/* * Copyright (c) 2009-2021, Google LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Google LLC nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * upb_table Implementation * * Implementation is heavily inspired by Lua's ltable.c. */ #include "upb/internal/table.h" #include // Must be last. #include "upb/port_def.inc" #define UPB_MAXARRSIZE 16 /* 64k. */ /* From Chromium. */ #define ARRAY_SIZE(x) \ ((sizeof(x) / sizeof(0 [x])) / ((size_t)(!(sizeof(x) % sizeof(0 [x]))))) static const double MAX_LOAD = 0.85; /* The minimum utilization of the array part of a mixed hash/array table. This * is a speed/memory-usage tradeoff (though it's not straightforward because of * cache effects). The lower this is, the more memory we'll use. */ static const double MIN_DENSITY = 0.1; static bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } static upb_value _upb_value_val(uint64_t val) { upb_value ret; _upb_value_setval(&ret, val); return ret; } static int log2ceil(uint64_t v) { int ret = 0; bool pow2 = is_pow2(v); while (v >>= 1) ret++; ret = pow2 ? ret : ret + 1; /* Ceiling. */ return UPB_MIN(UPB_MAXARRSIZE, ret); } char* upb_strdup2(const char* s, size_t len, upb_Arena* a) { size_t n; char* p; /* Prevent overflow errors. */ if (len == SIZE_MAX) return NULL; /* Always null-terminate, even if binary data; but don't rely on the input to * have a null-terminating byte since it may be a raw binary buffer. */ n = len + 1; p = upb_Arena_Malloc(a, n); if (p) { memcpy(p, s, len); p[len] = 0; } return p; } /* A type to represent the lookup key of either a strtable or an inttable. */ typedef union { uintptr_t num; struct { const char* str; size_t len; } str; } lookupkey_t; static lookupkey_t strkey2(const char* str, size_t len) { lookupkey_t k; k.str.str = str; k.str.len = len; return k; } static lookupkey_t intkey(uintptr_t key) { lookupkey_t k; k.num = key; return k; } typedef uint32_t hashfunc_t(upb_tabkey key); typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); /* Base table (shared code) ***************************************************/ static uint32_t upb_inthash(uintptr_t key) { return (uint32_t)key; } static const upb_tabent* upb_getentry(const upb_table* t, uint32_t hash) { return t->entries + (hash & t->mask); } static bool upb_arrhas(upb_tabval key) { return key.val != (uint64_t)-1; } static bool isfull(upb_table* t) { return t->count == t->max_count; } static bool init(upb_table* t, uint8_t size_lg2, upb_Arena* a) { size_t bytes; t->count = 0; t->size_lg2 = size_lg2; t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; t->max_count = upb_table_size(t) * MAX_LOAD; bytes = upb_table_size(t) * sizeof(upb_tabent); if (bytes > 0) { t->entries = upb_Arena_Malloc(a, bytes); if (!t->entries) return false; memset(t->entries, 0, bytes); } else { t->entries = NULL; } return true; } static upb_tabent* emptyent(upb_table* t, upb_tabent* e) { upb_tabent* begin = t->entries; upb_tabent* end = begin + upb_table_size(t); for (e = e + 1; e < end; e++) { if (upb_tabent_isempty(e)) return e; } for (e = begin; e < end; e++) { if (upb_tabent_isempty(e)) return e; } UPB_ASSERT(false); return NULL; } static upb_tabent* getentry_mutable(upb_table* t, uint32_t hash) { return (upb_tabent*)upb_getentry(t, hash); } static const upb_tabent* findentry(const upb_table* t, lookupkey_t key, uint32_t hash, eqlfunc_t* eql) { const upb_tabent* e; if (t->size_lg2 == 0) return NULL; e = upb_getentry(t, hash); if (upb_tabent_isempty(e)) return NULL; while (1) { if (eql(e->key, key)) return e; if ((e = e->next) == NULL) return NULL; } } static upb_tabent* findentry_mutable(upb_table* t, lookupkey_t key, uint32_t hash, eqlfunc_t* eql) { return (upb_tabent*)findentry(t, key, hash, eql); } static bool lookup(const upb_table* t, lookupkey_t key, upb_value* v, uint32_t hash, eqlfunc_t* eql) { const upb_tabent* e = findentry(t, key, hash, eql); if (e) { if (v) { _upb_value_setval(v, e->val.val); } return true; } else { return false; } } /* The given key must not already exist in the table. */ static void insert(upb_table* t, lookupkey_t key, upb_tabkey tabkey, upb_value val, uint32_t hash, hashfunc_t* hashfunc, eqlfunc_t* eql) { upb_tabent* mainpos_e; upb_tabent* our_e; UPB_ASSERT(findentry(t, key, hash, eql) == NULL); t->count++; mainpos_e = getentry_mutable(t, hash); our_e = mainpos_e; if (upb_tabent_isempty(mainpos_e)) { /* Our main position is empty; use it. */ our_e->next = NULL; } else { /* Collision. */ upb_tabent* new_e = emptyent(t, mainpos_e); /* Head of collider's chain. */ upb_tabent* chain = getentry_mutable(t, hashfunc(mainpos_e->key)); if (chain == mainpos_e) { /* Existing ent is in its main position (it has the same hash as us, and * is the head of our chain). Insert to new ent and append to this chain. */ new_e->next = mainpos_e->next; mainpos_e->next = new_e; our_e = new_e; } else { /* Existing ent is not in its main position (it is a node in some other * chain). This implies that no existing ent in the table has our hash. * Evict it (updating its chain) and use its ent for head of our chain. */ *new_e = *mainpos_e; /* copies next. */ while (chain->next != mainpos_e) { chain = (upb_tabent*)chain->next; UPB_ASSERT(chain); } chain->next = new_e; our_e = mainpos_e; our_e->next = NULL; } } our_e->key = tabkey; our_e->val.val = val.val; UPB_ASSERT(findentry(t, key, hash, eql) == our_e); } static bool rm(upb_table* t, lookupkey_t key, upb_value* val, upb_tabkey* removed, uint32_t hash, eqlfunc_t* eql) { upb_tabent* chain = getentry_mutable(t, hash); if (upb_tabent_isempty(chain)) return false; if (eql(chain->key, key)) { /* Element to remove is at the head of its chain. */ t->count--; if (val) _upb_value_setval(val, chain->val.val); if (removed) *removed = chain->key; if (chain->next) { upb_tabent* move = (upb_tabent*)chain->next; *chain = *move; move->key = 0; /* Make the slot empty. */ } else { chain->key = 0; /* Make the slot empty. */ } return true; } else { /* Element to remove is either in a non-head position or not in the * table. */ while (chain->next && !eql(chain->next->key, key)) { chain = (upb_tabent*)chain->next; } if (chain->next) { /* Found element to remove. */ upb_tabent* rm = (upb_tabent*)chain->next; t->count--; if (val) _upb_value_setval(val, chain->next->val.val); if (removed) *removed = rm->key; rm->key = 0; /* Make the slot empty. */ chain->next = rm->next; return true; } else { /* Element to remove is not in the table. */ return false; } } } static size_t next(const upb_table* t, size_t i) { do { if (++i >= upb_table_size(t)) return SIZE_MAX - 1; /* Distinct from -1. */ } while (upb_tabent_isempty(&t->entries[i])); return i; } static size_t begin(const upb_table* t) { return next(t, -1); } /* upb_strtable ***************************************************************/ /* A simple "subclass" of upb_table that only adds a hash function for strings. */ static upb_tabkey strcopy(lookupkey_t k2, upb_Arena* a) { uint32_t len = (uint32_t)k2.str.len; char* str = upb_Arena_Malloc(a, k2.str.len + sizeof(uint32_t) + 1); if (str == NULL) return 0; memcpy(str, &len, sizeof(uint32_t)); if (k2.str.len) memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len); str[sizeof(uint32_t) + k2.str.len] = '\0'; return (uintptr_t)str; } /* Adapted from ABSL's wyhash. */ static uint64_t UnalignedLoad64(const void* p) { uint64_t val; memcpy(&val, p, 8); return val; } static uint32_t UnalignedLoad32(const void* p) { uint32_t val; memcpy(&val, p, 4); return val; } #if defined(_MSC_VER) && defined(_M_X64) #include #endif /* Computes a * b, returning the low 64 bits of the result and storing the high * 64 bits in |*high|. */ static uint64_t upb_umul128(uint64_t v0, uint64_t v1, uint64_t* out_high) { #ifdef __SIZEOF_INT128__ __uint128_t p = v0; p *= v1; *out_high = (uint64_t)(p >> 64); return (uint64_t)p; #elif defined(_MSC_VER) && defined(_M_X64) return _umul128(v0, v1, out_high); #else uint64_t a32 = v0 >> 32; uint64_t a00 = v0 & 0xffffffff; uint64_t b32 = v1 >> 32; uint64_t b00 = v1 & 0xffffffff; uint64_t high = a32 * b32; uint64_t low = a00 * b00; uint64_t mid1 = a32 * b00; uint64_t mid2 = a00 * b32; low += (mid1 << 32) + (mid2 << 32); // Omit carry bit, for mixing we do not care about exact numerical precision. high += (mid1 >> 32) + (mid2 >> 32); *out_high = high; return low; #endif } static uint64_t WyhashMix(uint64_t v0, uint64_t v1) { uint64_t high; uint64_t low = upb_umul128(v0, v1, &high); return low ^ high; } static uint64_t Wyhash(const void* data, size_t len, uint64_t seed, const uint64_t salt[]) { const uint8_t* ptr = (const uint8_t*)data; uint64_t starting_length = (uint64_t)len; uint64_t current_state = seed ^ salt[0]; if (len > 64) { // If we have more than 64 bytes, we're going to handle chunks of 64 // bytes at a time. We're going to build up two separate hash states // which we will then hash together. uint64_t duplicated_state = current_state; do { uint64_t a = UnalignedLoad64(ptr); uint64_t b = UnalignedLoad64(ptr + 8); uint64_t c = UnalignedLoad64(ptr + 16); uint64_t d = UnalignedLoad64(ptr + 24); uint64_t e = UnalignedLoad64(ptr + 32); uint64_t f = UnalignedLoad64(ptr + 40); uint64_t g = UnalignedLoad64(ptr + 48); uint64_t h = UnalignedLoad64(ptr + 56); uint64_t cs0 = WyhashMix(a ^ salt[1], b ^ current_state); uint64_t cs1 = WyhashMix(c ^ salt[2], d ^ current_state); current_state = (cs0 ^ cs1); uint64_t ds0 = WyhashMix(e ^ salt[3], f ^ duplicated_state); uint64_t ds1 = WyhashMix(g ^ salt[4], h ^ duplicated_state); duplicated_state = (ds0 ^ ds1); ptr += 64; len -= 64; } while (len > 64); current_state = current_state ^ duplicated_state; } // We now have a data `ptr` with at most 64 bytes and the current state // of the hashing state machine stored in current_state. while (len > 16) { uint64_t a = UnalignedLoad64(ptr); uint64_t b = UnalignedLoad64(ptr + 8); current_state = WyhashMix(a ^ salt[1], b ^ current_state); ptr += 16; len -= 16; } // We now have a data `ptr` with at most 16 bytes. uint64_t a = 0; uint64_t b = 0; if (len > 8) { // When we have at least 9 and at most 16 bytes, set A to the first 64 // bits of the input and B to the last 64 bits of the input. Yes, they will // overlap in the middle if we are working with less than the full 16 // bytes. a = UnalignedLoad64(ptr); b = UnalignedLoad64(ptr + len - 8); } else if (len > 3) { // If we have at least 4 and at most 8 bytes, set A to the first 32 // bits and B to the last 32 bits. a = UnalignedLoad32(ptr); b = UnalignedLoad32(ptr + len - 4); } else if (len > 0) { // If we have at least 1 and at most 3 bytes, read all of the provided // bits into A, with some adjustments. a = ((ptr[0] << 16) | (ptr[len >> 1] << 8) | ptr[len - 1]); b = 0; } else { a = 0; b = 0; } uint64_t w = WyhashMix(a ^ salt[1], b ^ current_state); uint64_t z = salt[1] ^ starting_length; return WyhashMix(w, z); } const uint64_t kWyhashSalt[5] = { 0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL, 0xA4093822299F31D0ULL, 0x082EFA98EC4E6C89ULL, 0x452821E638D01377ULL, }; uint32_t _upb_Hash(const void* p, size_t n, uint64_t seed) { return Wyhash(p, n, seed, kWyhashSalt); } static uint32_t _upb_Hash_NoSeed(const char* p, size_t n) { return _upb_Hash(p, n, 0); } static uint32_t strhash(upb_tabkey key) { uint32_t len; char* str = upb_tabstr(key, &len); return _upb_Hash_NoSeed(str, len); } static bool streql(upb_tabkey k1, lookupkey_t k2) { uint32_t len; char* str = upb_tabstr(k1, &len); return len == k2.str.len && (len == 0 || memcmp(str, k2.str.str, len) == 0); } bool upb_strtable_init(upb_strtable* t, size_t expected_size, upb_Arena* a) { // Multiply by approximate reciprocal of MAX_LOAD (0.85), with pow2 // denominator. size_t need_entries = (expected_size + 1) * 1204 / 1024; UPB_ASSERT(need_entries >= expected_size * 0.85); int size_lg2 = _upb_Log2Ceiling(need_entries); return init(&t->t, size_lg2, a); } void upb_strtable_clear(upb_strtable* t) { size_t bytes = upb_table_size(&t->t) * sizeof(upb_tabent); t->t.count = 0; memset((char*)t->t.entries, 0, bytes); } bool upb_strtable_resize(upb_strtable* t, size_t size_lg2, upb_Arena* a) { upb_strtable new_table; upb_strtable_iter i; if (!init(&new_table.t, size_lg2, a)) return false; upb_strtable_begin(&i, t); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_StringView key = upb_strtable_iter_key(&i); upb_strtable_insert(&new_table, key.data, key.size, upb_strtable_iter_value(&i), a); } *t = new_table; return true; } bool upb_strtable_insert(upb_strtable* t, const char* k, size_t len, upb_value v, upb_Arena* a) { lookupkey_t key; upb_tabkey tabkey; uint32_t hash; if (isfull(&t->t)) { /* Need to resize. New table of double the size, add old elements to it. */ if (!upb_strtable_resize(t, t->t.size_lg2 + 1, a)) { return false; } } key = strkey2(k, len); tabkey = strcopy(key, a); if (tabkey == 0) return false; hash = _upb_Hash_NoSeed(key.str.str, key.str.len); insert(&t->t, key, tabkey, v, hash, &strhash, &streql); return true; } bool upb_strtable_lookup2(const upb_strtable* t, const char* key, size_t len, upb_value* v) { uint32_t hash = _upb_Hash_NoSeed(key, len); return lookup(&t->t, strkey2(key, len), v, hash, &streql); } bool upb_strtable_remove2(upb_strtable* t, const char* key, size_t len, upb_value* val) { uint32_t hash = _upb_Hash_NoSeed(key, len); upb_tabkey tabkey; return rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql); } /* Iteration */ void upb_strtable_begin(upb_strtable_iter* i, const upb_strtable* t) { i->t = t; i->index = begin(&t->t); } void upb_strtable_next(upb_strtable_iter* i) { i->index = next(&i->t->t, i->index); } bool upb_strtable_done(const upb_strtable_iter* i) { if (!i->t) return true; return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(str_tabent(i)); } upb_StringView upb_strtable_iter_key(const upb_strtable_iter* i) { upb_StringView key; uint32_t len; UPB_ASSERT(!upb_strtable_done(i)); key.data = upb_tabstr(str_tabent(i)->key, &len); key.size = len; return key; } upb_value upb_strtable_iter_value(const upb_strtable_iter* i) { UPB_ASSERT(!upb_strtable_done(i)); return _upb_value_val(str_tabent(i)->val.val); } void upb_strtable_iter_setdone(upb_strtable_iter* i) { i->t = NULL; i->index = SIZE_MAX; } bool upb_strtable_iter_isequal(const upb_strtable_iter* i1, const upb_strtable_iter* i2) { if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index; } /* upb_inttable ***************************************************************/ /* For inttables we use a hybrid structure where small keys are kept in an * array and large keys are put in the hash table. */ static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); } static bool inteql(upb_tabkey k1, lookupkey_t k2) { return k1 == k2.num; } static upb_tabval* mutable_array(upb_inttable* t) { return (upb_tabval*)t->array; } static upb_tabval* inttable_val(upb_inttable* t, uintptr_t key) { if (key < t->array_size) { return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; } else { upb_tabent* e = findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); return e ? &e->val : NULL; } } static const upb_tabval* inttable_val_const(const upb_inttable* t, uintptr_t key) { return inttable_val((upb_inttable*)t, key); } size_t upb_inttable_count(const upb_inttable* t) { return t->t.count + t->array_count; } static void check(upb_inttable* t) { UPB_UNUSED(t); #if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) { /* This check is very expensive (makes inserts/deletes O(N)). */ size_t count = 0; upb_inttable_iter i; upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { UPB_ASSERT(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); } UPB_ASSERT(count == upb_inttable_count(t)); } #endif } bool upb_inttable_sizedinit(upb_inttable* t, size_t asize, int hsize_lg2, upb_Arena* a) { size_t array_bytes; if (!init(&t->t, hsize_lg2, a)) return false; /* Always make the array part at least 1 long, so that we know key 0 * won't be in the hash part, which simplifies things. */ t->array_size = UPB_MAX(1, asize); t->array_count = 0; array_bytes = t->array_size * sizeof(upb_value); t->array = upb_Arena_Malloc(a, array_bytes); if (!t->array) { return false; } memset(mutable_array(t), 0xff, array_bytes); check(t); return true; } bool upb_inttable_init(upb_inttable* t, upb_Arena* a) { return upb_inttable_sizedinit(t, 0, 4, a); } bool upb_inttable_insert(upb_inttable* t, uintptr_t key, upb_value val, upb_Arena* a) { upb_tabval tabval; tabval.val = val.val; UPB_ASSERT( upb_arrhas(tabval)); /* This will reject (uint64_t)-1. Fix this. */ if (key < t->array_size) { UPB_ASSERT(!upb_arrhas(t->array[key])); t->array_count++; mutable_array(t)[key].val = val.val; } else { if (isfull(&t->t)) { /* Need to resize the hash part, but we re-use the array part. */ size_t i; upb_table new_table; if (!init(&new_table, t->t.size_lg2 + 1, a)) { return false; } for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { const upb_tabent* e = &t->t.entries[i]; uint32_t hash; upb_value v; _upb_value_setval(&v, e->val.val); hash = upb_inthash(e->key); insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql); } UPB_ASSERT(t->t.count == new_table.count); t->t = new_table; } insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql); } check(t); return true; } bool upb_inttable_lookup(const upb_inttable* t, uintptr_t key, upb_value* v) { const upb_tabval* table_v = inttable_val_const(t, key); if (!table_v) return false; if (v) _upb_value_setval(v, table_v->val); return true; } bool upb_inttable_replace(upb_inttable* t, uintptr_t key, upb_value val) { upb_tabval* table_v = inttable_val(t, key); if (!table_v) return false; table_v->val = val.val; return true; } bool upb_inttable_remove(upb_inttable* t, uintptr_t key, upb_value* val) { bool success; if (key < t->array_size) { if (upb_arrhas(t->array[key])) { upb_tabval empty = UPB_TABVALUE_EMPTY_INIT; t->array_count--; if (val) { _upb_value_setval(val, t->array[key].val); } mutable_array(t)[key] = empty; success = true; } else { success = false; } } else { success = rm(&t->t, intkey(key), val, NULL, upb_inthash(key), &inteql); } check(t); return success; } void upb_inttable_compact(upb_inttable* t, upb_Arena* a) { /* A power-of-two histogram of the table keys. */ size_t counts[UPB_MAXARRSIZE + 1] = {0}; /* The max key in each bucket. */ uintptr_t max[UPB_MAXARRSIZE + 1] = {0}; upb_inttable_iter i; size_t arr_count; int size_lg2; upb_inttable new_t; upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t key = upb_inttable_iter_key(&i); int bucket = log2ceil(key); max[bucket] = UPB_MAX(max[bucket], key); counts[bucket]++; } /* Find the largest power of two that satisfies the MIN_DENSITY * definition (while actually having some keys). */ arr_count = upb_inttable_count(t); for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 0; size_lg2--) { if (counts[size_lg2] == 0) { /* We can halve again without losing any entries. */ continue; } else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) { break; } arr_count -= counts[size_lg2]; } UPB_ASSERT(arr_count <= upb_inttable_count(t)); { /* Insert all elements into new, perfectly-sized table. */ size_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */ size_t hash_count = upb_inttable_count(t) - arr_count; size_t hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; int hashsize_lg2 = log2ceil(hash_size); upb_inttable_sizedinit(&new_t, arr_size, hashsize_lg2, a); upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t k = upb_inttable_iter_key(&i); upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i), a); } UPB_ASSERT(new_t.array_size == arr_size); UPB_ASSERT(new_t.t.size_lg2 == hashsize_lg2); } *t = new_t; } /* Iteration. */ static const upb_tabent* int_tabent(const upb_inttable_iter* i) { UPB_ASSERT(!i->array_part); return &i->t->t.entries[i->index]; } static upb_tabval int_arrent(const upb_inttable_iter* i) { UPB_ASSERT(i->array_part); return i->t->array[i->index]; } void upb_inttable_begin(upb_inttable_iter* i, const upb_inttable* t) { i->t = t; i->index = -1; i->array_part = true; upb_inttable_next(i); } void upb_inttable_next(upb_inttable_iter* iter) { const upb_inttable* t = iter->t; if (iter->array_part) { while (++iter->index < t->array_size) { if (upb_arrhas(int_arrent(iter))) { return; } } iter->array_part = false; iter->index = begin(&t->t); } else { iter->index = next(&t->t, iter->index); } } bool upb_inttable_next2(const upb_inttable* t, uintptr_t* key, upb_value* val, intptr_t* iter) { intptr_t i = *iter; if (i < t->array_size) { while (++i < t->array_size) { upb_tabval ent = t->array[i]; if (upb_arrhas(ent)) { *key = i; *val = _upb_value_val(ent.val); *iter = i; return true; } } } size_t tab_idx = next(&t->t, i == -1 ? -1 : i - t->array_size); if (tab_idx < upb_table_size(&t->t)) { upb_tabent* ent = &t->t.entries[tab_idx]; *key = ent->key; *val = _upb_value_val(ent->val.val); *iter = tab_idx + t->array_size; return true; } return false; } void upb_inttable_removeiter(upb_inttable* t, intptr_t* iter) { intptr_t i = *iter; if (i < t->array_size) { t->array_count--; mutable_array(t)[i].val = -1; } else { upb_tabent* ent = &t->t.entries[i - t->array_size]; upb_tabent* prev = NULL; // Linear search, not great. upb_tabent* end = &t->t.entries[upb_table_size(&t->t)]; for (upb_tabent* e = t->t.entries; e != end; e++) { if (e->next == ent) { prev = e; break; } } if (prev) { prev->next = ent->next; } t->t.count--; ent->key = 0; ent->next = NULL; } } bool upb_strtable_next2(const upb_strtable* t, upb_StringView* key, upb_value* val, intptr_t* iter) { size_t tab_idx = next(&t->t, *iter); if (tab_idx < upb_table_size(&t->t)) { upb_tabent* ent = &t->t.entries[tab_idx]; uint32_t len; key->data = upb_tabstr(ent->key, &len); key->size = len; *val = _upb_value_val(ent->val.val); *iter = tab_idx; return true; } return false; } void upb_strtable_removeiter(upb_strtable* t, intptr_t* iter) { intptr_t i = *iter; upb_tabent* ent = &t->t.entries[i]; upb_tabent* prev = NULL; // Linear search, not great. upb_tabent* end = &t->t.entries[upb_table_size(&t->t)]; for (upb_tabent* e = t->t.entries; e != end; e++) { if (e->next == ent) { prev = e; break; } } if (prev) { prev->next = ent->next; } t->t.count--; ent->key = 0; ent->next = NULL; } bool upb_inttable_done(const upb_inttable_iter* i) { if (!i->t) return true; if (i->array_part) { return i->index >= i->t->array_size || !upb_arrhas(int_arrent(i)); } else { return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(int_tabent(i)); } } uintptr_t upb_inttable_iter_key(const upb_inttable_iter* i) { UPB_ASSERT(!upb_inttable_done(i)); return i->array_part ? i->index : int_tabent(i)->key; } upb_value upb_inttable_iter_value(const upb_inttable_iter* i) { UPB_ASSERT(!upb_inttable_done(i)); return _upb_value_val(i->array_part ? i->t->array[i->index].val : int_tabent(i)->val.val); } void upb_inttable_iter_setdone(upb_inttable_iter* i) { i->t = NULL; i->index = SIZE_MAX; i->array_part = false; } bool upb_inttable_iter_isequal(const upb_inttable_iter* i1, const upb_inttable_iter* i2) { if (upb_inttable_done(i1) && upb_inttable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index && i1->array_part == i2->array_part; }