/* * Copyright (c) 2009-2021, Google LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Google LLC nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* ** Our memory representation for parsing tables and messages themselves. ** Functions in this file are used by generated code and possibly reflection. ** ** The definitions in this file are internal to upb. **/ #ifndef UPB_MSG_INT_H_ #define UPB_MSG_INT_H_ #include #include #include #include "upb/msg.h" #include "upb/table_internal.h" #include "upb/upb.h" /* Must be last. */ #include "upb/port_def.inc" #ifdef __cplusplus extern "C" { #endif /** upb_*Int* conversion routines ********************************************/ UPB_INLINE int32_t _upb_Int32_FromI(int v) { return (int32_t)v; } UPB_INLINE int64_t _upb_Int64_FromLL(long long v) { return (int64_t)v; } UPB_INLINE uint32_t _upb_UInt32_FromU(unsigned v) { return (uint32_t)v; } UPB_INLINE uint64_t _upb_UInt64_FromULL(unsigned long long v) { return (uint64_t)v; } /** upb_MiniTable *************************************************************/ /* upb_MiniTable represents the memory layout of a given upb_MessageDef. The * members are public so generated code can initialize them, but users MUST NOT * read or write any of its members. */ typedef struct { uint32_t number; uint16_t offset; int16_t presence; // If >0, hasbit_index. If <0, ~oneof_index uint16_t submsg_index; // kUpb_NoSub if descriptortype != MESSAGE/GROUP/ENUM uint8_t descriptortype; uint8_t mode; /* upb_FieldMode | upb_LabelFlags | (upb_FieldRep << kUpb_FieldRep_Shift) */ } upb_MiniTable_Field; #define kUpb_NoSub ((uint16_t)-1) typedef enum { kUpb_FieldMode_Map = 0, kUpb_FieldMode_Array = 1, kUpb_FieldMode_Scalar = 2, kUpb_FieldMode_Mask = 3, /* Mask to isolate the mode from upb_FieldRep. */ } upb_FieldMode; /* Extra flags on the mode field. */ typedef enum { kUpb_LabelFlags_IsPacked = 4, kUpb_LabelFlags_IsExtension = 8, } upb_LabelFlags; // Note: we sort by this number when calculating layout order. typedef enum { kUpb_FieldRep_1Byte = 0, kUpb_FieldRep_4Byte = 1, kUpb_FieldRep_StringView = 2, kUpb_FieldRep_Pointer = 3, kUpb_FieldRep_8Byte = 4, kUpb_FieldRep_Shift = 5, // Bit offset of the rep in upb_MiniTable_Field.mode kUpb_FieldRep_Max = kUpb_FieldRep_8Byte, } upb_FieldRep; UPB_INLINE upb_FieldMode upb_FieldMode_Get(const upb_MiniTable_Field* field) { return (upb_FieldMode)(field->mode & 3); } UPB_INLINE bool upb_IsRepeatedOrMap(const upb_MiniTable_Field* field) { /* This works because upb_FieldMode has no value 3. */ return !(field->mode & kUpb_FieldMode_Scalar); } UPB_INLINE bool upb_IsSubMessage(const upb_MiniTable_Field* field) { return field->descriptortype == kUpb_FieldType_Message || field->descriptortype == kUpb_FieldType_Group; } struct upb_Decoder; struct upb_MiniTable; typedef const char* _upb_FieldParser(struct upb_Decoder* d, const char* ptr, upb_Message* msg, intptr_t table, uint64_t hasbits, uint64_t data); typedef struct { uint64_t field_data; _upb_FieldParser* field_parser; } _upb_FastTable_Entry; typedef struct { const int32_t* values; // List of values <0 or >63 uint64_t mask; // Bits are set for acceptable value 0 <= x < 64 int value_count; } upb_MiniTable_Enum; UPB_INLINE bool upb_MiniTable_Enum_CheckValue(const upb_MiniTable_Enum* e, int32_t val) { uint32_t uval = (uint32_t)val; if (uval < 64) return e->mask & (1 << uval); // OPT: binary search long lists? int n = e->value_count; for (int i = 0; i < n; i++) { if (e->values[i] == val) return true; } return false; } typedef union { const struct upb_MiniTable* submsg; const upb_MiniTable_Enum* subenum; } upb_MiniTable_Sub; typedef enum { kUpb_ExtMode_NonExtendable = 0, // Non-extendable message. kUpb_ExtMode_Extendable = 1, // Normal extendable message. kUpb_ExtMode_IsMessageSet = 2, // MessageSet message. kUpb_ExtMode_IsMessageSet_ITEM = 3, // MessageSet item (temporary only, see decode.c) // During table building we steal a bit to indicate that the message is a map // entry. *Only* used during table building! kUpb_ExtMode_IsMapEntry = 4, } upb_ExtMode; /* MessageSet wire format is: * message MessageSet { * repeated group Item = 1 { * required int32 type_id = 2; * required string message = 3; * } * } */ typedef enum { _UPB_MSGSET_ITEM = 1, _UPB_MSGSET_TYPEID = 2, _UPB_MSGSET_MESSAGE = 3, } upb_msgext_fieldnum; struct upb_MiniTable { const upb_MiniTable_Sub* subs; const upb_MiniTable_Field* fields; /* Must be aligned to sizeof(void*). Doesn't include internal members like * unknown fields, extension dict, pointer to msglayout, etc. */ uint16_t size; uint16_t field_count; uint8_t ext; // upb_ExtMode, declared as uint8_t so sizeof(ext) == 1 uint8_t dense_below; uint8_t table_mask; uint8_t required_count; // Required fields have the lowest hasbits. /* To statically initialize the tables of variable length, we need a flexible * array member, and we need to compile in gnu99 mode (constant initialization * of flexible array members is a GNU extension, not in C99 unfortunately. */ _upb_FastTable_Entry fasttable[]; }; typedef struct { upb_MiniTable_Field field; const upb_MiniTable* extendee; upb_MiniTable_Sub sub; /* NULL unless submessage or proto2 enum */ } upb_MiniTable_Extension; typedef struct { const upb_MiniTable** msgs; const upb_MiniTable_Enum** enums; const upb_MiniTable_Extension** exts; int msg_count; int enum_count; int ext_count; } upb_MiniTable_File; // Computes a bitmask in which the |l->required_count| lowest bits are set, // except that we skip the lowest bit (because upb never uses hasbit 0). // // Sample output: // requiredmask(1) => 0b10 (0x2) // requiredmask(5) => 0b111110 (0x3e) UPB_INLINE uint64_t upb_MiniTable_requiredmask(const upb_MiniTable* l) { int n = l->required_count; assert(0 < n && n <= 63); return ((1ULL << n) - 1) << 1; } /** upb_ExtensionRegistry *****************************************************/ /* Adds the given extension info for message type |l| and field number |num| * into the registry. Returns false if this message type and field number were * already in the map, or if memory allocation fails. */ bool _upb_extreg_add(upb_ExtensionRegistry* r, const upb_MiniTable_Extension** e, size_t count); /* Looks up the extension (if any) defined for message type |l| and field * number |num|. If an extension was found, copies the field info into |*ext| * and returns true. Otherwise returns false. */ const upb_MiniTable_Extension* _upb_extreg_get(const upb_ExtensionRegistry* r, const upb_MiniTable* l, uint32_t num); /** upb_Message ***************************************************************/ /* Internal members of a upb_Message that track unknown fields and/or * extensions. We can change this without breaking binary compatibility. We put * these before the user's data. The user's upb_Message* points after the * upb_Message_Internal. */ typedef struct { /* Total size of this structure, including the data that follows. * Must be aligned to 8, which is alignof(upb_Message_Extension) */ uint32_t size; /* Offsets relative to the beginning of this structure. * * Unknown data grows forward from the beginning to unknown_end. * Extension data grows backward from size to ext_begin. * When the two meet, we're out of data and have to realloc. * * If we imagine that the final member of this struct is: * char data[size - overhead]; // overhead = * sizeof(upb_Message_InternalData) * * Then we have: * unknown data: data[0 .. (unknown_end - overhead)] * extensions data: data[(ext_begin - overhead) .. (size - overhead)] */ uint32_t unknown_end; uint32_t ext_begin; /* Data follows, as if there were an array: * char data[size - sizeof(upb_Message_InternalData)]; */ } upb_Message_InternalData; typedef struct { upb_Message_InternalData* internal; /* Message data follows. */ } upb_Message_Internal; /* Maps upb_CType -> memory size. */ extern char _upb_CTypeo_size[12]; UPB_INLINE size_t upb_msg_sizeof(const upb_MiniTable* l) { return l->size + sizeof(upb_Message_Internal); } UPB_INLINE upb_Message* _upb_Message_New_inl(const upb_MiniTable* l, upb_Arena* a) { size_t size = upb_msg_sizeof(l); void* mem = upb_Arena_Malloc(a, size); upb_Message* msg; if (UPB_UNLIKELY(!mem)) return NULL; msg = UPB_PTR_AT(mem, sizeof(upb_Message_Internal), upb_Message); memset(mem, 0, size); return msg; } /* Creates a new messages with the given layout on the given arena. */ upb_Message* _upb_Message_New(const upb_MiniTable* l, upb_Arena* a); UPB_INLINE upb_Message_Internal* upb_Message_Getinternal(upb_Message* msg) { ptrdiff_t size = sizeof(upb_Message_Internal); return (upb_Message_Internal*)((char*)msg - size); } /* Clears the given message. */ void _upb_Message_Clear(upb_Message* msg, const upb_MiniTable* l); /* Discards the unknown fields for this message only. */ void _upb_Message_DiscardUnknown_shallow(upb_Message* msg); /* Adds unknown data (serialized protobuf data) to the given message. The data * is copied into the message instance. */ bool _upb_Message_AddUnknown(upb_Message* msg, const char* data, size_t len, upb_Arena* arena); /** upb_Message_Extension *****************************************************/ /* The internal representation of an extension is self-describing: it contains * enough information that we can serialize it to binary format without needing * to look it up in a upb_ExtensionRegistry. * * This representation allocates 16 bytes to data on 64-bit platforms. This is * rather wasteful for scalars (in the extreme case of bool, it wastes 15 * bytes). We accept this because we expect messages to be the most common * extension type. */ typedef struct { const upb_MiniTable_Extension* ext; union { upb_StringView str; void* ptr; char scalar_data[8]; } data; } upb_Message_Extension; /* Adds the given extension data to the given message. |ext| is copied into the * message instance. This logically replaces any previously-added extension with * this number */ upb_Message_Extension* _upb_Message_Getorcreateext( upb_Message* msg, const upb_MiniTable_Extension* ext, upb_Arena* arena); /* Returns an array of extensions for this message. Note: the array is * ordered in reverse relative to the order of creation. */ const upb_Message_Extension* _upb_Message_Getexts(const upb_Message* msg, size_t* count); /* Returns an extension for the given field number, or NULL if no extension * exists for this field number. */ const upb_Message_Extension* _upb_Message_Getext( const upb_Message* msg, const upb_MiniTable_Extension* ext); void _upb_Message_Clearext(upb_Message* msg, const upb_MiniTable_Extension* ext); void _upb_Message_Clearext(upb_Message* msg, const upb_MiniTable_Extension* ext); /** Hasbit access *************************************************************/ UPB_INLINE bool _upb_hasbit(const upb_Message* msg, size_t idx) { return (*UPB_PTR_AT(msg, idx / 8, const char) & (1 << (idx % 8))) != 0; } UPB_INLINE void _upb_sethas(const upb_Message* msg, size_t idx) { (*UPB_PTR_AT(msg, idx / 8, char)) |= (char)(1 << (idx % 8)); } UPB_INLINE void _upb_clearhas(const upb_Message* msg, size_t idx) { (*UPB_PTR_AT(msg, idx / 8, char)) &= (char)(~(1 << (idx % 8))); } UPB_INLINE size_t _upb_Message_Hasidx(const upb_MiniTable_Field* f) { UPB_ASSERT(f->presence > 0); return f->presence; } UPB_INLINE bool _upb_hasbit_field(const upb_Message* msg, const upb_MiniTable_Field* f) { return _upb_hasbit(msg, _upb_Message_Hasidx(f)); } UPB_INLINE void _upb_sethas_field(const upb_Message* msg, const upb_MiniTable_Field* f) { _upb_sethas(msg, _upb_Message_Hasidx(f)); } UPB_INLINE void _upb_clearhas_field(const upb_Message* msg, const upb_MiniTable_Field* f) { _upb_clearhas(msg, _upb_Message_Hasidx(f)); } /** Oneof case access *********************************************************/ UPB_INLINE uint32_t* _upb_oneofcase(upb_Message* msg, size_t case_ofs) { return UPB_PTR_AT(msg, case_ofs, uint32_t); } UPB_INLINE uint32_t _upb_getoneofcase(const void* msg, size_t case_ofs) { return *UPB_PTR_AT(msg, case_ofs, uint32_t); } UPB_INLINE size_t _upb_oneofcase_ofs(const upb_MiniTable_Field* f) { UPB_ASSERT(f->presence < 0); return ~(ptrdiff_t)f->presence; } UPB_INLINE uint32_t* _upb_oneofcase_field(upb_Message* msg, const upb_MiniTable_Field* f) { return _upb_oneofcase(msg, _upb_oneofcase_ofs(f)); } UPB_INLINE uint32_t _upb_getoneofcase_field(const upb_Message* msg, const upb_MiniTable_Field* f) { return _upb_getoneofcase(msg, _upb_oneofcase_ofs(f)); } UPB_INLINE bool _upb_has_submsg_nohasbit(const upb_Message* msg, size_t ofs) { return *UPB_PTR_AT(msg, ofs, const upb_Message*) != NULL; } /** upb_Array *****************************************************************/ /* Our internal representation for repeated fields. */ typedef struct { uintptr_t data; /* Tagged ptr: low 3 bits of ptr are lg2(elem size). */ size_t len; /* Measured in elements. */ size_t size; /* Measured in elements. */ uint64_t junk; } upb_Array; UPB_INLINE const void* _upb_array_constptr(const upb_Array* arr) { UPB_ASSERT((arr->data & 7) <= 4); return (void*)(arr->data & ~(uintptr_t)7); } UPB_INLINE uintptr_t _upb_array_tagptr(void* ptr, int elem_size_lg2) { UPB_ASSERT(elem_size_lg2 <= 4); return (uintptr_t)ptr | elem_size_lg2; } UPB_INLINE void* _upb_array_ptr(upb_Array* arr) { return (void*)_upb_array_constptr(arr); } UPB_INLINE uintptr_t _upb_tag_arrptr(void* ptr, int elem_size_lg2) { UPB_ASSERT(elem_size_lg2 <= 4); UPB_ASSERT(((uintptr_t)ptr & 7) == 0); return (uintptr_t)ptr | (unsigned)elem_size_lg2; } UPB_INLINE upb_Array* _upb_Array_New(upb_Arena* a, size_t init_size, int elem_size_lg2) { const size_t arr_size = UPB_ALIGN_UP(sizeof(upb_Array), 8); const size_t bytes = sizeof(upb_Array) + (init_size << elem_size_lg2); upb_Array* arr = (upb_Array*)upb_Arena_Malloc(a, bytes); if (!arr) return NULL; arr->data = _upb_tag_arrptr(UPB_PTR_AT(arr, arr_size, void), elem_size_lg2); arr->len = 0; arr->size = init_size; return arr; } /* Resizes the capacity of the array to be at least min_size. */ bool _upb_array_realloc(upb_Array* arr, size_t min_size, upb_Arena* arena); /* Fallback functions for when the accessors require a resize. */ void* _upb_Array_Resize_fallback(upb_Array** arr_ptr, size_t size, int elem_size_lg2, upb_Arena* arena); bool _upb_Array_Append_fallback(upb_Array** arr_ptr, const void* value, int elem_size_lg2, upb_Arena* arena); UPB_INLINE bool _upb_array_reserve(upb_Array* arr, size_t size, upb_Arena* arena) { if (arr->size < size) return _upb_array_realloc(arr, size, arena); return true; } UPB_INLINE bool _upb_Array_Resize(upb_Array* arr, size_t size, upb_Arena* arena) { if (!_upb_array_reserve(arr, size, arena)) return false; arr->len = size; return true; } UPB_INLINE const void* _upb_array_accessor(const void* msg, size_t ofs, size_t* size) { const upb_Array* arr = *UPB_PTR_AT(msg, ofs, const upb_Array*); if (arr) { if (size) *size = arr->len; return _upb_array_constptr(arr); } else { if (size) *size = 0; return NULL; } } UPB_INLINE void* _upb_array_mutable_accessor(void* msg, size_t ofs, size_t* size) { upb_Array* arr = *UPB_PTR_AT(msg, ofs, upb_Array*); if (arr) { if (size) *size = arr->len; return _upb_array_ptr(arr); } else { if (size) *size = 0; return NULL; } } UPB_INLINE void* _upb_Array_Resize_accessor2(void* msg, size_t ofs, size_t size, int elem_size_lg2, upb_Arena* arena) { upb_Array** arr_ptr = UPB_PTR_AT(msg, ofs, upb_Array*); upb_Array* arr = *arr_ptr; if (!arr || arr->size < size) { return _upb_Array_Resize_fallback(arr_ptr, size, elem_size_lg2, arena); } arr->len = size; return _upb_array_ptr(arr); } UPB_INLINE bool _upb_Array_Append_accessor2(void* msg, size_t ofs, int elem_size_lg2, const void* value, upb_Arena* arena) { upb_Array** arr_ptr = UPB_PTR_AT(msg, ofs, upb_Array*); size_t elem_size = 1 << elem_size_lg2; upb_Array* arr = *arr_ptr; void* ptr; if (!arr || arr->len == arr->size) { return _upb_Array_Append_fallback(arr_ptr, value, elem_size_lg2, arena); } ptr = _upb_array_ptr(arr); memcpy(UPB_PTR_AT(ptr, arr->len * elem_size, char), value, elem_size); arr->len++; return true; } /* Used by old generated code, remove once all code has been regenerated. */ UPB_INLINE int _upb_sizelg2(upb_CType type) { switch (type) { case kUpb_CType_Bool: return 0; case kUpb_CType_Float: case kUpb_CType_Int32: case kUpb_CType_UInt32: case kUpb_CType_Enum: return 2; case kUpb_CType_Message: return UPB_SIZE(2, 3); case kUpb_CType_Double: case kUpb_CType_Int64: case kUpb_CType_UInt64: return 3; case kUpb_CType_String: case kUpb_CType_Bytes: return UPB_SIZE(3, 4); } UPB_UNREACHABLE(); } UPB_INLINE void* _upb_Array_Resize_accessor(void* msg, size_t ofs, size_t size, upb_CType type, upb_Arena* arena) { return _upb_Array_Resize_accessor2(msg, ofs, size, _upb_sizelg2(type), arena); } UPB_INLINE bool _upb_Array_Append_accessor(void* msg, size_t ofs, size_t elem_size, upb_CType type, const void* value, upb_Arena* arena) { (void)elem_size; return _upb_Array_Append_accessor2(msg, ofs, _upb_sizelg2(type), value, arena); } /** upb_Map *******************************************************************/ /* Right now we use strmaps for everything. We'll likely want to use * integer-specific maps for integer-keyed maps.*/ typedef struct { /* Size of key and val, based on the map type. Strings are represented as '0' * because they must be handled specially. */ char key_size; char val_size; upb_strtable table; } upb_Map; /* Map entries aren't actually stored, they are only used during parsing. For * parsing, it helps a lot if all map entry messages have the same layout. * The compiler and def.c must ensure that all map entries have this layout. */ typedef struct { upb_Message_Internal internal; union { upb_StringView str; /* For str/bytes. */ upb_value val; /* For all other types. */ } k; union { upb_StringView str; /* For str/bytes. */ upb_value val; /* For all other types. */ } v; } upb_MapEntry; /* Creates a new map on the given arena with this key/value type. */ upb_Map* _upb_Map_New(upb_Arena* a, size_t key_size, size_t value_size); /* Converting between internal table representation and user values. * * _upb_map_tokey() and _upb_map_fromkey() are inverses. * _upb_map_tovalue() and _upb_map_fromvalue() are inverses. * * These functions account for the fact that strings are treated differently * from other types when stored in a map. */ UPB_INLINE upb_StringView _upb_map_tokey(const void* key, size_t size) { if (size == UPB_MAPTYPE_STRING) { return *(upb_StringView*)key; } else { return upb_StringView_FromDataAndSize((const char*)key, size); } } UPB_INLINE void _upb_map_fromkey(upb_StringView key, void* out, size_t size) { if (size == UPB_MAPTYPE_STRING) { memcpy(out, &key, sizeof(key)); } else { memcpy(out, key.data, size); } } UPB_INLINE bool _upb_map_tovalue(const void* val, size_t size, upb_value* msgval, upb_Arena* a) { if (size == UPB_MAPTYPE_STRING) { upb_StringView* strp = (upb_StringView*)upb_Arena_Malloc(a, sizeof(*strp)); if (!strp) return false; *strp = *(upb_StringView*)val; *msgval = upb_value_ptr(strp); } else { memcpy(msgval, val, size); } return true; } UPB_INLINE void _upb_map_fromvalue(upb_value val, void* out, size_t size) { if (size == UPB_MAPTYPE_STRING) { const upb_StringView* strp = (const upb_StringView*)upb_value_getptr(val); memcpy(out, strp, sizeof(upb_StringView)); } else { memcpy(out, &val, size); } } /* Map operations, shared by reflection and generated code. */ UPB_INLINE size_t _upb_Map_Size(const upb_Map* map) { return map->table.t.count; } UPB_INLINE bool _upb_Map_Get(const upb_Map* map, const void* key, size_t key_size, void* val, size_t val_size) { upb_value tabval; upb_StringView k = _upb_map_tokey(key, key_size); bool ret = upb_strtable_lookup2(&map->table, k.data, k.size, &tabval); if (ret && val) { _upb_map_fromvalue(tabval, val, val_size); } return ret; } UPB_INLINE void* _upb_map_next(const upb_Map* map, size_t* iter) { upb_strtable_iter it; it.t = &map->table; it.index = *iter; upb_strtable_next(&it); *iter = it.index; if (upb_strtable_done(&it)) return NULL; return (void*)str_tabent(&it); } UPB_INLINE bool _upb_Map_Set(upb_Map* map, const void* key, size_t key_size, void* val, size_t val_size, upb_Arena* a) { upb_StringView strkey = _upb_map_tokey(key, key_size); upb_value tabval = {0}; if (!_upb_map_tovalue(val, val_size, &tabval, a)) return false; /* TODO(haberman): add overwrite operation to minimize number of lookups. */ upb_strtable_remove2(&map->table, strkey.data, strkey.size, NULL); return upb_strtable_insert(&map->table, strkey.data, strkey.size, tabval, a); } UPB_INLINE bool _upb_Map_Delete(upb_Map* map, const void* key, size_t key_size) { upb_StringView k = _upb_map_tokey(key, key_size); return upb_strtable_remove2(&map->table, k.data, k.size, NULL); } UPB_INLINE void _upb_Map_Clear(upb_Map* map) { upb_strtable_clear(&map->table); } /* Message map operations, these get the map from the message first. */ UPB_INLINE size_t _upb_msg_map_size(const upb_Message* msg, size_t ofs) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); return map ? _upb_Map_Size(map) : 0; } UPB_INLINE bool _upb_msg_map_get(const upb_Message* msg, size_t ofs, const void* key, size_t key_size, void* val, size_t val_size) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); if (!map) return false; return _upb_Map_Get(map, key, key_size, val, val_size); } UPB_INLINE void* _upb_msg_map_next(const upb_Message* msg, size_t ofs, size_t* iter) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); if (!map) return NULL; return _upb_map_next(map, iter); } UPB_INLINE bool _upb_msg_map_set(upb_Message* msg, size_t ofs, const void* key, size_t key_size, void* val, size_t val_size, upb_Arena* arena) { upb_Map** map = UPB_PTR_AT(msg, ofs, upb_Map*); if (!*map) { *map = _upb_Map_New(arena, key_size, val_size); } return _upb_Map_Set(*map, key, key_size, val, val_size, arena); } UPB_INLINE bool _upb_msg_map_delete(upb_Message* msg, size_t ofs, const void* key, size_t key_size) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); if (!map) return false; return _upb_Map_Delete(map, key, key_size); } UPB_INLINE void _upb_msg_map_clear(upb_Message* msg, size_t ofs) { upb_Map* map = *UPB_PTR_AT(msg, ofs, upb_Map*); if (!map) return; _upb_Map_Clear(map); } /* Accessing map key/value from a pointer, used by generated code only. */ UPB_INLINE void _upb_msg_map_key(const void* msg, void* key, size_t size) { const upb_tabent* ent = (const upb_tabent*)msg; uint32_t u32len; upb_StringView k; k.data = upb_tabstr(ent->key, &u32len); k.size = u32len; _upb_map_fromkey(k, key, size); } UPB_INLINE void _upb_msg_map_value(const void* msg, void* val, size_t size) { const upb_tabent* ent = (const upb_tabent*)msg; upb_value v = {ent->val.val}; _upb_map_fromvalue(v, val, size); } UPB_INLINE void _upb_msg_map_set_value(void* msg, const void* val, size_t size) { upb_tabent* ent = (upb_tabent*)msg; /* This is like _upb_map_tovalue() except the entry already exists so we can * reuse the allocated upb_StringView for string fields. */ if (size == UPB_MAPTYPE_STRING) { upb_StringView* strp = (upb_StringView*)(uintptr_t)ent->val.val; memcpy(strp, val, sizeof(*strp)); } else { memcpy(&ent->val.val, val, size); } } /** _upb_mapsorter ************************************************************/ /* _upb_mapsorter sorts maps and provides ordered iteration over the entries. * Since maps can be recursive (map values can be messages which contain other * maps). _upb_mapsorter can contain a stack of maps. */ typedef struct { upb_tabent const** entries; int size; int cap; } _upb_mapsorter; typedef struct { int start; int pos; int end; } _upb_sortedmap; UPB_INLINE void _upb_mapsorter_init(_upb_mapsorter* s) { s->entries = NULL; s->size = 0; s->cap = 0; } UPB_INLINE void _upb_mapsorter_destroy(_upb_mapsorter* s) { if (s->entries) free(s->entries); } bool _upb_mapsorter_pushmap(_upb_mapsorter* s, upb_FieldType key_type, const upb_Map* map, _upb_sortedmap* sorted); UPB_INLINE void _upb_mapsorter_popmap(_upb_mapsorter* s, _upb_sortedmap* sorted) { s->size = sorted->start; } UPB_INLINE bool _upb_sortedmap_next(_upb_mapsorter* s, const upb_Map* map, _upb_sortedmap* sorted, upb_MapEntry* ent) { if (sorted->pos == sorted->end) return false; const upb_tabent* tabent = s->entries[sorted->pos++]; upb_StringView key = upb_tabstrview(tabent->key); _upb_map_fromkey(key, &ent->k, map->key_size); upb_value val = {tabent->val.val}; _upb_map_fromvalue(val, &ent->v, map->val_size); return true; } #ifdef __cplusplus } /* extern "C" */ #endif #include "upb/port_undef.inc" #endif /* UPB_MSG_INT_H_ */