// Protocol Buffers - Google's data interchange format // Copyright 2014 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "protobuf.h" // ----------------------------------------------------------------------------- // Basic map operations on top of upb's strtable. // // Note that we roll our own `Map` container here because, as for // `RepeatedField`, we want a strongly-typed container. This is so that any user // errors due to incorrect map key or value types are raised as close as // possible to the error site, rather than at some deferred point (e.g., // serialization). // // We build our `Map` on top of upb_strtable so that we're able to take // advantage of the native_slot storage abstraction, as RepeatedField does. // (This is not quite a perfect mapping -- see the key conversions below -- but // gives us full support and error-checking for all value types for free.) // ----------------------------------------------------------------------------- // Map values are stored using the native_slot abstraction (as with repeated // field values), but keys are a bit special. Since we use a strtable, we need // to store keys as sequences of bytes such that equality of those bytes maps // one-to-one to equality of keys. We store strings directly (i.e., they map to // their own bytes) and integers as native integers (using the native_slot // abstraction). // Note that there is another tradeoff here in keeping string keys as native // strings rather than Ruby strings: traversing the Map requires conversion to // Ruby string values on every traversal, potentially creating more garbage. We // should consider ways to cache a Ruby version of the key if this becomes an // issue later. // Forms a key to use with the underlying strtable from a Ruby key value. |buf| // must point to TABLE_KEY_BUF_LENGTH bytes of temporary space, used to // construct a key byte sequence if needed. |out_key| and |out_length| provide // the resulting key data/length. #define TABLE_KEY_BUF_LENGTH 8 // sizeof(uint64_t) static VALUE table_key(Map* self, VALUE key, char* buf, const char** out_key, size_t* out_length) { switch (self->key_type) { case UPB_TYPE_BYTES: case UPB_TYPE_STRING: // Strings: use string content directly. if (TYPE(key) == T_SYMBOL) { key = rb_id2str(SYM2ID(key)); } Check_Type(key, T_STRING); key = native_slot_encode_and_freeze_string(self->key_type, key); *out_key = RSTRING_PTR(key); *out_length = RSTRING_LEN(key); break; case UPB_TYPE_BOOL: case UPB_TYPE_INT32: case UPB_TYPE_INT64: case UPB_TYPE_UINT32: case UPB_TYPE_UINT64: native_slot_set("", self->key_type, Qnil, buf, key); *out_key = buf; *out_length = native_slot_size(self->key_type); break; default: // Map constructor should not allow a Map with another key type to be // constructed. assert(false); break; } return key; } static VALUE table_key_to_ruby(Map* self, const char* buf, size_t length) { switch (self->key_type) { case UPB_TYPE_BYTES: case UPB_TYPE_STRING: { VALUE ret = rb_str_new(buf, length); rb_enc_associate(ret, (self->key_type == UPB_TYPE_BYTES) ? kRubyString8bitEncoding : kRubyStringUtf8Encoding); return ret; } case UPB_TYPE_BOOL: case UPB_TYPE_INT32: case UPB_TYPE_INT64: case UPB_TYPE_UINT32: case UPB_TYPE_UINT64: return native_slot_get(self->key_type, Qnil, buf); default: assert(false); return Qnil; } } static void* value_memory(upb_value* v) { return (void*)(&v->val); } // ----------------------------------------------------------------------------- // Map container type. // ----------------------------------------------------------------------------- const rb_data_type_t Map_type = { "Google::Protobuf::Map", { Map_mark, Map_free, NULL }, }; VALUE cMap; Map* ruby_to_Map(VALUE _self) { Map* self; TypedData_Get_Struct(_self, Map, &Map_type, self); return self; } void Map_mark(void* _self) { Map* self = _self; rb_gc_mark(self->value_type_class); rb_gc_mark(self->parse_frame); if (self->value_type == UPB_TYPE_STRING || self->value_type == UPB_TYPE_BYTES || self->value_type == UPB_TYPE_MESSAGE) { upb_strtable_iter it; for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { upb_value v = upb_strtable_iter_value(&it); void* mem = value_memory(&v); native_slot_mark(self->value_type, mem); } } } void Map_free(void* _self) { Map* self = _self; upb_strtable_uninit(&self->table); xfree(self); } VALUE Map_alloc(VALUE klass) { Map* self = ALLOC(Map); memset(self, 0, sizeof(Map)); self->value_type_class = Qnil; return TypedData_Wrap_Struct(klass, &Map_type, self); } VALUE Map_set_frame(VALUE map, VALUE val) { Map* self = ruby_to_Map(map); self->parse_frame = val; return val; } static bool needs_typeclass(upb_fieldtype_t type) { switch (type) { case UPB_TYPE_MESSAGE: case UPB_TYPE_ENUM: return true; default: return false; } } /* * call-seq: * Map.new(key_type, value_type, value_typeclass = nil, init_hashmap = {}) * => new map * * Allocates a new Map container. This constructor may be called with 2, 3, or 4 * arguments. The first two arguments are always present and are symbols (taking * on the same values as field-type symbols in message descriptors) that * indicate the type of the map key and value fields. * * The supported key types are: :int32, :int64, :uint32, :uint64, :bool, * :string, :bytes. * * The supported value types are: :int32, :int64, :uint32, :uint64, :bool, * :string, :bytes, :enum, :message. * * The third argument, value_typeclass, must be present if value_type is :enum * or :message. As in RepeatedField#new, this argument must be a message class * (for :message) or enum module (for :enum). * * The last argument, if present, provides initial content for map. Note that * this may be an ordinary Ruby hashmap or another Map instance with identical * key and value types. Also note that this argument may be present whether or * not value_typeclass is present (and it is unambiguously separate from * value_typeclass because value_typeclass's presence is strictly determined by * value_type). The contents of this initial hashmap or Map instance are * shallow-copied into the new Map: the original map is unmodified, but * references to underlying objects will be shared if the value type is a * message type. */ VALUE Map_init(int argc, VALUE* argv, VALUE _self) { Map* self = ruby_to_Map(_self); int init_value_arg; // We take either two args (:key_type, :value_type), three args (:key_type, // :value_type, "ValueMessageType"), or four args (the above plus an initial // hashmap). if (argc < 2 || argc > 4) { rb_raise(rb_eArgError, "Map constructor expects 2, 3 or 4 arguments."); } self->key_type = ruby_to_fieldtype(argv[0]); self->value_type = ruby_to_fieldtype(argv[1]); self->parse_frame = Qnil; // Check that the key type is an allowed type. switch (self->key_type) { case UPB_TYPE_INT32: case UPB_TYPE_INT64: case UPB_TYPE_UINT32: case UPB_TYPE_UINT64: case UPB_TYPE_BOOL: case UPB_TYPE_STRING: case UPB_TYPE_BYTES: // These are OK. break; default: rb_raise(rb_eArgError, "Invalid key type for map."); } init_value_arg = 2; if (needs_typeclass(self->value_type) && argc > 2) { self->value_type_class = argv[2]; validate_type_class(self->value_type, self->value_type_class); init_value_arg = 3; } // Table value type is always UINT64: this ensures enough space to store the // native_slot value. if (!upb_strtable_init(&self->table, UPB_CTYPE_UINT64)) { rb_raise(rb_eRuntimeError, "Could not allocate table."); } if (argc > init_value_arg) { Map_merge_into_self(_self, argv[init_value_arg]); } return Qnil; } /* * call-seq: * Map.each(&block) * * Invokes &block on each |key, value| pair in the map, in unspecified order. * Note that Map also includes Enumerable; map thus acts like a normal Ruby * sequence. */ VALUE Map_each(VALUE _self) { Map* self = ruby_to_Map(_self); upb_strtable_iter it; for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { VALUE key = table_key_to_ruby( self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it)); upb_value v = upb_strtable_iter_value(&it); void* mem = value_memory(&v); VALUE value = native_slot_get(self->value_type, self->value_type_class, mem); rb_yield_values(2, key, value); } return Qnil; } /* * call-seq: * Map.keys => [list_of_keys] * * Returns the list of keys contained in the map, in unspecified order. */ VALUE Map_keys(VALUE _self) { Map* self = ruby_to_Map(_self); VALUE ret = rb_ary_new(); upb_strtable_iter it; for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { VALUE key = table_key_to_ruby( self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it)); rb_ary_push(ret, key); } return ret; } /* * call-seq: * Map.values => [list_of_values] * * Returns the list of values contained in the map, in unspecified order. */ VALUE Map_values(VALUE _self) { Map* self = ruby_to_Map(_self); VALUE ret = rb_ary_new(); upb_strtable_iter it; for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { upb_value v = upb_strtable_iter_value(&it); void* mem = value_memory(&v); VALUE value = native_slot_get(self->value_type, self->value_type_class, mem); rb_ary_push(ret, value); } return ret; } /* * call-seq: * Map.[](key) => value * * Accesses the element at the given key. Throws an exception if the key type is * incorrect. Returns nil when the key is not present in the map. */ VALUE Map_index(VALUE _self, VALUE key) { Map* self = ruby_to_Map(_self); char keybuf[TABLE_KEY_BUF_LENGTH]; const char* keyval = NULL; size_t length = 0; upb_value v; key = table_key(self, key, keybuf, &keyval, &length); if (upb_strtable_lookup2(&self->table, keyval, length, &v)) { void* mem = value_memory(&v); return native_slot_get(self->value_type, self->value_type_class, mem); } else { return Qnil; } } /* * call-seq: * Map.[]=(key, value) => value * * Inserts or overwrites the value at the given key with the given new value. * Throws an exception if the key type is incorrect. Returns the new value that * was just inserted. */ VALUE Map_index_set(VALUE _self, VALUE key, VALUE value) { Map* self = ruby_to_Map(_self); char keybuf[TABLE_KEY_BUF_LENGTH]; const char* keyval = NULL; size_t length = 0; upb_value v; void* mem; key = table_key(self, key, keybuf, &keyval, &length); rb_check_frozen(_self); if (TYPE(value) == T_HASH) { VALUE args[1] = { value }; value = rb_class_new_instance(1, args, self->value_type_class); } mem = value_memory(&v); native_slot_set("", self->value_type, self->value_type_class, mem, value); // Replace any existing value by issuing a 'remove' operation first. upb_strtable_remove2(&self->table, keyval, length, NULL); if (!upb_strtable_insert2(&self->table, keyval, length, v)) { rb_raise(rb_eRuntimeError, "Could not insert into table"); } // Ruby hashmap's :[]= method also returns the inserted value. return value; } /* * call-seq: * Map.has_key?(key) => bool * * Returns true if the given key is present in the map. Throws an exception if * the key has the wrong type. */ VALUE Map_has_key(VALUE _self, VALUE key) { Map* self = ruby_to_Map(_self); char keybuf[TABLE_KEY_BUF_LENGTH]; const char* keyval = NULL; size_t length = 0; key = table_key(self, key, keybuf, &keyval, &length); if (upb_strtable_lookup2(&self->table, keyval, length, NULL)) { return Qtrue; } else { return Qfalse; } } /* * call-seq: * Map.delete(key) => old_value * * Deletes the value at the given key, if any, returning either the old value or * nil if none was present. Throws an exception if the key is of the wrong type. */ VALUE Map_delete(VALUE _self, VALUE key) { Map* self = ruby_to_Map(_self); char keybuf[TABLE_KEY_BUF_LENGTH]; const char* keyval = NULL; size_t length = 0; upb_value v; key = table_key(self, key, keybuf, &keyval, &length); rb_check_frozen(_self); if (upb_strtable_remove2(&self->table, keyval, length, &v)) { void* mem = value_memory(&v); return native_slot_get(self->value_type, self->value_type_class, mem); } else { return Qnil; } } /* * call-seq: * Map.clear * * Removes all entries from the map. */ VALUE Map_clear(VALUE _self) { Map* self = ruby_to_Map(_self); rb_check_frozen(_self); // Uninit and reinit the table -- this is faster than iterating and doing a // delete-lookup on each key. upb_strtable_uninit(&self->table); if (!upb_strtable_init(&self->table, UPB_CTYPE_INT64)) { rb_raise(rb_eRuntimeError, "Unable to re-initialize table"); } return Qnil; } /* * call-seq: * Map.length * * Returns the number of entries (key-value pairs) in the map. */ VALUE Map_length(VALUE _self) { Map* self = ruby_to_Map(_self); return ULL2NUM(upb_strtable_count(&self->table)); } VALUE Map_new_this_type(VALUE _self) { Map* self = ruby_to_Map(_self); VALUE new_map = Qnil; VALUE key_type = fieldtype_to_ruby(self->key_type); VALUE value_type = fieldtype_to_ruby(self->value_type); if (self->value_type_class != Qnil) { new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 3, key_type, value_type, self->value_type_class); } else { new_map = rb_funcall(CLASS_OF(_self), rb_intern("new"), 2, key_type, value_type); } return new_map; } /* * call-seq: * Map.dup => new_map * * Duplicates this map with a shallow copy. References to all non-primitive * element objects (e.g., submessages) are shared. */ VALUE Map_dup(VALUE _self) { Map* self = ruby_to_Map(_self); VALUE new_map = Map_new_this_type(_self); Map* new_self = ruby_to_Map(new_map); upb_strtable_iter it; for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { upb_value v = upb_strtable_iter_value(&it); void* mem = value_memory(&v); upb_value dup; void* dup_mem = value_memory(&dup); native_slot_dup(self->value_type, dup_mem, mem); if (!upb_strtable_insert2(&new_self->table, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it), dup)) { rb_raise(rb_eRuntimeError, "Error inserting value into new table"); } } return new_map; } // Used by Google::Protobuf.deep_copy but not exposed directly. VALUE Map_deep_copy(VALUE _self) { Map* self = ruby_to_Map(_self); VALUE new_map = Map_new_this_type(_self); Map* new_self = ruby_to_Map(new_map); upb_strtable_iter it; for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { upb_value v = upb_strtable_iter_value(&it); void* mem = value_memory(&v); upb_value dup; void* dup_mem = value_memory(&dup); native_slot_deep_copy(self->value_type, self->value_type_class, dup_mem, mem); if (!upb_strtable_insert2(&new_self->table, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it), dup)) { rb_raise(rb_eRuntimeError, "Error inserting value into new table"); } } return new_map; } /* * call-seq: * Map.==(other) => boolean * * Compares this map to another. Maps are equal if they have identical key sets, * and for each key, the values in both maps compare equal. Elements are * compared as per normal Ruby semantics, by calling their :== methods (or * performing a more efficient comparison for primitive types). * * Maps with dissimilar key types or value types/typeclasses are never equal, * even if value comparison (for example, between integers and floats) would * have otherwise indicated that every element has equal value. */ VALUE Map_eq(VALUE _self, VALUE _other) { Map* self = ruby_to_Map(_self); Map* other; upb_strtable_iter it; // Allow comparisons to Ruby hashmaps by converting to a temporary Map // instance. Slow, but workable. if (TYPE(_other) == T_HASH) { VALUE other_map = Map_new_this_type(_self); Map_merge_into_self(other_map, _other); _other = other_map; } other = ruby_to_Map(_other); if (self == other) { return Qtrue; } if (self->key_type != other->key_type || self->value_type != other->value_type || self->value_type_class != other->value_type_class) { return Qfalse; } if (upb_strtable_count(&self->table) != upb_strtable_count(&other->table)) { return Qfalse; } // For each member of self, check that an equal member exists at the same key // in other. for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { upb_value v = upb_strtable_iter_value(&it); void* mem = value_memory(&v); upb_value other_v; void* other_mem = value_memory(&other_v); if (!upb_strtable_lookup2(&other->table, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it), &other_v)) { // Not present in other map. return Qfalse; } if (!native_slot_eq(self->value_type, self->value_type_class, mem, other_mem)) { // Present, but value not equal. return Qfalse; } } return Qtrue; } /* * call-seq: * Map.hash => hash_value * * Returns a hash value based on this map's contents. */ VALUE Map_hash(VALUE _self) { Map* self = ruby_to_Map(_self); st_index_t h = rb_hash_start(0); VALUE hash_sym = rb_intern("hash"); upb_strtable_iter it; for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { VALUE key = table_key_to_ruby( self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it)); upb_value v = upb_strtable_iter_value(&it); void* mem = value_memory(&v); VALUE value = native_slot_get(self->value_type, self->value_type_class, mem); h = rb_hash_uint(h, NUM2LONG(rb_funcall(key, hash_sym, 0))); h = rb_hash_uint(h, NUM2LONG(rb_funcall(value, hash_sym, 0))); } return INT2FIX(h); } /* * call-seq: * Map.to_h => {} * * Returns a Ruby Hash object containing all the values within the map */ VALUE Map_to_h(VALUE _self) { Map* self = ruby_to_Map(_self); VALUE hash = rb_hash_new(); upb_strtable_iter it; for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { VALUE key = table_key_to_ruby( self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it)); upb_value v = upb_strtable_iter_value(&it); void* mem = value_memory(&v); VALUE value = native_slot_get(self->value_type, self->value_type_class, mem); if (self->value_type == UPB_TYPE_MESSAGE) { value = Message_to_h(value); } rb_hash_aset(hash, key, value); } return hash; } /* * call-seq: * Map.inspect => string * * Returns a string representing this map's elements. It will be formatted as * "{key => value, key => value, ...}", with each key and value string * representation computed by its own #inspect method. */ VALUE Map_inspect(VALUE _self) { Map* self = ruby_to_Map(_self); VALUE str = rb_str_new2("{"); bool first = true; VALUE inspect_sym = rb_intern("inspect"); upb_strtable_iter it; for (upb_strtable_begin(&it, &self->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { VALUE key = table_key_to_ruby( self, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it)); upb_value v = upb_strtable_iter_value(&it); void* mem = value_memory(&v); VALUE value = native_slot_get(self->value_type, self->value_type_class, mem); if (!first) { str = rb_str_cat2(str, ", "); } else { first = false; } str = rb_str_append(str, rb_funcall(key, inspect_sym, 0)); str = rb_str_cat2(str, "=>"); str = rb_str_append(str, rb_funcall(value, inspect_sym, 0)); } str = rb_str_cat2(str, "}"); return str; } /* * call-seq: * Map.merge(other_map) => map * * Copies key/value pairs from other_map into a copy of this map. If a key is * set in other_map and this map, the value from other_map overwrites the value * in the new copy of this map. Returns the new copy of this map with merged * contents. */ VALUE Map_merge(VALUE _self, VALUE hashmap) { VALUE dupped = Map_dup(_self); return Map_merge_into_self(dupped, hashmap); } static int merge_into_self_callback(VALUE key, VALUE value, VALUE self) { Map_index_set(self, key, value); return ST_CONTINUE; } // Used only internally -- shared by #merge and #initialize. VALUE Map_merge_into_self(VALUE _self, VALUE hashmap) { if (TYPE(hashmap) == T_HASH) { rb_hash_foreach(hashmap, merge_into_self_callback, _self); } else if (RB_TYPE_P(hashmap, T_DATA) && RTYPEDDATA_P(hashmap) && RTYPEDDATA_TYPE(hashmap) == &Map_type) { Map* self = ruby_to_Map(_self); Map* other = ruby_to_Map(hashmap); upb_strtable_iter it; if (self->key_type != other->key_type || self->value_type != other->value_type || self->value_type_class != other->value_type_class) { rb_raise(rb_eArgError, "Attempt to merge Map with mismatching types"); } for (upb_strtable_begin(&it, &other->table); !upb_strtable_done(&it); upb_strtable_next(&it)) { // Replace any existing value by issuing a 'remove' operation first. upb_value v; upb_value oldv; upb_strtable_remove2(&self->table, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it), &oldv); v = upb_strtable_iter_value(&it); upb_strtable_insert2(&self->table, upb_strtable_iter_key(&it), upb_strtable_iter_keylength(&it), v); } } else { rb_raise(rb_eArgError, "Unknown type merging into Map"); } return _self; } // Internal method: map iterator initialization (used for serialization). void Map_begin(VALUE _self, Map_iter* iter) { Map* self = ruby_to_Map(_self); iter->self = self; upb_strtable_begin(&iter->it, &self->table); } void Map_next(Map_iter* iter) { upb_strtable_next(&iter->it); } bool Map_done(Map_iter* iter) { return upb_strtable_done(&iter->it); } VALUE Map_iter_key(Map_iter* iter) { return table_key_to_ruby( iter->self, upb_strtable_iter_key(&iter->it), upb_strtable_iter_keylength(&iter->it)); } VALUE Map_iter_value(Map_iter* iter) { upb_value v = upb_strtable_iter_value(&iter->it); void* mem = value_memory(&v); return native_slot_get(iter->self->value_type, iter->self->value_type_class, mem); } void Map_register(VALUE module) { VALUE klass = rb_define_class_under(module, "Map", rb_cObject); rb_define_alloc_func(klass, Map_alloc); rb_gc_register_address(&cMap); cMap = klass; rb_define_method(klass, "initialize", Map_init, -1); rb_define_method(klass, "each", Map_each, 0); rb_define_method(klass, "keys", Map_keys, 0); rb_define_method(klass, "values", Map_values, 0); rb_define_method(klass, "[]", Map_index, 1); rb_define_method(klass, "[]=", Map_index_set, 2); rb_define_method(klass, "has_key?", Map_has_key, 1); rb_define_method(klass, "delete", Map_delete, 1); rb_define_method(klass, "clear", Map_clear, 0); rb_define_method(klass, "length", Map_length, 0); rb_define_method(klass, "dup", Map_dup, 0); rb_define_method(klass, "==", Map_eq, 1); rb_define_method(klass, "hash", Map_hash, 0); rb_define_method(klass, "to_h", Map_to_h, 0); rb_define_method(klass, "inspect", Map_inspect, 0); rb_define_method(klass, "merge", Map_merge, 1); rb_include_module(klass, rb_mEnumerable); }