle of a value.
assert_does_not_parse(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
varint(incomplete.size()),
incomplete ));
// EOF in the middle of packed region.
assert_does_not_parse_at_eof(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED), varint(1) ));
}
}
// "33" and "66" are just two random values that all numeric types can
// represent.
void test_valid_data_for_type(upb_descriptortype_t type,
const string& enc33, const string& enc66) {
uint32_t fieldnum = type;
uint32_t rep_fieldnum = rep_fn(type);
int wire_type = upb_decoder_types[type].native_wire_type;
// Non-repeated
assert_successful_parse(
cat( tag(fieldnum, wire_type), enc33,
tag(fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:33")
LINE("%u:66")
LINE(">"), fieldnum, fieldnum);
// Non-packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, wire_type), enc33,
tag(rep_fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
// Packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
delim(cat( enc33, enc66 )) ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
}
void test_valid_data_for_signed_type(upb_descriptortype_t type,
const string& enc33, const string& enc66) {
uint32_t fieldnum = type;
uint32_t rep_fieldnum = rep_fn(type);
int wire_type = upb_decoder_types[type].native_wire_type;
// Non-repeated
assert_successful_parse(
cat( tag(fieldnum, wire_type), enc33,
tag(fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:33")
LINE("%u:-66")
LINE(">"), fieldnum, fieldnum);
// Non-packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, wire_type), enc33,
tag(rep_fieldnum, wire_type), enc66 ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:-66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
// Packed repeated.
assert_successful_parse(
cat( tag(rep_fieldnum, UPB_WIRE_TYPE_DELIMITED),
delim(cat( enc33, enc66 )) ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE(" %u:-66")
LINE("]")
LINE(">"), rep_fieldnum, rep_fieldnum, rep_fieldnum);
}
// Test that invalid protobufs are properly detected (without crashing) and
// have an error reported. Field numbers match registered handlers above.
void test_invalid() {
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_DOUBLE);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_FLOAT);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_INT64);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_UINT64);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_INT32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_FIXED64);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_FIXED32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_BOOL);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_STRING);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_BYTES);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_UINT32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_ENUM);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SFIXED32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SFIXED64);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SINT32);
test_premature_eof_for_type(UPB_DESCRIPTOR_TYPE_SINT64);
// EOF inside a tag's varint.
assert_does_not_parse_at_eof( string("\x80") );
// EOF inside a known group.
// TODO(haberman): add group to decoder test schema.
//assert_does_not_parse_at_eof( tag(4, UPB_WIRE_TYPE_START_GROUP) );
// EOF inside an unknown group.
assert_does_not_parse_at_eof( tag(UNKNOWN_FIELD, UPB_WIRE_TYPE_START_GROUP) );
// End group that we are not currently in.
assert_does_not_parse( tag(4, UPB_WIRE_TYPE_END_GROUP) );
// Field number is 0.
assert_does_not_parse(
cat( tag(0, UPB_WIRE_TYPE_DELIMITED), varint(0) ));
// The previous test alone did not catch this particular pattern which could
// corrupt the internal state.
assert_does_not_parse(
cat( tag(0, UPB_WIRE_TYPE_64BIT), uint64(0) ));
// Field number is too large.
assert_does_not_parse(
cat( tag(UPB_MAX_FIELDNUMBER + 1, UPB_WIRE_TYPE_DELIMITED),
varint(0) ));
// Known group inside a submessage has ENDGROUP tag AFTER submessage end.
assert_does_not_parse(
cat ( submsg(UPB_DESCRIPTOR_TYPE_MESSAGE,
tag(UPB_DESCRIPTOR_TYPE_GROUP, UPB_WIRE_TYPE_START_GROUP)),
tag(UPB_DESCRIPTOR_TYPE_GROUP, UPB_WIRE_TYPE_END_GROUP)));
// Unknown string extends past enclosing submessage.
assert_does_not_parse(
cat (badlen_submsg(-1, UPB_DESCRIPTOR_TYPE_MESSAGE,
submsg(12345, string(" "))),
submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, string(" "))));
// Unknown fixed-length field extends past enclosing submessage.
assert_does_not_parse(
cat (badlen_submsg(-1, UPB_DESCRIPTOR_TYPE_MESSAGE,
cat( tag(12345, UPB_WIRE_TYPE_64BIT), uint64(0))),
submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, string(" "))));
// Test exceeding the resource limit of stack depth.
if (test_mode != NO_HANDLERS) {
string buf;
for (int i = 0; i <= MAX_NESTING; i++) {
buf.assign(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, buf));
}
assert_does_not_parse(buf);
}
}
void test_valid() {
// Empty protobuf.
assert_successful_parse(string(""), "<\n>\n");
// Empty protobuf where we never call PutString between
// StartString/EndString.
// Randomly generated hash for this test, hope it doesn't conflict with others
// by chance.
const uint32_t emptyhash = 0x5709be8e;
if (!filter_hash || filter_hash == testhash) {
testhash = emptyhash;
upb::Status status;
upb::Environment env;
env.ReportErrorsTo(&status);
upb::Sink sink(global_handlers, &closures[0]);
upb::pb::Decoder* decoder = CreateDecoder(&env, global_method, &sink);
output.clear();
bool ok = upb::BufferSource::PutBuffer("", 0, decoder->input());
ASSERT(ok);
ASSERT(status.ok());
if (test_mode == ALL_HANDLERS) {
ASSERT(output == string("<\n>\n"));
}
}
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_DOUBLE,
dbl(33),
dbl(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_FLOAT, flt(33), flt(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_INT64,
varint(33),
varint(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_INT32,
varint(33),
varint(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_ENUM,
varint(33),
varint(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SFIXED32,
uint32(33),
uint32(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SFIXED64,
uint64(33),
uint64(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SINT32,
zz32(33),
zz32(-66));
test_valid_data_for_signed_type(UPB_DESCRIPTOR_TYPE_SINT64,
zz64(33),
zz64(-66));
test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_UINT64, varint(33), varint(66));
test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_UINT32, varint(33), varint(66));
test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_FIXED64, uint64(33), uint64(66));
test_valid_data_for_type(UPB_DESCRIPTOR_TYPE_FIXED32, uint32(33), uint32(66));
// Unknown fields.
int int32_type = UPB_DESCRIPTOR_TYPE_INT32;
int msg_type = UPB_DESCRIPTOR_TYPE_MESSAGE;
assert_successful_parse(
cat( tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678) ),
"<\n>\n");
assert_successful_parse(
cat( tag(12345, UPB_WIRE_TYPE_32BIT), uint32(2345678) ),
"<\n>\n");
assert_successful_parse(
cat( tag(12345, UPB_WIRE_TYPE_64BIT), uint64(2345678) ),
"<\n>\n");
assert_successful_parse(
submsg(12345, string(" ")),
"<\n>\n");
// Unknown field inside a known submessage.
assert_successful_parse(
submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, submsg(12345, string(" "))),
LINE("<")
LINE("%u:{")
LINE(" <")
LINE(" >")
LINE("}")
LINE(">"), UPB_DESCRIPTOR_TYPE_MESSAGE);
assert_successful_parse(
cat (submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, submsg(12345, string(" "))),
tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT),
varint(5)),
LINE("<")
LINE("%u:{")
LINE(" <")
LINE(" >")
LINE("}")
LINE("%u:5")
LINE(">"), UPB_DESCRIPTOR_TYPE_MESSAGE, UPB_DESCRIPTOR_TYPE_INT32);
// This triggered a previous bug in the decoder.
assert_successful_parse(
cat( tag(UPB_DESCRIPTOR_TYPE_SFIXED32, UPB_WIRE_TYPE_VARINT),
varint(0) ),
"<\n>\n");
assert_successful_parse(
cat(
submsg(UPB_DESCRIPTOR_TYPE_MESSAGE,
submsg(UPB_DESCRIPTOR_TYPE_MESSAGE,
cat( tag(int32_type, UPB_WIRE_TYPE_VARINT), varint(2345678),
tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678) ))),
tag(int32_type, UPB_WIRE_TYPE_VARINT), varint(22222)),
LINE("<")
LINE("%u:{")
LINE(" <")
LINE(" %u:{")
LINE(" <")
LINE(" %u:2345678")
LINE(" >")
LINE(" }")
LINE(" >")
LINE("}")
LINE("%u:22222")
LINE(">"), msg_type, msg_type, int32_type, int32_type);
assert_successful_parse(
cat( tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT), varint(1),
tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678) ),
LINE("<")
LINE("%u:1")
LINE(">"), UPB_DESCRIPTOR_TYPE_INT32);
// String inside submsg.
uint32_t msg_fn = UPB_DESCRIPTOR_TYPE_MESSAGE;
assert_successful_parse(
submsg(msg_fn,
cat ( tag(UPB_DESCRIPTOR_TYPE_STRING, UPB_WIRE_TYPE_DELIMITED),
delim(string("abcde"))
)
),
LINE("<")
LINE("%u:{")
LINE(" <")
LINE(" %u:(5)\"abcde\"")
LINE(" >")
LINE("}")
LINE(">"), msg_fn, UPB_DESCRIPTOR_TYPE_STRING);
// Test implicit startseq/endseq.
uint32_t repfl_fn = rep_fn(UPB_DESCRIPTOR_TYPE_FLOAT);
uint32_t repdb_fn = rep_fn(UPB_DESCRIPTOR_TYPE_DOUBLE);
assert_successful_parse(
cat( tag(repfl_fn, UPB_WIRE_TYPE_32BIT), flt(33),
tag(repdb_fn, UPB_WIRE_TYPE_64BIT), dbl(66) ),
LINE("<")
LINE("%u:[")
LINE(" %u:33")
LINE("]")
LINE("%u:[")
LINE(" %u:66")
LINE("]")
LINE(">"), repfl_fn, repfl_fn, repdb_fn, repdb_fn);
// Submessage tests.
assert_successful_parse(
submsg(msg_fn, submsg(msg_fn, submsg(msg_fn, string()))),
LINE("<")
LINE("%u:{")
LINE(" <")
LINE(" %u:{")
LINE(" <")
LINE(" %u:{")
LINE(" <")
LINE(" >")
LINE(" }")
LINE(" >")
LINE(" }")
LINE(" >")
LINE("}")
LINE(">"), msg_fn, msg_fn, msg_fn);
uint32_t repm_fn = rep_fn(UPB_DESCRIPTOR_TYPE_MESSAGE);
assert_successful_parse(
submsg(repm_fn, submsg(repm_fn, string())),
LINE("<")
LINE("%u:[")
LINE(" %u:{")
LINE(" <")
LINE(" %u:[")
LINE(" %u:{")
LINE(" <")
LINE(" >")
LINE(" }")
LINE(" ]")
LINE(" >")
LINE(" }")
LINE("]")
LINE(">"), repm_fn, repm_fn, repm_fn, repm_fn);
// Test unknown group.
uint32_t unknown_group_fn = 12321;
assert_successful_parse(
cat( tag(unknown_group_fn, UPB_WIRE_TYPE_START_GROUP),
tag(unknown_group_fn, UPB_WIRE_TYPE_END_GROUP) ),
LINE("<")
LINE(">")
);
// Test some unknown fields inside an unknown group.
const string unknown_group_with_data =
cat(
tag(unknown_group_fn, UPB_WIRE_TYPE_START_GROUP),
tag(12345, UPB_WIRE_TYPE_VARINT), varint(2345678),
tag(123456789, UPB_WIRE_TYPE_32BIT), uint32(2345678),
tag(123477, UPB_WIRE_TYPE_64BIT), uint64(2345678),
tag(123, UPB_WIRE_TYPE_DELIMITED), varint(0),
tag(unknown_group_fn, UPB_WIRE_TYPE_END_GROUP)
);
// Nested unknown group with data.
assert_successful_parse(
cat(
tag(unknown_group_fn, UPB_WIRE_TYPE_START_GROUP),
unknown_group_with_data,
tag(unknown_group_fn, UPB_WIRE_TYPE_END_GROUP),
tag(UPB_DESCRIPTOR_TYPE_INT32, UPB_WIRE_TYPE_VARINT), varint(1)
),
LINE("<")
LINE("%u:1")
LINE(">"),
UPB_DESCRIPTOR_TYPE_INT32
);
assert_successful_parse(
cat( tag(unknown_group_fn, UPB_WIRE_TYPE_START_GROUP),
tag(unknown_group_fn + 1, UPB_WIRE_TYPE_START_GROUP),
tag(unknown_group_fn + 1, UPB_WIRE_TYPE_END_GROUP),
tag(unknown_group_fn, UPB_WIRE_TYPE_END_GROUP) ),
LINE("<")
LINE(">")
);
// Staying within the stack limit should work properly.
string buf;
string textbuf;
int total = MAX_NESTING - 1;
for (int i = 0; i < total; i++) {
buf.assign(submsg(UPB_DESCRIPTOR_TYPE_MESSAGE, buf));
indentbuf(&textbuf, i);
textbuf.append("<\n");
indentbuf(&textbuf, i);
appendf(&textbuf, "%u:{\n", UPB_DESCRIPTOR_TYPE_MESSAGE);
}
indentbuf(&textbuf, total);
textbuf.append("<\n");
indentbuf(&textbuf, total);
textbuf.append(">\n");
for (int i = 0; i < total; i++) {
indentbuf(&textbuf, total - i - 1);
textbuf.append("}\n");
indentbuf(&textbuf, total - i - 1);
textbuf.append(">\n");
}
// Have to use run_decoder directly, because we are at max nesting and can't
// afford the extra nesting that assert_successful_parse() will do.
run_decoder(buf, &textbuf);
}
upb::reffed_ptr<const upb::pb::DecoderMethod> NewMethod(
const upb::Handlers* dest_handlers, bool allow_jit) {
upb::pb::CodeCache cache;
cache.set_allow_jit(allow_jit);
return cache.GetDecoderMethod(upb::pb::DecoderMethodOptions(dest_handlers));
}
void test_emptyhandlers(bool allowjit) {
// Create an empty handlers to make sure that the decoder can handle empty
// messages.
upb::reffed_ptr<upb::MessageDef> md = upb::MessageDef::New();
ASSERT(md->set_full_name("Empty", NULL));
ASSERT(md->Freeze(NULL));
upb::reffed_ptr<upb::Handlers> h(upb::Handlers::New(md.get()));
bool ok = h->Freeze(NULL);
ASSERT(ok);
upb::reffed_ptr<const upb::pb::DecoderMethod> method =
NewMethod(h.get(), allowjit);
ASSERT(method.get());
// TODO: also test the case where a message has fields, but the fields are
// submessage fields and have no handlers. This also results in a decoder
// method with no field-handling code.
// Ensure that the method can run with empty and non-empty input.
string test_unknown_field_msg =
cat(tag(1, UPB_WIRE_TYPE_VARINT), varint(42),
tag(2, UPB_WIRE_TYPE_DELIMITED), delim("My test data"));
const struct {
const char* data;
size_t length;
} testdata[] = {
{ "", 0 },
{ test_unknown_field_msg.data(), test_unknown_field_msg.size() },
{ NULL, 0 },
};
for (int i = 0; testdata[i].data; i++) {
VerboseParserEnvironment env(filter_hash != 0);
upb::Sink sink(method->dest_handlers(), &closures[0]);
upb::pb::Decoder* decoder = CreateDecoder(env.env(), method.get(), &sink);
env.ResetBytesSink(decoder->input());
env.Reset(testdata[i].data, testdata[i].length, true, false);
ASSERT(env.Start());
ASSERT(env.ParseBuffer(-1));
ASSERT(env.End());
ASSERT(env.CheckConsistency());
}
}
void run_tests(bool use_jit) {
upb::reffed_ptr<const upb::pb::DecoderMethod> method;
upb::reffed_ptr<const upb::Handlers> handlers;
handlers = NewHandlers(test_mode);
global_handlers = handlers.get();
method = NewMethod(handlers.get(), use_jit);
global_method = method.get();
ASSERT(use_jit == global_method->is_native());
completed = 0;
test_invalid();
test_valid();
test_emptyhandlers(use_jit);
}
void run_test_suite() {
// Test without/with JIT.
run_tests(false);
#ifdef UPB_USE_JIT_X64
run_tests(true);
#endif
}
extern "C" {
int run_tests(int argc, char *argv[]) {
if (argc > 1)
filter_hash = strtol(argv[1], NULL, 16);
for (int i = 0; i < MAX_NESTING; i++) {
closures[i] = i;
}
upb::reffed_ptr<const upb::pb::DecoderMethod> method;
upb::reffed_ptr<const upb::Handlers> handlers;
// Count tests.
count = &total;
total = 0;
test_mode = COUNT_ONLY;
run_test_suite();
count = &completed;
total *= 2; // NO_HANDLERS, ALL_HANDLERS.
test_mode = NO_HANDLERS;
run_test_suite();
test_mode = ALL_HANDLERS;
run_test_suite();
printf("All tests passed, %d assertions.\n", num_assertions);
return 0;
}
}