Protocol Buffers - Google's data interchange format (grpc依赖) https://developers.google.com/protocol-buffers/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

542 lines
18 KiB

// Protocol Buffers - Google's data interchange format
// Copyright 2023 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Rust Protobuf runtime using the C++ kernel.
use crate::__internal::{Private, RawArena, RawMap, RawMessage, RawRepeatedField};
use paste::paste;
use std::alloc::Layout;
use std::cell::UnsafeCell;
use std::fmt;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ops::Deref;
use std::ptr::{self, NonNull};
/// A wrapper over a `proto2::Arena`.
///
/// This is not a safe wrapper per se, because the allocation functions still
/// have sharp edges (see their safety docs for more info).
///
/// This is an owning type and will automatically free the arena when
/// dropped.
///
/// Note that this type is neither `Sync` nor `Send`.
#[derive(Debug)]
pub struct Arena {
#[allow(dead_code)]
ptr: RawArena,
_not_sync: PhantomData<UnsafeCell<()>>,
}
impl Arena {
/// Allocates a fresh arena.
#[inline]
#[allow(clippy::new_without_default)]
pub fn new() -> Self {
Self { ptr: NonNull::dangling(), _not_sync: PhantomData }
}
/// Returns the raw, C++-managed pointer to the arena.
#[inline]
pub fn raw(&self) -> ! {
unimplemented!()
}
/// Allocates some memory on the arena.
///
/// # Safety
///
/// TODO alignment requirement for layout
#[inline]
pub unsafe fn alloc(&self, _layout: Layout) -> &mut [MaybeUninit<u8>] {
unimplemented!()
}
/// Resizes some memory on the arena.
///
/// # Safety
///
/// After calling this function, `ptr` is essentially zapped. `old` must
/// be the layout `ptr` was allocated with via [`Arena::alloc()`].
/// TODO alignment for layout
#[inline]
pub unsafe fn resize(&self, _ptr: *mut u8, _old: Layout, _new: Layout) -> &[MaybeUninit<u8>] {
unimplemented!()
}
}
impl Drop for Arena {
#[inline]
fn drop(&mut self) {
// unimplemented
}
}
/// Serialized Protobuf wire format data. It's typically produced by
/// `<Message>.serialize()`.
///
/// This struct is ABI-compatible with the equivalent struct on the C++ side. It
/// owns (and drops) its data.
#[repr(C)]
pub struct SerializedData {
/// Owns the memory.
data: NonNull<u8>,
len: usize,
}
impl SerializedData {
/// Constructs owned serialized data from raw components.
///
/// # Safety
/// - `data` must be readable for `len` bytes.
/// - `data` must be an owned pointer and valid until deallocated.
/// - `data` must have been allocated by the Rust global allocator with a
/// size of `len` and align of 1.
pub unsafe fn from_raw_parts(data: NonNull<u8>, len: usize) -> Self {
Self { data, len }
}
/// Gets a raw slice pointer.
pub fn as_ptr(&self) -> *const [u8] {
ptr::slice_from_raw_parts(self.data.as_ptr(), self.len)
}
/// Gets a mutable raw slice pointer.
fn as_mut_ptr(&mut self) -> *mut [u8] {
ptr::slice_from_raw_parts_mut(self.data.as_ptr(), self.len)
}
}
impl Deref for SerializedData {
type Target = [u8];
fn deref(&self) -> &Self::Target {
// SAFETY: `data` is valid for `len` bytes until deallocated as promised by
// `from_raw_parts`.
unsafe { &*self.as_ptr() }
}
}
impl Drop for SerializedData {
fn drop(&mut self) {
// SAFETY: `data` was allocated by the Rust global allocator with a
// size of `len` and align of 1 as promised by `from_raw_parts`.
unsafe { drop(Box::from_raw(self.as_mut_ptr())) }
}
}
impl fmt::Debug for SerializedData {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(self.deref(), f)
}
}
pub type BytesPresentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>;
pub type BytesAbsentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>;
pub type InnerBytesMut<'msg> = crate::vtable::RawVTableMutator<'msg, [u8]>;
pub type InnerPrimitiveMut<'a, T> = crate::vtable::RawVTableMutator<'a, T>;
/// The raw contents of every generated message.
#[derive(Debug)]
pub struct MessageInner {
pub msg: RawMessage,
}
/// Mutators that point to their original message use this to do so.
///
/// Since C++ messages manage their own memory, this can just copy the
/// `RawMessage` instead of referencing an arena like UPB must.
///
/// Note: even though this type is `Copy`, it should only be copied by
/// protobuf internals that can maintain mutation invariants:
///
/// - No concurrent mutation for any two fields in a message: this means
/// mutators cannot be `Send` but are `Sync`.
/// - If there are multiple accessible `Mut` to a single message at a time, they
/// must be different fields, and not be in the same oneof. As such, a `Mut`
/// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which
/// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`.
#[derive(Clone, Copy, Debug)]
pub struct MutatorMessageRef<'msg> {
msg: RawMessage,
_phantom: PhantomData<&'msg mut ()>,
}
impl<'msg> MutatorMessageRef<'msg> {
#[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access.
pub fn new(_private: Private, msg: &'msg mut MessageInner) -> Self {
MutatorMessageRef { msg: msg.msg, _phantom: PhantomData }
}
pub fn from_parent(
_private: Private,
_parent_msg: &'msg mut MessageInner,
message_field_ptr: RawMessage,
) -> Self {
MutatorMessageRef { msg: message_field_ptr, _phantom: PhantomData }
}
pub fn msg(&self) -> RawMessage {
self.msg
}
}
pub fn copy_bytes_in_arena_if_needed_by_runtime<'a>(
_msg_ref: MutatorMessageRef<'a>,
val: &'a [u8],
) -> &'a [u8] {
// Nothing to do, the message manages its own string memory for C++.
val
}
/// RepeatedField impls delegate out to `extern "C"` functions exposed by
/// `cpp_api.h` and store either a RepeatedField* or a RepeatedPtrField*
/// depending on the type.
///
/// Note: even though this type is `Copy`, it should only be copied by
/// protobuf internals that can maintain mutation invariants:
///
/// - No concurrent mutation for any two fields in a message: this means
/// mutators cannot be `Send` but are `Sync`.
/// - If there are multiple accessible `Mut` to a single message at a time, they
/// must be different fields, and not be in the same oneof. As such, a `Mut`
/// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which
/// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`.
#[derive(Debug)]
pub struct RepeatedField<'msg, T: ?Sized> {
inner: RepeatedFieldInner<'msg>,
_phantom: PhantomData<&'msg mut T>,
}
/// CPP runtime-specific arguments for initializing a RepeatedField.
/// See RepeatedField comment about mutation invariants for when this type can
/// be copied.
#[derive(Clone, Copy, Debug)]
pub struct RepeatedFieldInner<'msg> {
pub raw: RawRepeatedField,
pub _phantom: PhantomData<&'msg ()>,
}
impl<'msg, T: ?Sized> RepeatedField<'msg, T> {
pub fn from_inner(_private: Private, inner: RepeatedFieldInner<'msg>) -> Self {
RepeatedField { inner, _phantom: PhantomData }
}
}
// These use manual impls instead of derives to avoid unnecessary bounds on `T`.
// This problem is referred to as "perfect derive".
// https://smallcultfollowing.com/babysteps/blog/2022/04/12/implied-bounds-and-perfect-derive/
impl<'msg, T: ?Sized> Copy for RepeatedField<'msg, T> {}
impl<'msg, T: ?Sized> Clone for RepeatedField<'msg, T> {
fn clone(&self) -> RepeatedField<'msg, T> {
*self
}
}
pub trait RepeatedScalarOps {
fn new_repeated_field() -> RawRepeatedField;
fn push(f: RawRepeatedField, v: Self);
fn len(f: RawRepeatedField) -> usize;
fn get(f: RawRepeatedField, i: usize) -> Self;
fn set(f: RawRepeatedField, i: usize, v: Self);
fn copy_from(src: RawRepeatedField, dst: RawRepeatedField);
}
macro_rules! impl_repeated_scalar_ops {
($($t: ty),*) => {
paste! { $(
extern "C" {
fn [< __pb_rust_RepeatedField_ $t _new >]() -> RawRepeatedField;
fn [< __pb_rust_RepeatedField_ $t _add >](f: RawRepeatedField, v: $t);
fn [< __pb_rust_RepeatedField_ $t _size >](f: RawRepeatedField) -> usize;
fn [< __pb_rust_RepeatedField_ $t _get >](f: RawRepeatedField, i: usize) -> $t;
fn [< __pb_rust_RepeatedField_ $t _set >](f: RawRepeatedField, i: usize, v: $t);
fn [< __pb_rust_RepeatedField_ $t _copy_from >](src: RawRepeatedField, dst: RawRepeatedField);
}
impl RepeatedScalarOps for $t {
fn new_repeated_field() -> RawRepeatedField {
unsafe { [< __pb_rust_RepeatedField_ $t _new >]() }
}
fn push(f: RawRepeatedField, v: Self) {
unsafe { [< __pb_rust_RepeatedField_ $t _add >](f, v) }
}
fn len(f: RawRepeatedField) -> usize {
unsafe { [< __pb_rust_RepeatedField_ $t _size >](f) }
}
fn get(f: RawRepeatedField, i: usize) -> Self {
unsafe { [< __pb_rust_RepeatedField_ $t _get >](f, i) }
}
fn set(f: RawRepeatedField, i: usize, v: Self) {
unsafe { [< __pb_rust_RepeatedField_ $t _set >](f, i, v) }
}
fn copy_from(src: RawRepeatedField, dst: RawRepeatedField) {
unsafe { [< __pb_rust_RepeatedField_ $t _copy_from >](src, dst) }
}
}
)* }
};
}
impl_repeated_scalar_ops!(i32, u32, i64, u64, f32, f64, bool);
impl<'msg, T: RepeatedScalarOps> RepeatedField<'msg, T> {
#[allow(clippy::new_without_default, dead_code)]
/// new() is not currently used in our normal pathways, it is only used
/// for testing. Existing `RepeatedField<>`s are owned by, and retrieved
/// from, the containing `Message`.
pub fn new() -> Self {
Self::from_inner(
Private,
RepeatedFieldInner::<'msg> { raw: T::new_repeated_field(), _phantom: PhantomData },
)
}
pub fn push(&mut self, val: T) {
T::push(self.inner.raw, val)
}
pub fn len(&self) -> usize {
T::len(self.inner.raw)
}
pub fn is_empty(&self) -> bool {
self.len() == 0
}
pub fn get(&self, index: usize) -> Option<T> {
if index >= self.len() {
return None;
}
Some(T::get(self.inner.raw, index))
}
pub fn set(&mut self, index: usize, val: T) {
if index >= self.len() {
return;
}
T::set(self.inner.raw, index, val)
}
pub fn copy_from(&mut self, src: &RepeatedField<'_, T>) {
T::copy_from(src.inner.raw, self.inner.raw)
}
}
#[derive(Debug)]
pub struct Map<'msg, K: ?Sized, V: ?Sized> {
inner: MapInner<'msg>,
_phantom_key: PhantomData<&'msg mut K>,
_phantom_value: PhantomData<&'msg mut V>,
}
#[derive(Clone, Copy, Debug)]
pub struct MapInner<'msg> {
pub raw: RawMap,
pub _phantom: PhantomData<&'msg ()>,
}
// These use manual impls instead of derives to avoid unnecessary bounds on `K`
// and `V`. This problem is referred to as "perfect derive".
// https://smallcultfollowing.com/babysteps/blog/2022/04/12/implied-bounds-and-perfect-derive/
impl<'msg, K: ?Sized, V: ?Sized> Copy for Map<'msg, K, V> {}
impl<'msg, K: ?Sized, V: ?Sized> Clone for Map<'msg, K, V> {
fn clone(&self) -> Map<'msg, K, V> {
*self
}
}
impl<'msg, K: ?Sized, V: ?Sized> Map<'msg, K, V> {
pub fn from_inner(_private: Private, inner: MapInner<'msg>) -> Self {
Map { inner, _phantom_key: PhantomData, _phantom_value: PhantomData }
}
}
macro_rules! impl_scalar_map_values {
($kt:ty, $trait:ident for $($t:ty),*) => {
paste! { $(
extern "C" {
fn [< __pb_rust_Map_ $kt _ $t _new >]() -> RawMap;
fn [< __pb_rust_Map_ $kt _ $t _clear >](m: RawMap);
fn [< __pb_rust_Map_ $kt _ $t _size >](m: RawMap) -> usize;
fn [< __pb_rust_Map_ $kt _ $t _insert >](m: RawMap, key: $kt, value: $t);
fn [< __pb_rust_Map_ $kt _ $t _get >](m: RawMap, key: $kt, value: *mut $t) -> bool;
fn [< __pb_rust_Map_ $kt _ $t _remove >](m: RawMap, key: $kt, value: *mut $t) -> bool;
}
impl $trait for $t {
fn new_map() -> RawMap {
unsafe { [< __pb_rust_Map_ $kt _ $t _new >]() }
}
fn clear(m: RawMap) {
unsafe { [< __pb_rust_Map_ $kt _ $t _clear >](m) }
}
fn size(m: RawMap) -> usize {
unsafe { [< __pb_rust_Map_ $kt _ $t _size >](m) }
}
fn insert(m: RawMap, key: $kt, value: $t) {
unsafe { [< __pb_rust_Map_ $kt _ $t _insert >](m, key, value) }
}
fn get(m: RawMap, key: $kt) -> Option<$t> {
let mut val: $t = Default::default();
let found = unsafe { [< __pb_rust_Map_ $kt _ $t _get >](m, key, &mut val) };
if !found {
return None;
}
Some(val)
}
fn remove(m: RawMap, key: $kt) -> Option<$t> {
let mut val: $t = Default::default();
let removed =
unsafe { [< __pb_rust_Map_ $kt _ $t _remove >](m, key, &mut val) };
if !removed {
return None;
}
Some(val)
}
}
)* }
}
}
macro_rules! impl_scalar_maps {
($($t:ty),*) => {
paste! { $(
pub trait [< MapWith $t:camel KeyOps >] {
fn new_map() -> RawMap;
fn clear(m: RawMap);
fn size(m: RawMap) -> usize;
fn insert(m: RawMap, key: $t, value: Self);
fn get(m: RawMap, key: $t) -> Option<Self>
where
Self: Sized;
fn remove(m: RawMap, key: $t) -> Option<Self>
where
Self: Sized;
}
impl_scalar_map_values!(
$t, [< MapWith $t:camel KeyOps >] for i32, u32, f32, f64, bool, u64, i64
);
impl<'msg, V: [< MapWith $t:camel KeyOps >]> Map<'msg, $t, V> {
pub fn new() -> Self {
let inner = MapInner { raw: V::new_map(), _phantom: PhantomData };
Map {
inner,
_phantom_key: PhantomData,
_phantom_value: PhantomData
}
}
pub fn size(&self) -> usize {
V::size(self.inner.raw)
}
pub fn clear(&mut self) {
V::clear(self.inner.raw)
}
pub fn get(&self, key: $t) -> Option<V> {
V::get(self.inner.raw, key)
}
pub fn remove(&mut self, key: $t) -> Option<V> {
V::remove(self.inner.raw, key)
}
pub fn insert(&mut self, key: $t, value: V) -> bool {
V::insert(self.inner.raw, key, value);
true
}
}
)* }
}
}
impl_scalar_maps!(i32, u32, bool, u64, i64);
#[cfg(test)]
mod tests {
use super::*;
use googletest::prelude::*;
use std::boxed::Box;
// We need to allocate the byte array so SerializedData can own it and
// deallocate it in its drop. This function makes it easier to do so for our
// tests.
fn allocate_byte_array(content: &'static [u8]) -> (*mut u8, usize) {
let content: &mut [u8] = Box::leak(content.into());
(content.as_mut_ptr(), content.len())
}
#[test]
fn test_serialized_data_roundtrip() {
let (ptr, len) = allocate_byte_array(b"Hello world");
let serialized_data = SerializedData { data: NonNull::new(ptr).unwrap(), len };
assert_that!(&*serialized_data, eq(b"Hello world"));
}
#[test]
fn repeated_field() {
let mut r = RepeatedField::<i32>::new();
assert_that!(r.len(), eq(0));
r.push(32);
assert_that!(r.get(0), eq(Some(32)));
let mut r = RepeatedField::<u32>::new();
assert_that!(r.len(), eq(0));
r.push(32);
assert_that!(r.get(0), eq(Some(32)));
let mut r = RepeatedField::<f64>::new();
assert_that!(r.len(), eq(0));
r.push(0.1234f64);
assert_that!(r.get(0), eq(Some(0.1234)));
let mut r = RepeatedField::<bool>::new();
assert_that!(r.len(), eq(0));
r.push(true);
assert_that!(r.get(0), eq(Some(true)));
}
#[test]
fn i32_i32_map() {
let mut map = Map::<'_, i32, i32>::new();
assert_that!(map.size(), eq(0));
assert_that!(map.insert(1, 2), eq(true));
assert_that!(map.get(1), eq(Some(2)));
assert_that!(map.get(3), eq(None));
assert_that!(map.size(), eq(1));
assert_that!(map.remove(1), eq(Some(2)));
assert_that!(map.size(), eq(0));
assert_that!(map.remove(1), eq(None));
assert_that!(map.insert(4, 5), eq(true));
assert_that!(map.insert(6, 7), eq(true));
map.clear();
assert_that!(map.size(), eq(0));
}
#[test]
fn i64_f64_map() {
let mut map = Map::<'_, i64, f64>::new();
assert_that!(map.size(), eq(0));
assert_that!(map.insert(1, 2.5), eq(true));
assert_that!(map.get(1), eq(Some(2.5)));
assert_that!(map.get(3), eq(None));
assert_that!(map.size(), eq(1));
assert_that!(map.remove(1), eq(Some(2.5)));
assert_that!(map.size(), eq(0));
assert_that!(map.remove(1), eq(None));
assert_that!(map.insert(4, 5.1), eq(true));
assert_that!(map.insert(6, 7.2), eq(true));
map.clear();
assert_that!(map.size(), eq(0));
}
}