// Protocol Buffers - Google's data interchange format // Copyright 2023 Google LLC. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd // Rust Protobuf runtime using the C++ kernel. use crate::__internal::{Enum, Private}; use crate::{ IntoProxied, Map, MapIter, MapMut, MapView, Mut, ProtoBytes, ProtoStr, ProtoString, Proxied, ProxiedInMapValue, ProxiedInRepeated, Repeated, RepeatedMut, RepeatedView, View, }; use core::fmt::Debug; use paste::paste; use std::convert::identity; use std::ffi::{c_int, c_void}; use std::fmt; use std::marker::PhantomData; use std::mem::{ManuallyDrop, MaybeUninit}; use std::ops::Deref; use std::ptr::{self, NonNull}; use std::slice; /// Defines a set of opaque, unique, non-accessible pointees. /// /// The [Rustonomicon][nomicon] currently recommends a zero-sized struct, /// though this should use [`extern type`] when that is stabilized. /// [nomicon]: https://doc.rust-lang.org/nomicon/ffi.html#representing-opaque-structs /// [`extern type`]: https://github.com/rust-lang/rust/issues/43467 #[doc(hidden)] mod _opaque_pointees { /// Opaque pointee for [`RawMessage`] /// /// This type is not meant to be dereferenced in Rust code. /// It is only meant to provide type safety for raw pointers /// which are manipulated behind FFI. /// /// [`RawMessage`]: super::RawMessage #[repr(C)] pub struct RawMessageData { _data: [u8; 0], _marker: std::marker::PhantomData<(*mut u8, ::std::marker::PhantomPinned)>, } /// Opaque pointee for [`RawRepeatedField`] /// /// This type is not meant to be dereferenced in Rust code. /// It is only meant to provide type safety for raw pointers /// which are manipulated behind FFI. #[repr(C)] pub struct RawRepeatedFieldData { _data: [u8; 0], _marker: std::marker::PhantomData<(*mut u8, ::std::marker::PhantomPinned)>, } /// Opaque pointee for [`RawMap`] /// /// This type is not meant to be dereferenced in Rust code. /// It is only meant to provide type safety for raw pointers /// which are manipulated behind FFI. #[repr(C)] pub struct RawMapData { _data: [u8; 0], _marker: std::marker::PhantomData<(*mut u8, ::std::marker::PhantomPinned)>, } /// Opaque pointee for [`CppStdString`] /// /// This type is not meant to be dereferenced in Rust code. /// It is only meant to provide type safety for raw pointers /// which are manipulated behind FFI. #[repr(C)] pub struct CppStdStringData { _data: [u8; 0], _marker: std::marker::PhantomData<(*mut u8, ::std::marker::PhantomPinned)>, } } /// A raw pointer to the underlying message for this runtime. #[doc(hidden)] pub type RawMessage = NonNull<_opaque_pointees::RawMessageData>; /// A raw pointer to the underlying repeated field container for this runtime. #[doc(hidden)] pub type RawRepeatedField = NonNull<_opaque_pointees::RawRepeatedFieldData>; /// A raw pointer to the underlying arena for this runtime. #[doc(hidden)] pub type RawMap = NonNull<_opaque_pointees::RawMapData>; /// A raw pointer to a std::string. #[doc(hidden)] pub type CppStdString = NonNull<_opaque_pointees::CppStdStringData>; /// Kernel-specific owned `string` and `bytes` field type. #[derive(Debug)] #[doc(hidden)] pub struct InnerProtoString { owned_ptr: CppStdString, } extern "C" { pub fn proto2_rust_Message_delete(m: RawMessage); pub fn proto2_rust_Message_clear(m: RawMessage); pub fn proto2_rust_Message_parse(m: RawMessage, input: SerializedData) -> bool; pub fn proto2_rust_Message_serialize(m: RawMessage, output: &mut SerializedData) -> bool; pub fn proto2_rust_Message_copy_from(dst: RawMessage, src: RawMessage) -> bool; pub fn proto2_rust_Message_merge_from(dst: RawMessage, src: RawMessage) -> bool; } /// An opaque type matching MapNodeSizeInfoT from C++. #[doc(hidden)] #[repr(transparent)] pub struct MapNodeSizeInfo(pub i32); impl Drop for InnerProtoString { fn drop(&mut self) { // SAFETY: `self.owned_ptr` points to a valid std::string object. unsafe { proto2_rust_cpp_delete_string(self.owned_ptr); } } } impl InnerProtoString { pub(crate) fn as_bytes(&self) -> &[u8] { // SAFETY: `self.owned_ptr` points to a valid std::string object. unsafe { proto2_rust_cpp_string_to_view(self.owned_ptr).as_ref() } } pub fn into_raw(self) -> CppStdString { let s = ManuallyDrop::new(self); s.owned_ptr } /// # Safety /// - `src` points to a valid CppStdString. pub unsafe fn from_raw(src: CppStdString) -> InnerProtoString { InnerProtoString { owned_ptr: src } } } impl From<&[u8]> for InnerProtoString { fn from(val: &[u8]) -> Self { // SAFETY: `val` is valid byte slice. let owned_ptr: CppStdString = unsafe { proto2_rust_cpp_new_string(val.into()) }; InnerProtoString { owned_ptr } } } extern "C" { fn proto2_rust_cpp_new_string(src: PtrAndLen) -> CppStdString; fn proto2_rust_cpp_delete_string(src: CppStdString); fn proto2_rust_cpp_string_to_view(src: CppStdString) -> PtrAndLen; } /// Represents an ABI-stable version of `NonNull<[u8]>`/`string_view` (a /// borrowed slice of bytes) for FFI use only. /// /// Has semantics similar to `std::string_view` in C++ and `&[u8]` in Rust, /// but is not ABI-compatible with either. /// /// If `len` is 0, then `ptr` can be null or dangling. C++ considers a dangling /// 0-len `std::string_view` to be invalid, and Rust considers a `&[u8]` with a /// null data pointer to be invalid. #[repr(C)] #[derive(Copy, Clone)] #[doc(hidden)] pub struct PtrAndLen { /// Pointer to the first byte. /// Borrows the memory. pub ptr: *const u8, /// Length of the `[u8]` pointed to by `ptr`. pub len: usize, } impl PtrAndLen { /// Unsafely dereference this slice. /// /// # Safety /// - `self.ptr` must be dereferencable and immutable for `self.len` bytes /// for the lifetime `'a`. It can be null or dangling if `self.len == 0`. pub unsafe fn as_ref<'a>(self) -> &'a [u8] { if self.ptr.is_null() { assert_eq!(self.len, 0, "Non-empty slice with null data pointer"); &[] } else { // SAFETY: // - `ptr` is non-null // - `ptr` is valid for `len` bytes as promised by the caller. unsafe { slice::from_raw_parts(self.ptr, self.len) } } } } impl From<&[u8]> for PtrAndLen { fn from(slice: &[u8]) -> Self { Self { ptr: slice.as_ptr(), len: slice.len() } } } impl From<&ProtoStr> for PtrAndLen { fn from(s: &ProtoStr) -> Self { let bytes = s.as_bytes(); Self { ptr: bytes.as_ptr(), len: bytes.len() } } } /// Serialized Protobuf wire format data. It's typically produced by /// `.serialize()`. /// /// This struct is ABI-compatible with the equivalent struct on the C++ side. It /// owns (and drops) its data. #[repr(C)] #[doc(hidden)] pub struct SerializedData { /// Owns the memory. data: NonNull, len: usize, } impl SerializedData { pub fn new() -> Self { Self { data: NonNull::dangling(), len: 0 } } /// Constructs owned serialized data from raw components. /// /// # Safety /// - `data` must be readable for `len` bytes. /// - `data` must be an owned pointer and valid until deallocated. /// - `data` must have been allocated by the Rust global allocator with a /// size of `len` and align of 1. pub unsafe fn from_raw_parts(data: NonNull, len: usize) -> Self { Self { data, len } } /// Gets a raw slice pointer. pub fn as_ptr(&self) -> *const [u8] { ptr::slice_from_raw_parts(self.data.as_ptr(), self.len) } /// Gets a mutable raw slice pointer. fn as_mut_ptr(&mut self) -> *mut [u8] { ptr::slice_from_raw_parts_mut(self.data.as_ptr(), self.len) } /// Converts into a Vec. pub fn into_vec(self) -> Vec { // We need to prevent self from being dropped, because we are going to transfer // ownership of self.data to the Vec. let s = ManuallyDrop::new(self); unsafe { // SAFETY: // - `data` was allocated by the Rust global allocator. // - `data` was allocated with an alignment of 1 for u8. // - The allocated size was `len`. // - The length and capacity are equal. // - All `len` bytes are initialized. // - The capacity (`len` in this case) is the size the pointer was allocated // with. // - The allocated size is no more than isize::MAX, because the protobuf // serializer will refuse to serialize a message if the output would exceed // 2^31 - 1 bytes. Vec::::from_raw_parts(s.data.as_ptr(), s.len, s.len) } } } impl Deref for SerializedData { type Target = [u8]; fn deref(&self) -> &Self::Target { // SAFETY: `data` is valid for `len` bytes until deallocated as promised by // `from_raw_parts`. unsafe { &*self.as_ptr() } } } impl Drop for SerializedData { fn drop(&mut self) { // SAFETY: `data` was allocated by the Rust global allocator with a // size of `len` and align of 1 as promised by `from_raw_parts`. unsafe { drop(Box::from_raw(self.as_mut_ptr())) } } } impl fmt::Debug for SerializedData { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(self.deref(), f) } } /// A type to transfer an owned Rust string across the FFI boundary: /// * This struct is ABI-compatible with the equivalent C struct. /// * It owns its data but does not drop it. Immediately turn it into a /// `String` by calling `.into()` on it. /// * `.data` points to a valid UTF-8 string that has been allocated with the /// Rust allocator and is 1-byte aligned. /// * `.data` contains exactly `.len` bytes. /// * The empty string is represented as `.data.is_null() == true`. #[repr(C)] #[doc(hidden)] pub struct RustStringRawParts { data: *const u8, len: usize, } impl From for String { fn from(value: RustStringRawParts) -> Self { if value.data.is_null() { // Handle the case where the string is empty. return String::new(); } // SAFETY: // - `value.data` contains valid UTF-8 bytes as promised by // `RustStringRawParts`. // - `value.data` has been allocated with the Rust allocator and is 1-byte // aligned as promised by `RustStringRawParts`. // - `value.data` contains and is allocated for exactly `value.len` bytes. unsafe { String::from_raw_parts(value.data as *mut u8, value.len, value.len) } } } extern "C" { fn proto2_rust_utf8_debug_string(msg: RawMessage) -> RustStringRawParts; } pub fn debug_string(msg: RawMessage, f: &mut fmt::Formatter<'_>) -> fmt::Result { // SAFETY: // - `msg` is a valid protobuf message. let dbg_str: String = unsafe { proto2_rust_utf8_debug_string(msg) }.into(); write!(f, "{dbg_str}") } extern "C" { /// # Safety /// - `msg1` and `msg2` legally dereferencable MessageLite* pointers. #[link_name = "proto2_rust_messagelite_equals"] pub fn raw_message_equals(msg1: RawMessage, msg2: RawMessage) -> bool; } pub type RawMapIter = UntypedMapIterator; /// The raw contents of every generated message. #[derive(Debug)] #[doc(hidden)] pub struct MessageInner { pub msg: RawMessage, } /// Mutators that point to their original message use this to do so. /// /// Since C++ messages manage their own memory, this can just copy the /// `RawMessage` instead of referencing an arena like UPB must. /// /// Note: even though this type is `Copy`, it should only be copied by /// protobuf internals that can maintain mutation invariants: /// /// - No concurrent mutation for any two fields in a message: this means /// mutators cannot be `Send` but are `Sync`. /// - If there are multiple accessible `Mut` to a single message at a time, they /// must be different fields, and not be in the same oneof. As such, a `Mut` /// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which /// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`. #[derive(Clone, Copy, Debug)] #[doc(hidden)] pub struct MutatorMessageRef<'msg> { msg: RawMessage, _phantom: PhantomData<&'msg mut ()>, } impl<'msg> MutatorMessageRef<'msg> { #[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access. pub fn new(msg: &'msg mut MessageInner) -> Self { MutatorMessageRef { msg: msg.msg, _phantom: PhantomData } } /// # Safety /// - The underlying pointer must be sound and live for the lifetime 'msg. pub unsafe fn wrap_raw(raw: RawMessage) -> Self { MutatorMessageRef { msg: raw, _phantom: PhantomData } } pub fn from_parent( _parent_msg: MutatorMessageRef<'msg>, message_field_ptr: RawMessage, ) -> Self { Self { msg: message_field_ptr, _phantom: PhantomData } } pub fn msg(&self) -> RawMessage { self.msg } pub fn from_raw_msg(msg: &RawMessage) -> Self { Self { msg: *msg, _phantom: PhantomData } } } /// The raw type-erased version of an owned `Repeated`. #[derive(Debug)] #[doc(hidden)] pub struct InnerRepeated { raw: RawRepeatedField, } impl InnerRepeated { pub fn as_mut(&mut self) -> InnerRepeatedMut<'_> { InnerRepeatedMut::new(self.raw) } pub fn raw(&self) -> RawRepeatedField { self.raw } /// # Safety /// - `raw` must be a valid `proto2::RepeatedField*` or /// `proto2::RepeatedPtrField*`. pub unsafe fn from_raw(raw: RawRepeatedField) -> Self { Self { raw } } } /// The raw type-erased pointer version of `RepeatedMut`. /// /// Contains a `proto2::RepeatedField*` or `proto2::RepeatedPtrField*`. #[derive(Clone, Copy, Debug)] #[doc(hidden)] pub struct InnerRepeatedMut<'msg> { pub(crate) raw: RawRepeatedField, _phantom: PhantomData<&'msg ()>, } impl<'msg> InnerRepeatedMut<'msg> { #[doc(hidden)] pub fn new(raw: RawRepeatedField) -> Self { InnerRepeatedMut { raw, _phantom: PhantomData } } } trait CppTypeConversions: Proxied { type InsertElemType; type ElemType; fn elem_to_view<'msg>(v: Self::ElemType) -> View<'msg, Self>; fn into_insertelem(v: Self) -> Self::InsertElemType; } macro_rules! impl_cpp_type_conversions_for_scalars { ($($t:ty),* $(,)?) => { $( impl CppTypeConversions for $t { type InsertElemType = Self; type ElemType = Self; fn elem_to_view<'msg>(v: Self) -> View<'msg, Self> { v } fn into_insertelem(v: Self) -> Self { v } } )* } } impl_cpp_type_conversions_for_scalars!(i32, u32, i64, u64, f32, f64, bool); impl CppTypeConversions for ProtoString { type InsertElemType = CppStdString; type ElemType = PtrAndLen; fn elem_to_view<'msg>(v: PtrAndLen) -> View<'msg, ProtoString> { ptrlen_to_str(v) } fn into_insertelem(v: Self) -> CppStdString { v.into_inner(Private).into_raw() } } impl CppTypeConversions for ProtoBytes { type InsertElemType = CppStdString; type ElemType = PtrAndLen; fn elem_to_view<'msg>(v: Self::ElemType) -> View<'msg, Self> { ptrlen_to_bytes(v) } fn into_insertelem(v: Self) -> CppStdString { v.into_inner(Private).into_raw() } } macro_rules! impl_repeated_primitives { (@impl $($t:ty => [ $new_thunk:ident, $free_thunk:ident, $add_thunk:ident, $size_thunk:ident, $get_thunk:ident, $set_thunk:ident, $clear_thunk:ident, $copy_from_thunk:ident, $reserve_thunk:ident $(,)? ]),* $(,)?) => { $( extern "C" { fn $new_thunk() -> RawRepeatedField; fn $free_thunk(f: RawRepeatedField); fn $add_thunk(f: RawRepeatedField, v: <$t as CppTypeConversions>::InsertElemType); fn $size_thunk(f: RawRepeatedField) -> usize; fn $get_thunk( f: RawRepeatedField, i: usize) -> <$t as CppTypeConversions>::ElemType; fn $set_thunk( f: RawRepeatedField, i: usize, v: <$t as CppTypeConversions>::InsertElemType); fn $clear_thunk(f: RawRepeatedField); fn $copy_from_thunk(src: RawRepeatedField, dst: RawRepeatedField); fn $reserve_thunk( f: RawRepeatedField, additional: usize); } unsafe impl ProxiedInRepeated for $t { #[allow(dead_code)] #[inline] fn repeated_new(_: Private) -> Repeated<$t> { Repeated::from_inner(Private, InnerRepeated { raw: unsafe { $new_thunk() } }) } #[allow(dead_code)] #[inline] unsafe fn repeated_free(_: Private, f: &mut Repeated<$t>) { unsafe { $free_thunk(f.as_mut().as_raw(Private)) } } #[inline] fn repeated_len(f: View>) -> usize { unsafe { $size_thunk(f.as_raw(Private)) } } #[inline] fn repeated_push(mut f: Mut>, v: impl IntoProxied<$t>) { unsafe { $add_thunk(f.as_raw(Private), <$t as CppTypeConversions>::into_insertelem(v.into_proxied(Private))) } } #[inline] fn repeated_clear(mut f: Mut>) { unsafe { $clear_thunk(f.as_raw(Private)) } } #[inline] unsafe fn repeated_get_unchecked(f: View>, i: usize) -> View<$t> { <$t as CppTypeConversions>::elem_to_view( unsafe { $get_thunk(f.as_raw(Private), i) }) } #[inline] unsafe fn repeated_set_unchecked(mut f: Mut>, i: usize, v: impl IntoProxied<$t>) { unsafe { $set_thunk(f.as_raw(Private), i, <$t as CppTypeConversions>::into_insertelem(v.into_proxied(Private))) } } #[inline] fn repeated_copy_from(src: View>, mut dest: Mut>) { unsafe { $copy_from_thunk(src.as_raw(Private), dest.as_raw(Private)) } } #[inline] fn repeated_reserve(mut f: Mut>, additional: usize) { unsafe { $reserve_thunk(f.as_raw(Private), additional) } } } )* }; ($($t:ty),* $(,)?) => { paste!{ impl_repeated_primitives!(@impl $( $t => [ [< proto2_rust_RepeatedField_ $t _new >], [< proto2_rust_RepeatedField_ $t _free >], [< proto2_rust_RepeatedField_ $t _add >], [< proto2_rust_RepeatedField_ $t _size >], [< proto2_rust_RepeatedField_ $t _get >], [< proto2_rust_RepeatedField_ $t _set >], [< proto2_rust_RepeatedField_ $t _clear >], [< proto2_rust_RepeatedField_ $t _copy_from >], [< proto2_rust_RepeatedField_ $t _reserve >], ], )*); } }; } impl_repeated_primitives!(i32, u32, i64, u64, f32, f64, bool, ProtoString, ProtoBytes); /// Cast a `RepeatedView` to `RepeatedView`. pub fn cast_enum_repeated_view( repeated: RepeatedView, ) -> RepeatedView { // SAFETY: the implementer of `Enum` has promised that this // raw repeated is a type-erased `proto2::RepeatedField*`. unsafe { RepeatedView::from_raw(Private, repeated.as_raw(Private)) } } /// Cast a `RepeatedMut` to `RepeatedMut`. /// /// Writing an unknown value is sound because all enums /// are representationally open. pub fn cast_enum_repeated_mut( mut repeated: RepeatedMut, ) -> RepeatedMut { // SAFETY: the implementer of `Enum` has promised that this // raw repeated is a type-erased `proto2::RepeatedField*`. unsafe { RepeatedMut::from_inner( Private, InnerRepeatedMut { raw: repeated.as_raw(Private), _phantom: PhantomData }, ) } } /// Cast a `RepeatedMut` to `RepeatedMut` and call /// repeated_reserve. pub fn reserve_enum_repeated_mut( repeated: RepeatedMut, additional: usize, ) { let int_repeated = cast_enum_repeated_mut(repeated); ProxiedInRepeated::repeated_reserve(int_repeated, additional); } pub fn new_enum_repeated() -> Repeated { let int_repeated = Repeated::::new(); let raw = int_repeated.inner.raw(); std::mem::forget(int_repeated); unsafe { Repeated::from_inner(Private, InnerRepeated::from_raw(raw)) } } /// Cast a `RepeatedMut` to `RepeatedMut` and call /// repeated_free. /// # Safety /// - The passed in `&mut Repeated` must not be used after this function is /// called. pub unsafe fn free_enum_repeated(repeated: &mut Repeated) { unsafe { let mut int_r: Repeated = Repeated::from_inner(Private, InnerRepeated::from_raw(repeated.inner.raw())); ProxiedInRepeated::repeated_free(Private, &mut int_r); std::mem::forget(int_r); } } #[derive(Debug)] #[doc(hidden)] pub struct InnerMap { pub(crate) raw: RawMap, } impl InnerMap { pub fn new(raw: RawMap) -> Self { Self { raw } } pub fn as_mut(&mut self) -> InnerMapMut<'_> { InnerMapMut { raw: self.raw, _phantom: PhantomData } } } #[derive(Clone, Copy, Debug)] #[doc(hidden)] pub struct InnerMapMut<'msg> { pub(crate) raw: RawMap, _phantom: PhantomData<&'msg ()>, } #[doc(hidden)] impl<'msg> InnerMapMut<'msg> { pub fn new(raw: RawMap) -> Self { InnerMapMut { raw, _phantom: PhantomData } } pub fn as_raw(&self) -> RawMap { self.raw } } /// An untyped iterator in a map, produced via `.cbegin()` on a typed map. /// /// This struct is ABI-compatible with `proto2::internal::UntypedMapIterator`. /// It is trivially constructible and destructible. #[repr(C)] #[doc(hidden)] pub struct UntypedMapIterator { node: *mut c_void, map: *const c_void, bucket_index: u32, } impl UntypedMapIterator { /// Returns `true` if this iterator is at the end of the map. fn at_end(&self) -> bool { // This behavior is verified via test `IteratorNodeFieldIsNullPtrAtEnd`. self.node.is_null() } /// Assumes that the map iterator is for the input types, gets the current /// entry, and moves the iterator forward to the next entry. /// /// Conversion to and from FFI types is provided by the user. /// This is a helper function for implementing /// `ProxiedInMapValue::iter_next`. /// /// # Safety /// - The backing map must be valid and not be mutated for `'a`. /// - The thunk must be safe to call if the iterator is not at the end of /// the map. /// - The thunk must always write to the `key` and `value` fields, but not /// read from them. /// - The get thunk must not move the iterator forward or backward. #[inline(always)] pub unsafe fn next_unchecked<'a, K, V, FfiKey, FfiValue>( &mut self, iter_get_thunk: unsafe extern "C" fn( iter: &mut UntypedMapIterator, size_info: MapNodeSizeInfo, key: *mut FfiKey, value: *mut FfiValue, ), size_info: MapNodeSizeInfo, from_ffi_key: impl FnOnce(FfiKey) -> View<'a, K>, from_ffi_value: impl FnOnce(FfiValue) -> View<'a, V>, ) -> Option<(View<'a, K>, View<'a, V>)> where K: Proxied + 'a, V: ProxiedInMapValue + 'a, { if self.at_end() { return None; } let mut ffi_key = MaybeUninit::uninit(); let mut ffi_value = MaybeUninit::uninit(); // SAFETY: // - The backing map outlives `'a`. // - The iterator is not at the end (node is non-null). // - `ffi_key` and `ffi_value` are not read (as uninit) as promised by the // caller. unsafe { (iter_get_thunk)(self, size_info, ffi_key.as_mut_ptr(), ffi_value.as_mut_ptr()) } // SAFETY: // - The backing map is alive as promised by the caller. // - `self.at_end()` is false and the `get` does not change that. // - `UntypedMapIterator` has the same ABI as // `proto2::internal::UntypedMapIterator`. It is statically checked to be: // - Trivially copyable. // - Trivially destructible. // - Standard layout. // - The size and alignment of the Rust type above. // - With the `node_` field first. unsafe { proto2_rust_thunk_UntypedMapIterator_increment(self) } // SAFETY: // - The `get` function always writes valid values to `ffi_key` and `ffi_value` // as promised by the caller. unsafe { Some((from_ffi_key(ffi_key.assume_init()), from_ffi_value(ffi_value.assume_init()))) } } } #[doc(hidden)] #[repr(transparent)] pub struct MapNodeSizeInfoIndex(i32); #[doc(hidden)] pub trait MapNodeSizeInfoIndexForType { const SIZE_INFO_INDEX: MapNodeSizeInfoIndex; } macro_rules! generate_map_node_size_info_mapping { ( $($key:ty, $index:expr;)* ) => { $( impl MapNodeSizeInfoIndexForType for $key { const SIZE_INFO_INDEX: MapNodeSizeInfoIndex = MapNodeSizeInfoIndex($index); } )* } } // LINT.IfChange(size_info_mapping) generate_map_node_size_info_mapping!( i32, 0; u32, 0; i64, 1; u64, 1; bool, 2; ProtoString, 3; ); // LINT.ThenChange(//depot/google3/third_party/protobuf/compiler/rust/message. // cc:size_info_mapping) macro_rules! impl_map_primitives { (@impl $(($rust_type:ty, $cpp_type:ty) => [ $insert_thunk:ident, $get_thunk:ident, $iter_get_thunk:ident, $remove_thunk:ident, ]),* $(,)?) => { $( extern "C" { pub fn $insert_thunk( m: RawMap, size_info: MapNodeSizeInfo, key: $cpp_type, value: RawMessage, placement_new: unsafe extern "C" fn(*mut c_void, m: RawMessage), ) -> bool; pub fn $get_thunk( m: RawMap, size_info: MapNodeSizeInfo, key: $cpp_type, value: *mut RawMessage, ) -> bool; pub fn $iter_get_thunk( iter: &mut UntypedMapIterator, size_info: MapNodeSizeInfo, key: *mut $cpp_type, value: *mut RawMessage, ); pub fn $remove_thunk(m: RawMap, size_info: MapNodeSizeInfo, key: $cpp_type) -> bool; } )* }; ($($rust_type:ty, $cpp_type:ty;)* $(,)?) => { paste!{ impl_map_primitives!(@impl $( ($rust_type, $cpp_type) => [ [< proto2_rust_map_insert_ $rust_type >], [< proto2_rust_map_get_ $rust_type >], [< proto2_rust_map_iter_get_ $rust_type >], [< proto2_rust_map_remove_ $rust_type >], ], )*); } }; } impl_map_primitives!( i32, i32; u32, u32; i64, i64; u64, u64; bool, bool; ProtoString, PtrAndLen; ); extern "C" { fn proto2_rust_thunk_UntypedMapIterator_increment(iter: &mut UntypedMapIterator); pub fn proto2_rust_map_new() -> RawMap; pub fn proto2_rust_map_free(m: RawMap, key_is_string: bool, size_info: MapNodeSizeInfo); pub fn proto2_rust_map_clear(m: RawMap, key_is_string: bool, size_info: MapNodeSizeInfo); pub fn proto2_rust_map_size(m: RawMap) -> usize; pub fn proto2_rust_map_iter(m: RawMap) -> UntypedMapIterator; } macro_rules! impl_ProxiedInMapValue_for_non_generated_value_types { ($key_t:ty, $ffi_key_t:ty, $to_ffi_key:expr, $from_ffi_key:expr, for $($t:ty, $ffi_view_t:ty, $ffi_value_t:ty, $to_ffi_value:expr, $from_ffi_value:expr;)*) => { paste! { $( extern "C" { pub fn [< proto2_rust_thunk_Map_ $key_t _ $t _new >]() -> RawMap; pub fn [< proto2_rust_thunk_Map_ $key_t _ $t _free >](m: RawMap); pub fn [< proto2_rust_thunk_Map_ $key_t _ $t _clear >](m: RawMap); pub fn [< proto2_rust_thunk_Map_ $key_t _ $t _size >](m: RawMap) -> usize; pub fn [< proto2_rust_thunk_Map_ $key_t _ $t _insert >](m: RawMap, key: $ffi_key_t, value: $ffi_value_t) -> bool; pub fn [< proto2_rust_thunk_Map_ $key_t _ $t _get >](m: RawMap, key: $ffi_key_t, value: *mut $ffi_view_t) -> bool; pub fn [< proto2_rust_thunk_Map_ $key_t _ $t _iter >](m: RawMap) -> UntypedMapIterator; pub fn [< proto2_rust_thunk_Map_ $key_t _ $t _iter_get >](iter: &mut UntypedMapIterator, size_info: MapNodeSizeInfo, key: *mut $ffi_key_t, value: *mut $ffi_view_t); pub fn [< proto2_rust_thunk_Map_ $key_t _ $t _remove >](m: RawMap, key: $ffi_key_t, value: *mut $ffi_view_t) -> bool; } impl ProxiedInMapValue<$key_t> for $t { fn map_new(_private: Private) -> Map<$key_t, Self> { unsafe { Map::from_inner( Private, InnerMap { raw: [< proto2_rust_thunk_Map_ $key_t _ $t _new >](), } ) } } unsafe fn map_free(_private: Private, map: &mut Map<$key_t, Self>) { // SAFETY: // - `map.inner.raw` is a live `RawMap` // - This function is only called once for `map` in `Drop`. unsafe { [< proto2_rust_thunk_Map_ $key_t _ $t _free >](map.as_mut().as_raw(Private)); } } fn map_clear(mut map: MapMut<$key_t, Self>) { unsafe { [< proto2_rust_thunk_Map_ $key_t _ $t _clear >](map.as_raw(Private)); } } fn map_len(map: MapView<$key_t, Self>) -> usize { unsafe { [< proto2_rust_thunk_Map_ $key_t _ $t _size >](map.as_raw(Private)) } } fn map_insert(mut map: MapMut<$key_t, Self>, key: View<'_, $key_t>, value: impl IntoProxied) -> bool { let ffi_key = $to_ffi_key(key); let ffi_value = $to_ffi_value(value.into_proxied(Private)); unsafe { [< proto2_rust_thunk_Map_ $key_t _ $t _insert >](map.as_raw(Private), ffi_key, ffi_value) } } fn map_get<'a>(map: MapView<'a, $key_t, Self>, key: View<'_, $key_t>) -> Option> { let ffi_key = $to_ffi_key(key); let mut ffi_value = MaybeUninit::uninit(); let found = unsafe { [< proto2_rust_thunk_Map_ $key_t _ $t _get >](map.as_raw(Private), ffi_key, ffi_value.as_mut_ptr()) }; if !found { return None; } // SAFETY: if `found` is true, then the `ffi_value` was written to by `get`. Some($from_ffi_value(unsafe { ffi_value.assume_init() })) } fn map_remove(mut map: MapMut<$key_t, Self>, key: View<'_, $key_t>) -> bool { let ffi_key = $to_ffi_key(key); let mut ffi_value = MaybeUninit::uninit(); unsafe { [< proto2_rust_thunk_Map_ $key_t _ $t _remove >](map.as_raw(Private), ffi_key, ffi_value.as_mut_ptr()) } } fn map_iter(map: MapView<$key_t, Self>) -> MapIter<$key_t, Self> { // SAFETY: // - The backing map for `map.as_raw` is valid for at least '_. // - A View that is live for '_ guarantees the backing map is unmodified for '_. // - The `iter` function produces an iterator that is valid for the key // and value types, and live for at least '_. unsafe { MapIter::from_raw( Private, [< proto2_rust_thunk_Map_ $key_t _ $t _iter >](map.as_raw(Private)) ) } } fn map_iter_next<'a>(iter: &mut MapIter<'a, $key_t, Self>) -> Option<(View<'a, $key_t>, View<'a, Self>)> { // SAFETY: // - The `MapIter` API forbids the backing map from being mutated for 'a, // and guarantees that it's the correct key and value types. // - The thunk is safe to call as long as the iterator isn't at the end. // - The thunk always writes to key and value fields and does not read. // - The thunk does not increment the iterator. unsafe { iter.as_raw_mut(Private).next_unchecked::<$key_t, Self, _, _>( [< proto2_rust_thunk_Map_ $key_t _ $t _iter_get >], MapNodeSizeInfo(0), $from_ffi_key, $from_ffi_value, ) } } } )* } } } fn str_to_ptrlen<'msg>(val: impl Into<&'msg ProtoStr>) -> PtrAndLen { val.into().as_bytes().into() } // Warning: this function is unsound on its own! `val.as_ref()` must be safe to // call. fn ptrlen_to_str<'msg>(val: PtrAndLen) -> &'msg ProtoStr { unsafe { ProtoStr::from_utf8_unchecked(val.as_ref()) } } fn protostr_into_cppstdstring(val: ProtoString) -> CppStdString { val.into_inner(Private).into_raw() } fn protobytes_into_cppstdstring(val: ProtoBytes) -> CppStdString { val.into_inner(Private).into_raw() } // Warning: this function is unsound on its own! `val.as_ref()` must be safe to // call. fn ptrlen_to_bytes<'msg>(val: PtrAndLen) -> &'msg [u8] { unsafe { val.as_ref() } } macro_rules! impl_ProxiedInMapValue_for_key_types { ($($t:ty, $ffi_t:ty, $to_ffi_key:expr, $from_ffi_key:expr;)*) => { paste! { $( impl_ProxiedInMapValue_for_non_generated_value_types!( $t, $ffi_t, $to_ffi_key, $from_ffi_key, for f32, f32, f32, identity, identity; f64, f64, f64, identity, identity; i32, i32, i32, identity, identity; u32, u32, u32, identity, identity; i64, i64, i64, identity, identity; u64, u64, u64, identity, identity; bool, bool, bool, identity, identity; ProtoString, PtrAndLen, CppStdString, protostr_into_cppstdstring, ptrlen_to_str; ProtoBytes, PtrAndLen, CppStdString, protobytes_into_cppstdstring, ptrlen_to_bytes; ); )* } } } impl_ProxiedInMapValue_for_key_types!( i32, i32, identity, identity; u32, u32, identity, identity; i64, i64, identity, identity; u64, u64, identity, identity; bool, bool, identity, identity; ProtoString, PtrAndLen, str_to_ptrlen, ptrlen_to_str; ); #[cfg(test)] mod tests { use super::*; use googletest::prelude::*; // We need to allocate the byte array so SerializedData can own it and // deallocate it in its drop. This function makes it easier to do so for our // tests. fn allocate_byte_array(content: &'static [u8]) -> (*mut u8, usize) { let content: &mut [u8] = Box::leak(content.into()); (content.as_mut_ptr(), content.len()) } #[gtest] fn test_serialized_data_roundtrip() { let (ptr, len) = allocate_byte_array(b"Hello world"); let serialized_data = SerializedData { data: NonNull::new(ptr).unwrap(), len }; assert_that!(&*serialized_data, eq(b"Hello world")); } #[gtest] fn test_empty_string() { let empty_str: String = RustStringRawParts { data: std::ptr::null(), len: 0 }.into(); assert_that!(empty_str, eq("")); } }