// Protocol Buffers - Google's data interchange format // Copyright 2014 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "protobuf.h" #include #include "defs.h" #include "map.h" #include "message.h" #include "repeated_field.h" VALUE cParseError; VALUE cTypeError; const upb_FieldDef *map_field_key(const upb_FieldDef *field) { const upb_MessageDef *entry = upb_FieldDef_MessageSubDef(field); return upb_MessageDef_FindFieldByNumber(entry, 1); } const upb_FieldDef *map_field_value(const upb_FieldDef *field) { const upb_MessageDef *entry = upb_FieldDef_MessageSubDef(field); return upb_MessageDef_FindFieldByNumber(entry, 2); } // ----------------------------------------------------------------------------- // StringBuilder, for inspect // ----------------------------------------------------------------------------- struct StringBuilder { size_t size; size_t cap; char *data; }; typedef struct StringBuilder StringBuilder; static size_t StringBuilder_SizeOf(size_t cap) { return sizeof(StringBuilder) + cap; } StringBuilder *StringBuilder_New() { const size_t cap = 128; StringBuilder *builder = malloc(sizeof(*builder)); builder->size = 0; builder->cap = cap; builder->data = malloc(builder->cap); return builder; } void StringBuilder_Free(StringBuilder *b) { free(b->data); free(b); } void StringBuilder_Printf(StringBuilder *b, const char *fmt, ...) { size_t have = b->cap - b->size; size_t n; va_list args; va_start(args, fmt); n = vsnprintf(&b->data[b->size], have, fmt, args); va_end(args); if (have <= n) { while (have <= n) { b->cap *= 2; have = b->cap - b->size; } b->data = realloc(b->data, StringBuilder_SizeOf(b->cap)); va_start(args, fmt); n = vsnprintf(&b->data[b->size], have, fmt, args); va_end(args); PBRUBY_ASSERT(n < have); } b->size += n; } VALUE StringBuilder_ToRubyString(StringBuilder *b) { VALUE ret = rb_str_new(b->data, b->size); rb_enc_associate(ret, rb_utf8_encoding()); return ret; } static void StringBuilder_PrintEnum(StringBuilder *b, int32_t val, const upb_EnumDef *e) { const upb_EnumValueDef *ev = upb_EnumDef_FindValueByNumber(e, val); if (ev) { StringBuilder_Printf(b, ":%s", upb_EnumValueDef_Name(ev)); } else { StringBuilder_Printf(b, "%" PRId32, val); } } void StringBuilder_PrintMsgval(StringBuilder *b, upb_MessageValue val, TypeInfo info) { switch (info.type) { case kUpb_CType_Bool: StringBuilder_Printf(b, "%s", val.bool_val ? "true" : "false"); break; case kUpb_CType_Float: { VALUE str = rb_inspect(DBL2NUM(val.float_val)); StringBuilder_Printf(b, "%s", RSTRING_PTR(str)); break; } case kUpb_CType_Double: { VALUE str = rb_inspect(DBL2NUM(val.double_val)); StringBuilder_Printf(b, "%s", RSTRING_PTR(str)); break; } case kUpb_CType_Int32: StringBuilder_Printf(b, "%" PRId32, val.int32_val); break; case kUpb_CType_UInt32: StringBuilder_Printf(b, "%" PRIu32, val.uint32_val); break; case kUpb_CType_Int64: StringBuilder_Printf(b, "%" PRId64, val.int64_val); break; case kUpb_CType_UInt64: StringBuilder_Printf(b, "%" PRIu64, val.uint64_val); break; case kUpb_CType_String: StringBuilder_Printf(b, "\"%.*s\"", (int)val.str_val.size, val.str_val.data); break; case kUpb_CType_Bytes: StringBuilder_Printf(b, "\"%.*s\"", (int)val.str_val.size, val.str_val.data); break; case kUpb_CType_Enum: StringBuilder_PrintEnum(b, val.int32_val, info.def.enumdef); break; case kUpb_CType_Message: Message_PrintMessage(b, val.msg_val, info.def.msgdef); break; } } // ----------------------------------------------------------------------------- // Arena // ----------------------------------------------------------------------------- typedef struct { upb_Arena *arena; // IMPORTANT: WB_PROTECTED objects must only use the RB_OBJ_WRITE() // macro to update VALUE references, as to trigger write barriers. VALUE pinned_objs; } Arena; static void Arena_mark(void *data) { Arena *arena = data; rb_gc_mark(arena->pinned_objs); } static void Arena_free(void *data) { Arena *arena = data; upb_Arena_Free(arena->arena); xfree(arena); } static VALUE cArena; const rb_data_type_t Arena_type = { "Google::Protobuf::Internal::Arena", {Arena_mark, Arena_free, NULL}, .flags = RUBY_TYPED_FREE_IMMEDIATELY | RUBY_TYPED_WB_PROTECTED, }; static void* ruby_upb_allocfunc(upb_alloc* alloc, void* ptr, size_t oldsize, size_t size) { if (size == 0) { xfree(ptr); return NULL; } else { return xrealloc(ptr, size); } } upb_alloc ruby_upb_alloc = {&ruby_upb_allocfunc}; static VALUE Arena_alloc(VALUE klass) { Arena *arena = ALLOC(Arena); arena->arena = upb_Arena_Init(NULL, 0, &ruby_upb_alloc); arena->pinned_objs = Qnil; return TypedData_Wrap_Struct(klass, &Arena_type, arena); } upb_Arena *Arena_get(VALUE _arena) { Arena *arena; TypedData_Get_Struct(_arena, Arena, &Arena_type, arena); return arena->arena; } void Arena_fuse(VALUE _arena, upb_Arena *other) { Arena *arena; TypedData_Get_Struct(_arena, Arena, &Arena_type, arena); if (!upb_Arena_Fuse(arena->arena, other)) { rb_raise(rb_eRuntimeError, "Unable to fuse arenas. This should never happen since Ruby does " "not use initial blocks"); } } VALUE Arena_new() { return Arena_alloc(cArena); } void Arena_Pin(VALUE _arena, VALUE obj) { Arena *arena; TypedData_Get_Struct(_arena, Arena, &Arena_type, arena); if (arena->pinned_objs == Qnil) { RB_OBJ_WRITE(_arena, &arena->pinned_objs, rb_ary_new()); } rb_ary_push(arena->pinned_objs, obj); } void Arena_register(VALUE module) { VALUE internal = rb_define_module_under(module, "Internal"); VALUE klass = rb_define_class_under(internal, "Arena", rb_cObject); rb_define_alloc_func(klass, Arena_alloc); rb_gc_register_address(&cArena); cArena = klass; } // ----------------------------------------------------------------------------- // Object Cache // ----------------------------------------------------------------------------- // A pointer -> Ruby Object cache that keeps references to Ruby wrapper // objects. This allows us to look up any Ruby wrapper object by the address // of the object it is wrapping. That way we can avoid ever creating two // different wrapper objects for the same C object, which saves memory and // preserves object identity. // // We use WeakMap for the cache. For Ruby <2.7 we also need a secondary Hash // to store WeakMap keys because Ruby <2.7 WeakMap doesn't allow non-finalizable // keys. // // We also need the secondary Hash if sizeof(long) < sizeof(VALUE), because this // means it may not be possible to fit a pointer into a Fixnum. Keys are // pointers, and if they fit into a Fixnum, Ruby doesn't collect them, but if // they overflow and require allocating a Bignum, they could get collected // prematurely, thus removing the cache entry. This happens on 64-bit Windows, // on which pointers are 64 bits but longs are 32 bits. In this case, we enable // the secondary Hash to hold the keys and prevent them from being collected. #if RUBY_API_VERSION_CODE >= 20700 && SIZEOF_LONG >= SIZEOF_VALUE #define USE_SECONDARY_MAP 0 #else #define USE_SECONDARY_MAP 1 #endif #if USE_SECONDARY_MAP // Maps Numeric -> Object. The object is then used as a key into the WeakMap. // This is needed for Ruby <2.7 where a number cannot be a key to WeakMap. // The object is used only for its identity; it does not contain any data. VALUE secondary_map = Qnil; // Mutations to the map are under a mutex, because SeconaryMap_MaybeGC() // iterates over the map which cannot happen in parallel with insertions, or // Ruby will throw: // can't add a new key into hash during iteration (RuntimeError) VALUE secondary_map_mutex = Qnil; // Lambda that will GC entries from the secondary map that are no longer present // in the primary map. VALUE gc_secondary_map_lambda = Qnil; ID length; extern VALUE weak_obj_cache; static void SecondaryMap_Init() { rb_gc_register_address(&secondary_map); rb_gc_register_address(&gc_secondary_map_lambda); rb_gc_register_address(&secondary_map_mutex); secondary_map = rb_hash_new(); gc_secondary_map_lambda = rb_eval_string( "->(secondary, weak) {\n" " secondary.delete_if { |k, v| !weak.key?(v) }\n" "}\n"); secondary_map_mutex = rb_mutex_new(); length = rb_intern("length"); } // The secondary map is a regular Hash, and will never shrink on its own. // The main object cache is a WeakMap that will automatically remove entries // when the target object is no longer reachable, but unless we manually // remove the corresponding entries from the secondary map, it will grow // without bound. // // To avoid this unbounded growth we periodically remove entries from the // secondary map that are no longer present in the WeakMap. The logic of // how often to perform this GC is an artbirary tuning parameter that // represents a straightforward CPU/memory tradeoff. // // Requires: secondary_map_mutex is held. static void SecondaryMap_MaybeGC() { PBRUBY_ASSERT(rb_mutex_locked_p(secondary_map_mutex) == Qtrue); size_t weak_len = NUM2ULL(rb_funcall(weak_obj_cache, length, 0)); size_t secondary_len = RHASH_SIZE(secondary_map); if (secondary_len < weak_len) { // Logically this case should not be possible: a valid entry cannot exist in // the weak table unless there is a corresponding entry in the secondary // table. It should *always* be the case that secondary_len >= weak_len. // // However ObjectSpace::WeakMap#length (and therefore weak_len) is // unreliable: it overreports its true length by including non-live objects. // However these non-live objects are not yielded in iteration, so we may // have previously deleted them from the secondary map in a previous // invocation of SecondaryMap_MaybeGC(). // // In this case, we can't measure any waste, so we just return. return; } size_t waste = secondary_len - weak_len; // GC if we could remove at least 2000 entries or 20% of the table size // (whichever is greater). Since the cost of the GC pass is O(N), we // want to make sure that we condition this on overall table size, to // avoid O(N^2) CPU costs. size_t threshold = PBRUBY_MAX(secondary_len * 0.2, 2000); if (waste > threshold) { rb_funcall(gc_secondary_map_lambda, rb_intern("call"), 2, secondary_map, weak_obj_cache); } } // Requires: secondary_map_mutex is held by this thread iff create == true. static VALUE SecondaryMap_Get(VALUE key, bool create) { PBRUBY_ASSERT(!create || rb_mutex_locked_p(secondary_map_mutex) == Qtrue); VALUE ret = rb_hash_lookup(secondary_map, key); if (ret == Qnil && create) { SecondaryMap_MaybeGC(); ret = rb_class_new_instance(0, NULL, rb_cObject); rb_hash_aset(secondary_map, key, ret); } return ret; } #endif // Requires: secondary_map_mutex is held by this thread iff create == true. static VALUE ObjectCache_GetKey(const void *key, bool create) { VALUE key_val = (VALUE)key; PBRUBY_ASSERT((key_val & 3) == 0); VALUE ret = LL2NUM(key_val >> 2); #if USE_SECONDARY_MAP ret = SecondaryMap_Get(ret, create); #endif return ret; } // Public ObjectCache API. VALUE weak_obj_cache = Qnil; ID item_get; ID item_set; static void ObjectCache_Init() { rb_gc_register_address(&weak_obj_cache); VALUE klass = rb_eval_string("ObjectSpace::WeakMap"); weak_obj_cache = rb_class_new_instance(0, NULL, klass); item_get = rb_intern("[]"); item_set = rb_intern("[]="); #if USE_SECONDARY_MAP SecondaryMap_Init(); #endif } void ObjectCache_Add(const void *key, VALUE val) { PBRUBY_ASSERT(ObjectCache_Get(key) == Qnil); #if USE_SECONDARY_MAP rb_mutex_lock(secondary_map_mutex); #endif VALUE key_rb = ObjectCache_GetKey(key, true); rb_funcall(weak_obj_cache, item_set, 2, key_rb, val); #if USE_SECONDARY_MAP rb_mutex_unlock(secondary_map_mutex); #endif PBRUBY_ASSERT(ObjectCache_Get(key) == val); } // Returns the cached object for this key, if any. Otherwise returns Qnil. VALUE ObjectCache_Get(const void *key) { VALUE key_rb = ObjectCache_GetKey(key, false); return rb_funcall(weak_obj_cache, item_get, 1, key_rb); } /* * call-seq: * Google::Protobuf.discard_unknown(msg) * * Discard unknown fields in the given message object and recursively discard * unknown fields in submessages. */ static VALUE Google_Protobuf_discard_unknown(VALUE self, VALUE msg_rb) { const upb_MessageDef *m; upb_Message *msg = Message_GetMutable(msg_rb, &m); if (!upb_Message_DiscardUnknown(msg, m, 128)) { rb_raise(rb_eRuntimeError, "Messages nested too deeply."); } return Qnil; } /* * call-seq: * Google::Protobuf.deep_copy(obj) => copy_of_obj * * Performs a deep copy of a RepeatedField instance, a Map instance, or a * message object, recursively copying its members. */ VALUE Google_Protobuf_deep_copy(VALUE self, VALUE obj) { VALUE klass = CLASS_OF(obj); if (klass == cRepeatedField) { return RepeatedField_deep_copy(obj); } else if (klass == cMap) { return Map_deep_copy(obj); } else { VALUE new_arena_rb = Arena_new(); upb_Arena *new_arena = Arena_get(new_arena_rb); const upb_MessageDef *m; const upb_Message *msg = Message_Get(obj, &m); upb_Message *new_msg = Message_deep_copy(msg, m, new_arena); return Message_GetRubyWrapper(new_msg, m, new_arena_rb); } } // ----------------------------------------------------------------------------- // Initialization/entry point. // ----------------------------------------------------------------------------- // This must be named "Init_protobuf_c" because the Ruby module is named // "protobuf_c" -- the VM looks for this symbol in our .so. __attribute__((visibility("default"))) void Init_protobuf_c() { ObjectCache_Init(); VALUE google = rb_define_module("Google"); VALUE protobuf = rb_define_module_under(google, "Protobuf"); Arena_register(protobuf); Defs_register(protobuf); RepeatedField_register(protobuf); Map_register(protobuf); Message_register(protobuf); cParseError = rb_const_get(protobuf, rb_intern("ParseError")); rb_gc_register_mark_object(cParseError); cTypeError = rb_const_get(protobuf, rb_intern("TypeError")); rb_gc_register_mark_object(cTypeError); rb_define_singleton_method(protobuf, "discard_unknown", Google_Protobuf_discard_unknown, 1); rb_define_singleton_method(protobuf, "deep_copy", Google_Protobuf_deep_copy, 1); }