// Protocol Buffers - Google's data interchange format // Copyright 2023 Google LLC. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd //! UPB FFI wrapper code for use by Rust Protobuf. use crate::__internal::{Enum, Private, PtrAndLen, RawArena, RawMap, RawMessage, RawRepeatedField}; use crate::{ Map, MapIter, MapMut, MapView, Mut, ProtoStr, Proxied, ProxiedInMapValue, ProxiedInRepeated, Repeated, RepeatedMut, RepeatedView, SettableValue, View, ViewProxy, }; use core::fmt::Debug; use std::alloc; use std::alloc::Layout; use std::cell::UnsafeCell; use std::ffi::c_int; use std::fmt; use std::marker::PhantomData; use std::mem::{align_of, size_of, ManuallyDrop, MaybeUninit}; use std::ops::Deref; use std::ptr::{self, NonNull}; use std::slice; use std::sync::OnceLock; /// See `upb/port/def.inc`. const UPB_MALLOC_ALIGN: usize = 8; const _CHECK_UPB_MALLOC_ALIGN_AT_LEAST_POINTER_ALIGNED: () = assert!(UPB_MALLOC_ALIGN >= align_of::<*const ()>()); /// A wrapper over a `upb_Arena`. /// /// This is not a safe wrapper per se, because the allocation functions still /// have sharp edges (see their safety docs for more info). /// /// This is an owning type and will automatically free the arena when /// dropped. /// /// Note that this type is neither `Sync` nor `Send`. #[derive(Debug)] pub struct Arena { // Safety invariant: this must always be a valid arena raw: RawArena, _not_sync: PhantomData>, } extern "C" { // `Option>` is ABI-compatible with `*mut T` pub fn upb_Arena_New() -> Option; pub fn upb_Arena_Free(arena: RawArena); pub fn upb_Arena_Malloc(arena: RawArena, size: usize) -> *mut u8; pub fn upb_Arena_Realloc(arena: RawArena, ptr: *mut u8, old: usize, new: usize) -> *mut u8; } impl Arena { /// Allocates a fresh arena. #[inline] pub fn new() -> Self { #[inline(never)] #[cold] fn arena_new_failed() -> ! { panic!("Could not create a new UPB arena"); } // SAFETY: // - `upb_Arena_New` is assumed to be implemented correctly and always sound to // call; if it returned a non-null pointer, it is a valid arena. unsafe { let Some(raw) = upb_Arena_New() else { arena_new_failed() }; Self { raw, _not_sync: PhantomData } } } /// # Safety /// - The `raw_arena` must point to a valid arena. /// - The caller must ensure that the Arena's destructor does not run. unsafe fn from_raw(raw_arena: RawArena) -> Self { Arena { raw: raw_arena, _not_sync: PhantomData } } /// Returns the raw, UPB-managed pointer to the arena. #[inline] pub fn raw(&self) -> RawArena { self.raw } /// Allocates some memory on the arena. /// /// # Safety /// /// - `layout`'s alignment must be less than `UPB_MALLOC_ALIGN`. #[inline] pub unsafe fn alloc(&self, layout: Layout) -> &mut [MaybeUninit] { debug_assert!(layout.align() <= UPB_MALLOC_ALIGN); // SAFETY: `self.raw` is a valid UPB arena let ptr = unsafe { upb_Arena_Malloc(self.raw, layout.size()) }; if ptr.is_null() { alloc::handle_alloc_error(layout); } // SAFETY: // - `upb_Arena_Malloc` promises that if the return pointer is non-null, it is // dereferencable for `size` bytes and has an alignment of `UPB_MALLOC_ALIGN` // until the arena is destroyed. // - `[MaybeUninit]` has no alignment requirement, and `ptr` is aligned to a // `UPB_MALLOC_ALIGN` boundary. unsafe { slice::from_raw_parts_mut(ptr.cast(), layout.size()) } } /// Resizes some memory on the arena. /// /// # Safety /// /// - `ptr` must be the data pointer returned by a previous call to `alloc` /// or `resize` on `self`. /// - After calling this function, `ptr` is no longer dereferencable - it is /// zapped. /// - `old` must be the layout `ptr` was allocated with via `alloc` or /// `realloc`. /// - `new`'s alignment must be less than `UPB_MALLOC_ALIGN`. #[inline] pub unsafe fn resize(&self, ptr: *mut u8, old: Layout, new: Layout) -> &mut [MaybeUninit] { debug_assert!(new.align() <= UPB_MALLOC_ALIGN); // SAFETY: // - `self.raw` is a valid UPB arena // - `ptr` was allocated by a previous call to `alloc` or `realloc` as promised // by the caller. let ptr = unsafe { upb_Arena_Realloc(self.raw, ptr, old.size(), new.size()) }; if ptr.is_null() { alloc::handle_alloc_error(new); } // SAFETY: // - `upb_Arena_Realloc` promises that if the return pointer is non-null, it is // dereferencable for the new `size` in bytes until the arena is destroyed. // - `[MaybeUninit]` has no alignment requirement, and `ptr` is aligned to a // `UPB_MALLOC_ALIGN` boundary. unsafe { slice::from_raw_parts_mut(ptr.cast(), new.size()) } } } impl Drop for Arena { #[inline] fn drop(&mut self) { unsafe { upb_Arena_Free(self.raw); } } } /// The scratch size of 64 KiB matches the maximum supported size that a /// upb_Message can possibly be. const UPB_SCRATCH_SPACE_BYTES: usize = 65_536; /// Holds a zero-initialized block of memory for use by upb. /// /// By default, if a message is not set in cpp, a default message is created. /// upb departs from this and returns a null ptr. However, since contiguous /// chunks of memory filled with zeroes are legit messages from upb's point of /// view, we can allocate a large block and refer to that when dealing /// with readonly access. #[repr(C, align(8))] // align to UPB_MALLOC_ALIGN = 8 pub struct ScratchSpace([u8; UPB_SCRATCH_SPACE_BYTES]); impl ScratchSpace { pub fn zeroed_block(_private: Private) -> RawMessage { static ZEROED_BLOCK: ScratchSpace = ScratchSpace([0; UPB_SCRATCH_SPACE_BYTES]); NonNull::from(&ZEROED_BLOCK).cast() } } /// Serialized Protobuf wire format data. /// /// It's typically produced by `::serialize()`. pub struct SerializedData { data: NonNull, len: usize, // The arena that owns `data`. _arena: Arena, } impl SerializedData { /// Construct `SerializedData` from raw pointers and its owning arena. /// /// # Safety /// - `arena` must be have allocated `data` /// - `data` must be readable for `len` bytes and not mutate while this /// struct exists pub unsafe fn from_raw_parts(arena: Arena, data: NonNull, len: usize) -> Self { SerializedData { _arena: arena, data, len } } /// Gets a raw slice pointer. pub fn as_ptr(&self) -> *const [u8] { ptr::slice_from_raw_parts(self.data.as_ptr(), self.len) } } impl Deref for SerializedData { type Target = [u8]; fn deref(&self) -> &Self::Target { // SAFETY: `data` is valid for `len` bytes as promised by // the caller of `SerializedData::from_raw_parts`. unsafe { slice::from_raw_parts(self.data.as_ptr(), self.len) } } } impl fmt::Debug for SerializedData { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(self.deref(), f) } } impl SettableValue<[u8]> for SerializedData { fn set_on<'msg>(self, _private: Private, mut mutator: Mut<'msg, [u8]>) where [u8]: 'msg, { mutator.set(self.as_ref()) } } // TODO: Investigate replacing this with direct access to UPB bits. pub type MessagePresentMutData<'msg, T> = crate::vtable::RawVTableOptionalMutatorData<'msg, T>; pub type MessageAbsentMutData<'msg, T> = crate::vtable::RawVTableOptionalMutatorData<'msg, T>; pub type BytesPresentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; pub type BytesAbsentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; pub type InnerBytesMut<'msg> = crate::vtable::RawVTableMutator<'msg, [u8]>; pub type InnerPrimitiveMut<'msg, T> = crate::vtable::RawVTableMutator<'msg, T>; #[derive(Debug)] pub struct MessageVTable { pub getter: unsafe extern "C" fn(msg: RawMessage) -> Option, pub mut_getter: unsafe extern "C" fn(msg: RawMessage, arena: RawArena) -> RawMessage, pub clearer: unsafe extern "C" fn(msg: RawMessage), } impl MessageVTable { pub const fn new( _private: Private, getter: unsafe extern "C" fn(msg: RawMessage) -> Option, mut_getter: unsafe extern "C" fn(msg: RawMessage, arena: RawArena) -> RawMessage, clearer: unsafe extern "C" fn(msg: RawMessage), ) -> Self { MessageVTable { getter, mut_getter, clearer } } } /// The raw contents of every generated message. #[derive(Debug)] pub struct MessageInner { pub msg: RawMessage, pub arena: Arena, } /// Mutators that point to their original message use this to do so. /// /// Since UPB expects runtimes to manage their own arenas, this needs to have /// access to an `Arena`. /// /// This has two possible designs: /// - Store two pointers here, `RawMessage` and `&'msg Arena`. This doesn't /// place any restriction on the layout of generated messages and their /// mutators. This makes a vtable-based mutator three pointers, which can no /// longer be returned in registers on most platforms. /// - Store one pointer here, `&'msg MessageInner`, where `MessageInner` stores /// a `RawMessage` and an `Arena`. This would require all generated messages /// to store `MessageInner`, and since their mutators need to be able to /// generate `BytesMut`, would also require `BytesMut` to store a `&'msg /// MessageInner` since they can't store an owned `Arena`. /// /// Note: even though this type is `Copy`, it should only be copied by /// protobuf internals that can maintain mutation invariants: /// /// - No concurrent mutation for any two fields in a message: this means /// mutators cannot be `Send` but are `Sync`. /// - If there are multiple accessible `Mut` to a single message at a time, they /// must be different fields, and not be in the same oneof. As such, a `Mut` /// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which /// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`. #[derive(Clone, Copy, Debug)] pub struct MutatorMessageRef<'msg> { msg: RawMessage, arena: &'msg Arena, } impl<'msg> MutatorMessageRef<'msg> { #[doc(hidden)] #[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access. pub fn new(_private: Private, msg: &'msg mut MessageInner) -> Self { MutatorMessageRef { msg: msg.msg, arena: &msg.arena } } pub fn from_parent( _private: Private, parent_msg: MutatorMessageRef<'msg>, message_field_ptr: RawMessage, ) -> Self { MutatorMessageRef { msg: message_field_ptr, arena: parent_msg.arena } } pub fn msg(&self) -> RawMessage { self.msg } pub fn arena(&self, _private: Private) -> &Arena { self.arena } } pub fn copy_bytes_in_arena_if_needed_by_runtime<'msg>( msg_ref: MutatorMessageRef<'msg>, val: &'msg [u8], ) -> &'msg [u8] { copy_bytes_in_arena(msg_ref.arena, val) } fn copy_bytes_in_arena<'msg>(arena: &'msg Arena, val: &'msg [u8]) -> &'msg [u8] { // SAFETY: the alignment of `[u8]` is less than `UPB_MALLOC_ALIGN`. let new_alloc = unsafe { arena.alloc(Layout::for_value(val)) }; debug_assert_eq!(new_alloc.len(), val.len()); let start: *mut u8 = new_alloc.as_mut_ptr().cast(); // SAFETY: // - `new_alloc` is writeable for `val.len()` bytes. // - After the copy, `new_alloc` is initialized for `val.len()` bytes. unsafe { val.as_ptr().copy_to_nonoverlapping(start, val.len()); &*(new_alloc as *mut _ as *mut [u8]) } } /// Opaque struct containing a upb_MiniTable. /// /// This wrapper is a workaround until stabilization of [`extern type`]. /// TODO: convert to extern type once stabilized. /// [`extern type`]: https://github.com/rust-lang/rust/issues/43467 #[repr(C)] pub struct OpaqueMiniTable { // TODO: consider importing a minitable struct declared in // google3/third_party/upb/bits. _data: [u8; 0], _marker: std::marker::PhantomData<(*mut u8, ::std::marker::PhantomPinned)>, } extern "C" { pub fn upb_Message_DeepCopy( dst: RawMessage, src: RawMessage, mini_table: *const OpaqueMiniTable, arena: RawArena, ); pub fn upb_Message_DeepClone( m: RawMessage, mini_table: *const OpaqueMiniTable, arena: RawArena, ) -> Option; } /// The raw type-erased version of an owned `Repeated`. #[derive(Debug)] pub struct InnerRepeated { raw: RawRepeatedField, arena: Arena, } impl InnerRepeated { pub fn as_mut(&mut self) -> InnerRepeatedMut<'_> { InnerRepeatedMut::new(Private, self.raw, &self.arena) } } /// The raw type-erased pointer version of `RepeatedMut`. #[derive(Clone, Copy, Debug)] pub struct InnerRepeatedMut<'msg> { pub(crate) raw: RawRepeatedField, arena: &'msg Arena, } impl<'msg> InnerRepeatedMut<'msg> { #[doc(hidden)] pub fn new(_private: Private, raw: RawRepeatedField, arena: &'msg Arena) -> Self { InnerRepeatedMut { raw, arena } } } // Transcribed from google3/third_party/upb/upb/message/value.h #[repr(C)] #[derive(Clone, Copy)] pub union upb_MessageValue { pub bool_val: bool, pub float_val: std::ffi::c_float, pub double_val: std::ffi::c_double, pub uint32_val: u32, pub int32_val: i32, pub uint64_val: u64, pub int64_val: i64, pub array_val: Option, pub map_val: Option, // TODO: Replace this `RawMessage` with the const type. pub msg_val: Option, pub str_val: PtrAndLen, tagged_msg_val: *const std::ffi::c_void, } #[repr(C)] #[derive(Clone, Copy)] pub union upb_MutableMessageValue { pub array: Option, pub map: Option, pub msg: Option, } // Transcribed from google3/third_party/upb/upb/base/descriptor_constants.h #[repr(C)] #[allow(dead_code)] pub enum UpbCType { Bool = 1, Float = 2, Int32 = 3, UInt32 = 4, Enum = 5, Message = 6, Double = 7, Int64 = 8, UInt64 = 9, String = 10, Bytes = 11, } extern "C" { fn upb_Array_New(a: RawArena, r#type: std::ffi::c_int) -> RawRepeatedField; pub fn upb_Array_Size(arr: RawRepeatedField) -> usize; pub fn upb_Array_Set(arr: RawRepeatedField, i: usize, val: upb_MessageValue); pub fn upb_Array_Get(arr: RawRepeatedField, i: usize) -> upb_MessageValue; pub fn upb_Array_Append(arr: RawRepeatedField, val: upb_MessageValue, arena: RawArena); pub fn upb_Array_Resize(arr: RawRepeatedField, size: usize, arena: RawArena) -> bool; fn upb_Array_MutableDataPtr(arr: RawRepeatedField) -> *mut std::ffi::c_void; fn upb_Array_DataPtr(arr: RawRepeatedField) -> *const std::ffi::c_void; pub fn upb_Array_GetMutable(arr: RawRepeatedField, i: usize) -> upb_MutableMessageValue; } macro_rules! impl_repeated_base { ($t:ty, $elem_t:ty, $ufield:ident, $upb_tag:expr) => { #[allow(dead_code)] fn repeated_new(_: Private) -> Repeated<$t> { let arena = Arena::new(); Repeated::from_inner(InnerRepeated { raw: unsafe { upb_Array_New(arena.raw(), $upb_tag as c_int) }, arena, }) } #[allow(dead_code)] unsafe fn repeated_free(_: Private, _f: &mut Repeated<$t>) { // No-op: the memory will be dropped by the arena. } fn repeated_len(f: View>) -> usize { unsafe { upb_Array_Size(f.as_raw(Private)) } } fn repeated_push(mut f: Mut>, v: View<$t>) { let arena = f.raw_arena(Private); unsafe { upb_Array_Append( f.as_raw(Private), <$t as UpbTypeConversions>::to_message_value_copy_if_required(arena, v), arena, ) } } fn repeated_clear(mut f: Mut>) { unsafe { upb_Array_Resize(f.as_raw(Private), 0, f.raw_arena(Private)); } } unsafe fn repeated_get_unchecked(f: View>, i: usize) -> View<$t> { unsafe { <$t as UpbTypeConversions>::from_message_value(upb_Array_Get(f.as_raw(Private), i)) } } unsafe fn repeated_set_unchecked(mut f: Mut>, i: usize, v: View<$t>) { let arena = f.raw_arena(Private); unsafe { upb_Array_Set( f.as_raw(Private), i, <$t as UpbTypeConversions>::to_message_value_copy_if_required(arena, v.into()), ) } } }; } macro_rules! impl_repeated_primitives { ($(($t:ty, $elem_t:ty, $ufield:ident, $upb_tag:expr)),* $(,)?) => { $( unsafe impl ProxiedInRepeated for $t { impl_repeated_base!($t, $elem_t, $ufield, $upb_tag); fn repeated_copy_from(src: View>, mut dest: Mut>) { let arena = dest.raw_arena(Private); // SAFETY: // - `upb_Array_Resize` is unsafe but assumed to be always sound to call. // - `copy_nonoverlapping` is unsafe but here we guarantee that both pointers // are valid, the pointers are `#[repr(u8)]`, and the size is correct. unsafe { if (!upb_Array_Resize(dest.as_raw(Private), src.len(), arena)) { panic!("upb_Array_Resize failed."); } ptr::copy_nonoverlapping( upb_Array_DataPtr(src.as_raw(Private)).cast::(), upb_Array_MutableDataPtr(dest.as_raw(Private)).cast::(), size_of::<$elem_t>() * src.len()); } } } )* } } macro_rules! impl_repeated_bytes { ($(($t:ty, $upb_tag:expr)),* $(,)?) => { $( unsafe impl ProxiedInRepeated for $t { impl_repeated_base!($t, PtrAndLen, str_val, $upb_tag); fn repeated_copy_from(src: View>, mut dest: Mut>) { let len = src.len(); // SAFETY: // - `upb_Array_Resize` is unsafe but assumed to be always sound to call. // - `upb_Array` ensures its elements are never uninitialized memory. // - The `DataPtr` and `MutableDataPtr` functions return pointers to spans // of memory that are valid for at least `len` elements of PtrAndLen. // - `copy_nonoverlapping` is unsafe but here we guarantee that both pointers // are valid, the pointers are `#[repr(u8)]`, and the size is correct. // - The bytes held within a valid array are valid. unsafe { let arena = ManuallyDrop::new(Arena::from_raw(dest.raw_arena(Private))); if (!upb_Array_Resize(dest.as_raw(Private), src.len(), arena.raw())) { panic!("upb_Array_Resize failed."); } let src_ptrs: &[PtrAndLen] = slice::from_raw_parts( upb_Array_DataPtr(src.as_raw(Private)).cast(), len ); let dest_ptrs: &mut [PtrAndLen] = slice::from_raw_parts_mut( upb_Array_MutableDataPtr(dest.as_raw(Private)).cast(), len ); for (src_ptr, dest_ptr) in src_ptrs.iter().zip(dest_ptrs) { *dest_ptr = copy_bytes_in_arena(&arena, src_ptr.as_ref()).into(); } } } } )* } } impl<'msg, T: ?Sized> RepeatedMut<'msg, T> { // Returns a `RawArena` which is live for at least `'msg` #[doc(hidden)] pub fn raw_arena(&mut self, _private: Private) -> RawArena { self.inner.arena.raw() } } impl_repeated_primitives!( // proxied type, element type, upb_MessageValue field name, UpbCType variant (bool, bool, bool_val, UpbCType::Bool), (f32, f32, float_val, UpbCType::Float), (f64, f64, double_val, UpbCType::Double), (i32, i32, int32_val, UpbCType::Int32), (u32, u32, uint32_val, UpbCType::UInt32), (i64, i64, int64_val, UpbCType::Int64), (u64, u64, uint64_val, UpbCType::UInt64), ); impl_repeated_bytes!((ProtoStr, UpbCType::String), ([u8], UpbCType::Bytes),); /// Copy the contents of `src` into `dest`. /// /// # Safety /// - `minitable` must be a pointer to the minitable for message `T`. pub unsafe fn repeated_message_copy_from( src: View>, mut dest: Mut>, minitable: *const OpaqueMiniTable, ) { // SAFETY: // - `src.as_raw()` is a valid `const upb_Array*`. // - `dest.as_raw()` is a valid `upb_Array*`. // - Elements of `src` and have message minitable `$minitable$`. unsafe { let size = upb_Array_Size(src.as_raw(Private)); if !upb_Array_Resize(dest.as_raw(Private), size, dest.raw_arena(Private)) { panic!("upb_Array_Resize failed."); } for i in 0..size { let src_msg = upb_Array_Get(src.as_raw(Private), i) .msg_val .expect("upb_Array* element should not be NULL"); // Avoid the use of `upb_Array_DeepClone` as it creates an // entirely new `upb_Array*` at a new memory address. let cloned_msg = upb_Message_DeepClone(src_msg, minitable, dest.raw_arena(Private)) .expect("upb_Message_DeepClone failed."); upb_Array_Set(dest.as_raw(Private), i, upb_MessageValue { msg_val: Some(cloned_msg) }); } } } /// Cast a `RepeatedView` to `RepeatedView`. pub fn cast_enum_repeated_view( private: Private, repeated: RepeatedView, ) -> RepeatedView { // SAFETY: Reading an enum array as an i32 array is sound. unsafe { RepeatedView::from_raw(private, repeated.as_raw(Private)) } } /// Cast a `RepeatedMut` to `RepeatedMut`. /// /// Writing an unknown value is sound because all enums /// are representationally open. pub fn cast_enum_repeated_mut( private: Private, repeated: RepeatedMut, ) -> RepeatedMut { // SAFETY: // - Reading an enum array as an i32 array is sound. // - No shared mutation is possible through the output. unsafe { let InnerRepeatedMut { arena, raw, .. } = repeated.inner; RepeatedMut::from_inner(private, InnerRepeatedMut { arena, raw }) } } /// Returns a static empty RepeatedView. pub fn empty_array() -> RepeatedView<'static, T> { // TODO: Consider creating a static empty array in C. // Use `i32` for a shared empty repeated for all repeated types in the program. static EMPTY_REPEATED_VIEW: OnceLock> = OnceLock::new(); // SAFETY: // - Because the repeated is never mutated, the repeated type is unused and // therefore valid for `T`. // - The view is leaked for `'static`. unsafe { RepeatedView::from_raw( Private, EMPTY_REPEATED_VIEW .get_or_init(|| Box::leak(Box::new(Repeated::new())).as_mut().into_view()) .as_raw(Private), ) } } /// Returns a static empty MapView. pub fn empty_map() -> MapView<'static, K, V> where K: Proxied + ?Sized, V: ProxiedInMapValue + ?Sized, { // TODO: Consider creating a static empty map in C. // Use `` for a shared empty map for all map types. // // This relies on an implicit contract with UPB that it is OK to use an empty // Map as an empty map of all other types. The only const // function on `upb_Map` that will care about the size of key or value is // `get()` where it will hash the appropriate number of bytes of the // provided `upb_MessageValue`, and that bool being the smallest type in the // union means it will happen to work for all possible key types. // // If we used a larger key, then UPB would hash more bytes of the key than Rust // initialized. static EMPTY_MAP_VIEW: OnceLock> = OnceLock::new(); // SAFETY: // - The map is empty and never mutated. // - The value type is never used. // - The size of the key type is used when `get()` computes the hash of the key. // The map is empty, therefore it doesn't matter what hash is computed, but we // have to use `bool` type as the smallest key possible (otherwise UPB would // read more bytes than Rust allocated). // - The view is leaked for `'static`. unsafe { MapView::from_raw( Private, EMPTY_MAP_VIEW .get_or_init(|| Box::leak(Box::new(Map::new())).as_mut().into_view()) .as_raw(Private), ) } } impl<'msg, K: ?Sized, V: ?Sized> MapMut<'msg, K, V> { // Returns a `RawArena` which is live for at least `'msg` #[doc(hidden)] pub fn raw_arena(&mut self, _private: Private) -> RawArena { self.inner.arena.raw() } } #[derive(Debug)] pub struct InnerMap { pub(crate) raw: RawMap, arena: Arena, } impl InnerMap { pub fn new(_private: Private, raw: RawMap, arena: Arena) -> Self { Self { raw, arena } } pub fn as_mut(&mut self) -> InnerMapMut<'_> { InnerMapMut { raw: self.raw, arena: &self.arena } } } #[derive(Clone, Copy, Debug)] pub struct InnerMapMut<'msg> { pub(crate) raw: RawMap, arena: &'msg Arena, } #[doc(hidden)] impl<'msg> InnerMapMut<'msg> { pub fn new(_private: Private, raw: RawMap, arena: &'msg Arena) -> Self { InnerMapMut { raw, arena } } #[doc(hidden)] pub fn as_raw(&self, _private: Private) -> RawMap { self.raw } #[doc(hidden)] pub fn raw_arena(&self, _private: Private) -> RawArena { self.arena.raw() } } pub trait UpbTypeConversions: Proxied { fn upb_type() -> UpbCType; fn to_message_value(val: View<'_, Self>) -> upb_MessageValue; /// # Safety /// - `raw_arena` must point to a valid upb arena. unsafe fn to_message_value_copy_if_required( raw_arena: RawArena, val: View<'_, Self>, ) -> upb_MessageValue; /// # Safety /// - `msg` must be the correct variant for `Self`. /// - `msg` pointers must point to memory valid for `'msg` lifetime. unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, Self>; } macro_rules! impl_upb_type_conversions_for_scalars { ($($t:ty, $ufield:ident, $upb_tag:expr, $zero_val:literal;)*) => { $( impl UpbTypeConversions for $t { #[inline(always)] fn upb_type() -> UpbCType { $upb_tag } #[inline(always)] fn to_message_value(val: View<'_, $t>) -> upb_MessageValue { upb_MessageValue { $ufield: val } } #[inline(always)] unsafe fn to_message_value_copy_if_required(_: RawArena, val: View<'_, $t>) -> upb_MessageValue { Self::to_message_value(val) } #[inline(always)] unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, $t> { unsafe { msg.$ufield } } } )* }; } impl_upb_type_conversions_for_scalars!( f32, float_val, UpbCType::Float, 0f32; f64, double_val, UpbCType::Double, 0f64; i32, int32_val, UpbCType::Int32, 0i32; u32, uint32_val, UpbCType::UInt32, 0u32; i64, int64_val, UpbCType::Int64, 0i64; u64, uint64_val, UpbCType::UInt64, 0u64; bool, bool_val, UpbCType::Bool, false; ); impl UpbTypeConversions for [u8] { fn upb_type() -> UpbCType { UpbCType::Bytes } fn to_message_value(val: View<'_, [u8]>) -> upb_MessageValue { upb_MessageValue { str_val: val.into() } } unsafe fn to_message_value_copy_if_required( raw_arena: RawArena, val: View<'_, [u8]>, ) -> upb_MessageValue { // SAFETY: The arena memory is not freed due to `ManuallyDrop`. let arena = ManuallyDrop::new(unsafe { Arena::from_raw(raw_arena) }); let copied = copy_bytes_in_arena(&arena, val); let msg_val = Self::to_message_value(copied); msg_val } unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, [u8]> { unsafe { msg.str_val.as_ref() } } } impl UpbTypeConversions for ProtoStr { fn upb_type() -> UpbCType { UpbCType::String } fn to_message_value(val: View<'_, ProtoStr>) -> upb_MessageValue { upb_MessageValue { str_val: val.as_bytes().into() } } unsafe fn to_message_value_copy_if_required( raw_arena: RawArena, val: View<'_, ProtoStr>, ) -> upb_MessageValue { // SAFETY: `raw_arena` is valid as promised by the caller unsafe { <[u8] as UpbTypeConversions>::to_message_value_copy_if_required( raw_arena, val.as_bytes(), ) } } unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, ProtoStr> { unsafe { ProtoStr::from_utf8_unchecked(msg.str_val.as_ref()) } } } pub struct RawMapIter { // TODO: Replace this `RawMap` with the const type. map: RawMap, iter: usize, } impl RawMapIter { pub fn new(_private: Private, map: RawMap) -> Self { // SAFETY: __rust_proto_kUpb_Map_Begin is never modified RawMapIter { map, iter: unsafe { __rust_proto_kUpb_Map_Begin } } } /// # Safety /// - `self.map` must be valid, and remain valid while the return value is /// in use. pub unsafe fn next_unchecked( &mut self, _private: Private, ) -> Option<(upb_MessageValue, upb_MessageValue)> { let mut key = MaybeUninit::uninit(); let mut value = MaybeUninit::uninit(); // SAFETY: the `map` is valid as promised by the caller unsafe { upb_Map_Next(self.map, key.as_mut_ptr(), value.as_mut_ptr(), &mut self.iter) } // SAFETY: if upb_Map_Next returns true, then key and value have been populated. .then(|| unsafe { (key.assume_init(), value.assume_init()) }) } } macro_rules! impl_ProxiedInMapValue_for_non_generated_value_types { ($key_t:ty ; $($t:ty),*) => { $( impl ProxiedInMapValue<$key_t> for $t { fn map_new(_private: Private) -> Map<$key_t, Self> { let arena = Arena::new(); let raw = unsafe { upb_Map_New(arena.raw(), <$key_t as UpbTypeConversions>::upb_type(), <$t as UpbTypeConversions>::upb_type()) }; Map::from_inner(Private, InnerMap { raw, arena }) } unsafe fn map_free(_private: Private, _map: &mut Map<$key_t, Self>) { // No-op: the memory will be dropped by the arena. } fn map_clear(mut map: Mut<'_, Map<$key_t, Self>>) { unsafe { upb_Map_Clear(map.as_raw(Private)); } } fn map_len(map: View<'_, Map<$key_t, Self>>) -> usize { unsafe { upb_Map_Size(map.as_raw(Private)) } } fn map_insert(mut map: Mut<'_, Map<$key_t, Self>>, key: View<'_, $key_t>, value: View<'_, Self>) -> bool { let arena = map.raw_arena(Private); unsafe { upb_Map_InsertAndReturnIfInserted( map.as_raw(Private), <$key_t as UpbTypeConversions>::to_message_value(key), <$t as UpbTypeConversions>::to_message_value_copy_if_required(arena, value), arena ) } } fn map_get<'a>(map: View<'a, Map<$key_t, Self>>, key: View<'_, $key_t>) -> Option> { let mut val = MaybeUninit::uninit(); let found = unsafe { upb_Map_Get(map.as_raw(Private), <$key_t as UpbTypeConversions>::to_message_value(key), val.as_mut_ptr()) }; if !found { return None; } Some(unsafe { <$t as UpbTypeConversions>::from_message_value(val.assume_init()) }) } fn map_remove(mut map: Mut<'_, Map<$key_t, Self>>, key: View<'_, $key_t>) -> bool { unsafe { upb_Map_Delete(map.as_raw(Private), <$key_t as UpbTypeConversions>::to_message_value(key), ptr::null_mut()) } } fn map_iter(map: View<'_, Map<$key_t, Self>>) -> MapIter<'_, $key_t, Self> { // SAFETY: View> guarantees its RawMap outlives '_. unsafe { MapIter::from_raw(Private, RawMapIter::new(Private, map.as_raw(Private))) } } fn map_iter_next<'a>( iter: &mut MapIter<'a, $key_t, Self> ) -> Option<(View<'a, $key_t>, View<'a, Self>)> { // SAFETY: MapIter<'a, ..> guarantees its RawMapIter outlives 'a. unsafe { iter.as_raw_mut(Private).next_unchecked(Private) } // SAFETY: MapIter returns key and values message values // with the variants for K and V active. .map(|(k, v)| unsafe {( <$key_t as UpbTypeConversions>::from_message_value(k), <$t as UpbTypeConversions>::from_message_value(v), )}) } } )* } } macro_rules! impl_ProxiedInMapValue_for_key_types { ($($t:ty),*) => { $( impl_ProxiedInMapValue_for_non_generated_value_types!( $t ; f32, f64, i32, u32, i64, u64, bool, ProtoStr, [u8] ); )* } } impl_ProxiedInMapValue_for_key_types!(i32, u32, i64, u64, bool, ProtoStr); #[repr(C)] #[allow(dead_code)] pub enum upb_MapInsertStatus { Inserted = 0, Replaced = 1, OutOfMemory = 2, } /// `upb_Map_Insert`, but returns a `bool` for whether insert occurred. /// /// Returns `true` if the entry was newly inserted. /// /// # Panics /// Panics if the arena is out of memory. /// /// # Safety /// The same as `upb_Map_Insert`: /// - `map` must be a valid map. /// - The `arena` must be valid and outlive the map. /// - The inserted value must outlive the map. #[allow(non_snake_case)] pub unsafe fn upb_Map_InsertAndReturnIfInserted( map: RawMap, key: upb_MessageValue, value: upb_MessageValue, arena: RawArena, ) -> bool { match unsafe { upb_Map_Insert(map, key, value, arena) } { upb_MapInsertStatus::Inserted => true, upb_MapInsertStatus::Replaced => false, upb_MapInsertStatus::OutOfMemory => panic!("map arena is out of memory"), } } extern "C" { pub fn upb_Map_New(arena: RawArena, key_type: UpbCType, value_type: UpbCType) -> RawMap; pub fn upb_Map_Size(map: RawMap) -> usize; pub fn upb_Map_Insert( map: RawMap, key: upb_MessageValue, value: upb_MessageValue, arena: RawArena, ) -> upb_MapInsertStatus; pub fn upb_Map_Get(map: RawMap, key: upb_MessageValue, value: *mut upb_MessageValue) -> bool; pub fn upb_Map_Delete( map: RawMap, key: upb_MessageValue, removed_value: *mut upb_MessageValue, ) -> bool; pub fn upb_Map_Clear(map: RawMap); static __rust_proto_kUpb_Map_Begin: usize; pub fn upb_Map_Next( map: RawMap, key: *mut upb_MessageValue, value: *mut upb_MessageValue, iter: &mut usize, ) -> bool; } #[cfg(test)] mod tests { use super::*; use googletest::prelude::*; #[test] fn test_arena_new_and_free() { let arena = Arena::new(); drop(arena); } #[test] fn test_serialized_data_roundtrip() { let arena = Arena::new(); let original_data = b"Hello world"; let len = original_data.len(); let serialized_data = unsafe { SerializedData::from_raw_parts( arena, NonNull::new(original_data as *const _ as *mut _).unwrap(), len, ) }; assert_that!(&*serialized_data, eq(b"Hello world")); } #[test] fn assert_c_type_sizes() { // TODO: add these same asserts in C++. use std::ffi::c_void; use std::mem::{align_of, size_of}; assert_that!( size_of::(), eq(size_of::<*const c_void>() + size_of::()) ); assert_that!(align_of::(), eq(align_of::<*const c_void>())); assert_that!(size_of::(), eq(size_of::<*const c_void>())); assert_that!(align_of::(), eq(align_of::<*const c_void>())); } }