// Protocol Buffers - Google's data interchange format // Copyright 2014 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "convert.h" #include "defs.h" #include "message.h" #include "protobuf.h" // ----------------------------------------------------------------------------- // Basic map operations on top of upb_Map. // // Note that we roll our own `Map` container here because, as for // `RepeatedField`, we want a strongly-typed container. This is so that any user // errors due to incorrect map key or value types are raised as close as // possible to the error site, rather than at some deferred point (e.g., // serialization). // ----------------------------------------------------------------------------- // ----------------------------------------------------------------------------- // Map container type. // ----------------------------------------------------------------------------- typedef struct { const upb_Map* map; // Can convert to mutable when non-frozen. upb_CType key_type; TypeInfo value_type_info; VALUE value_type_class; VALUE arena; } Map; static void Map_mark(void* _self) { Map* self = _self; rb_gc_mark(self->value_type_class); rb_gc_mark(self->arena); } const rb_data_type_t Map_type = { "Google::Protobuf::Map", {Map_mark, RUBY_DEFAULT_FREE, NULL}, .flags = RUBY_TYPED_FREE_IMMEDIATELY, }; VALUE cMap; static Map* ruby_to_Map(VALUE _self) { Map* self; TypedData_Get_Struct(_self, Map, &Map_type, self); return self; } static VALUE Map_alloc(VALUE klass) { Map* self = ALLOC(Map); self->map = NULL; self->value_type_class = Qnil; self->value_type_info.def.msgdef = NULL; self->arena = Qnil; return TypedData_Wrap_Struct(klass, &Map_type, self); } VALUE Map_GetRubyWrapper(upb_Map* map, upb_CType key_type, TypeInfo value_type, VALUE arena) { PBRUBY_ASSERT(map); VALUE val = ObjectCache_Get(map); if (val == Qnil) { val = Map_alloc(cMap); Map* self; ObjectCache_Add(map, val); TypedData_Get_Struct(val, Map, &Map_type, self); self->map = map; self->arena = arena; self->key_type = key_type; self->value_type_info = value_type; if (self->value_type_info.type == kUpb_CType_Message) { const upb_MessageDef* val_m = self->value_type_info.def.msgdef; self->value_type_class = Descriptor_DefToClass(val_m); } } return val; } static VALUE Map_new_this_type(Map* from) { VALUE arena_rb = Arena_new(); upb_Map* map = upb_Map_New(Arena_get(arena_rb), from->key_type, from->value_type_info.type); VALUE ret = Map_GetRubyWrapper(map, from->key_type, from->value_type_info, arena_rb); PBRUBY_ASSERT(ruby_to_Map(ret)->value_type_class == from->value_type_class); return ret; } static TypeInfo Map_keyinfo(Map* self) { TypeInfo ret; ret.type = self->key_type; ret.def.msgdef = NULL; return ret; } static upb_Map* Map_GetMutable(VALUE _self) { rb_check_frozen(_self); return (upb_Map*)ruby_to_Map(_self)->map; } VALUE Map_CreateHash(const upb_Map* map, upb_CType key_type, TypeInfo val_info) { VALUE hash = rb_hash_new(); TypeInfo key_info = TypeInfo_from_type(key_type); if (!map) return hash; size_t iter = kUpb_Map_Begin; upb_MessageValue key, val; while (upb_Map_Next(map, &key, &val, &iter)) { VALUE key_val = Convert_UpbToRuby(key, key_info, Qnil); VALUE val_val = Scalar_CreateHash(val, val_info); rb_hash_aset(hash, key_val, val_val); } return hash; } VALUE Map_deep_copy(VALUE obj) { Map* self = ruby_to_Map(obj); VALUE new_arena_rb = Arena_new(); upb_Arena* arena = Arena_get(new_arena_rb); upb_Map* new_map = upb_Map_New(arena, self->key_type, self->value_type_info.type); size_t iter = kUpb_Map_Begin; upb_MessageValue key, val; while (upb_Map_Next(self->map, &key, &val, &iter)) { upb_MessageValue val_copy = Msgval_DeepCopy(val, self->value_type_info, arena); upb_Map_Set(new_map, key, val_copy, arena); } return Map_GetRubyWrapper(new_map, self->key_type, self->value_type_info, new_arena_rb); } const upb_Map* Map_GetUpbMap(VALUE val, const upb_FieldDef* field, upb_Arena* arena) { const upb_FieldDef* key_field = map_field_key(field); const upb_FieldDef* value_field = map_field_value(field); TypeInfo value_type_info = TypeInfo_get(value_field); Map* self; if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) || RTYPEDDATA_TYPE(val) != &Map_type) { rb_raise(cTypeError, "Expected Map instance"); } self = ruby_to_Map(val); if (self->key_type != upb_FieldDef_CType(key_field)) { rb_raise(cTypeError, "Map key type does not match field's key type"); } if (self->value_type_info.type != value_type_info.type) { rb_raise(cTypeError, "Map value type does not match field's value type"); } if (self->value_type_info.def.msgdef != value_type_info.def.msgdef) { rb_raise(cTypeError, "Map value type has wrong message/enum class"); } Arena_fuse(self->arena, arena); return self->map; } void Map_Inspect(StringBuilder* b, const upb_Map* map, upb_CType key_type, TypeInfo val_type) { bool first = true; TypeInfo key_type_info = {key_type}; StringBuilder_Printf(b, "{"); if (map) { size_t iter = kUpb_Map_Begin; upb_MessageValue key, val; while (upb_Map_Next(map, &key, &val, &iter)) { if (first) { first = false; } else { StringBuilder_Printf(b, ", "); } StringBuilder_PrintMsgval(b, key, key_type_info); StringBuilder_Printf(b, "=>"); StringBuilder_PrintMsgval(b, val, val_type); } } StringBuilder_Printf(b, "}"); } static int merge_into_self_callback(VALUE key, VALUE val, VALUE _self) { Map* self = ruby_to_Map(_self); upb_Arena* arena = Arena_get(self->arena); upb_MessageValue key_val = Convert_RubyToUpb(key, "", Map_keyinfo(self), arena); upb_MessageValue val_val = Convert_RubyToUpb(val, "", self->value_type_info, arena); upb_Map_Set(Map_GetMutable(_self), key_val, val_val, arena); return ST_CONTINUE; } // Used only internally -- shared by #merge and #initialize. static VALUE Map_merge_into_self(VALUE _self, VALUE hashmap) { if (TYPE(hashmap) == T_HASH) { rb_hash_foreach(hashmap, merge_into_self_callback, _self); } else if (RB_TYPE_P(hashmap, T_DATA) && RTYPEDDATA_P(hashmap) && RTYPEDDATA_TYPE(hashmap) == &Map_type) { Map* self = ruby_to_Map(_self); Map* other = ruby_to_Map(hashmap); upb_Arena* arena = Arena_get(self->arena); upb_Message* self_msg = Map_GetMutable(_self); Arena_fuse(other->arena, arena); if (self->key_type != other->key_type || self->value_type_info.type != other->value_type_info.type || self->value_type_class != other->value_type_class) { rb_raise(rb_eArgError, "Attempt to merge Map with mismatching types"); } size_t iter = kUpb_Map_Begin; upb_MessageValue key, val; while (upb_Map_Next(other->map, &key, &val, &iter)) { upb_Map_Set(self_msg, key, val, arena); } } else { rb_raise(rb_eArgError, "Unknown type merging into Map"); } return _self; } /* * call-seq: * Map.new(key_type, value_type, value_typeclass = nil, init_hashmap = {}) * => new map * * Allocates a new Map container. This constructor may be called with 2, 3, or 4 * arguments. The first two arguments are always present and are symbols (taking * on the same values as field-type symbols in message descriptors) that * indicate the type of the map key and value fields. * * The supported key types are: :int32, :int64, :uint32, :uint64, :bool, * :string, :bytes. * * The supported value types are: :int32, :int64, :uint32, :uint64, :bool, * :string, :bytes, :enum, :message. * * The third argument, value_typeclass, must be present if value_type is :enum * or :message. As in RepeatedField#new, this argument must be a message class * (for :message) or enum module (for :enum). * * The last argument, if present, provides initial content for map. Note that * this may be an ordinary Ruby hashmap or another Map instance with identical * key and value types. Also note that this argument may be present whether or * not value_typeclass is present (and it is unambiguously separate from * value_typeclass because value_typeclass's presence is strictly determined by * value_type). The contents of this initial hashmap or Map instance are * shallow-copied into the new Map: the original map is unmodified, but * references to underlying objects will be shared if the value type is a * message type. */ static VALUE Map_init(int argc, VALUE* argv, VALUE _self) { Map* self = ruby_to_Map(_self); VALUE init_arg; // We take either two args (:key_type, :value_type), three args (:key_type, // :value_type, "ValueMessageType"), or four args (the above plus an initial // hashmap). if (argc < 2 || argc > 4) { rb_raise(rb_eArgError, "Map constructor expects 2, 3 or 4 arguments."); } self->key_type = ruby_to_fieldtype(argv[0]); self->value_type_info = TypeInfo_FromClass(argc, argv, 1, &self->value_type_class, &init_arg); self->arena = Arena_new(); // Check that the key type is an allowed type. switch (self->key_type) { case kUpb_CType_Int32: case kUpb_CType_Int64: case kUpb_CType_UInt32: case kUpb_CType_UInt64: case kUpb_CType_Bool: case kUpb_CType_String: case kUpb_CType_Bytes: // These are OK. break; default: rb_raise(rb_eArgError, "Invalid key type for map."); } self->map = upb_Map_New(Arena_get(self->arena), self->key_type, self->value_type_info.type); ObjectCache_Add(self->map, _self); if (init_arg != Qnil) { Map_merge_into_self(_self, init_arg); } return Qnil; } /* * call-seq: * Map.each(&block) * * Invokes &block on each |key, value| pair in the map, in unspecified order. * Note that Map also includes Enumerable; map thus acts like a normal Ruby * sequence. */ static VALUE Map_each(VALUE _self) { Map* self = ruby_to_Map(_self); size_t iter = kUpb_Map_Begin; upb_MessageValue key, val; while (upb_Map_Next(self->map, &key, &val, &iter)) { VALUE key_val = Convert_UpbToRuby(key, Map_keyinfo(self), self->arena); VALUE val_val = Convert_UpbToRuby(val, self->value_type_info, self->arena); rb_yield_values(2, key_val, val_val); } return Qnil; } /* * call-seq: * Map.keys => [list_of_keys] * * Returns the list of keys contained in the map, in unspecified order. */ static VALUE Map_keys(VALUE _self) { Map* self = ruby_to_Map(_self); size_t iter = kUpb_Map_Begin; VALUE ret = rb_ary_new(); upb_MessageValue key, val; while (upb_Map_Next(self->map, &key, &val, &iter)) { VALUE key_val = Convert_UpbToRuby(key, Map_keyinfo(self), self->arena); rb_ary_push(ret, key_val); } return ret; } /* * call-seq: * Map.values => [list_of_values] * * Returns the list of values contained in the map, in unspecified order. */ static VALUE Map_values(VALUE _self) { Map* self = ruby_to_Map(_self); size_t iter = kUpb_Map_Begin; VALUE ret = rb_ary_new(); upb_MessageValue key, val; while (upb_Map_Next(self->map, &key, &val, &iter)) { VALUE val_val = Convert_UpbToRuby(val, self->value_type_info, self->arena); rb_ary_push(ret, val_val); } return ret; } /* * call-seq: * Map.[](key) => value * * Accesses the element at the given key. Throws an exception if the key type is * incorrect. Returns nil when the key is not present in the map. */ static VALUE Map_index(VALUE _self, VALUE key) { Map* self = ruby_to_Map(_self); upb_MessageValue key_upb = Convert_RubyToUpb(key, "", Map_keyinfo(self), NULL); upb_MessageValue val; if (upb_Map_Get(self->map, key_upb, &val)) { return Convert_UpbToRuby(val, self->value_type_info, self->arena); } else { return Qnil; } } /* * call-seq: * Map.[]=(key, value) => value * * Inserts or overwrites the value at the given key with the given new value. * Throws an exception if the key type is incorrect. Returns the new value that * was just inserted. */ static VALUE Map_index_set(VALUE _self, VALUE key, VALUE val) { Map* self = ruby_to_Map(_self); upb_Arena* arena = Arena_get(self->arena); upb_MessageValue key_upb = Convert_RubyToUpb(key, "", Map_keyinfo(self), NULL); upb_MessageValue val_upb = Convert_RubyToUpb(val, "", self->value_type_info, arena); upb_Map_Set(Map_GetMutable(_self), key_upb, val_upb, arena); return val; } /* * call-seq: * Map.has_key?(key) => bool * * Returns true if the given key is present in the map. Throws an exception if * the key has the wrong type. */ static VALUE Map_has_key(VALUE _self, VALUE key) { Map* self = ruby_to_Map(_self); upb_MessageValue key_upb = Convert_RubyToUpb(key, "", Map_keyinfo(self), NULL); if (upb_Map_Get(self->map, key_upb, NULL)) { return Qtrue; } else { return Qfalse; } } /* * call-seq: * Map.delete(key) => old_value * * Deletes the value at the given key, if any, returning either the old value or * nil if none was present. Throws an exception if the key is of the wrong type. */ static VALUE Map_delete(VALUE _self, VALUE key) { Map* self = ruby_to_Map(_self); upb_MessageValue key_upb = Convert_RubyToUpb(key, "", Map_keyinfo(self), NULL); upb_MessageValue val_upb; VALUE ret; rb_check_frozen(_self); // TODO(haberman): make upb_Map_Delete() also capable of returning the deleted // value. if (upb_Map_Get(self->map, key_upb, &val_upb)) { ret = Convert_UpbToRuby(val_upb, self->value_type_info, self->arena); } else { ret = Qnil; } upb_Map_Delete(Map_GetMutable(_self), key_upb); return ret; } /* * call-seq: * Map.clear * * Removes all entries from the map. */ static VALUE Map_clear(VALUE _self) { upb_Map_Clear(Map_GetMutable(_self)); return Qnil; } /* * call-seq: * Map.length * * Returns the number of entries (key-value pairs) in the map. */ static VALUE Map_length(VALUE _self) { Map* self = ruby_to_Map(_self); return ULL2NUM(upb_Map_Size(self->map)); } /* * call-seq: * Map.dup => new_map * * Duplicates this map with a shallow copy. References to all non-primitive * element objects (e.g., submessages) are shared. */ static VALUE Map_dup(VALUE _self) { Map* self = ruby_to_Map(_self); VALUE new_map_rb = Map_new_this_type(self); Map* new_self = ruby_to_Map(new_map_rb); size_t iter = kUpb_Map_Begin; upb_Arena* arena = Arena_get(new_self->arena); upb_Map* new_map = Map_GetMutable(new_map_rb); Arena_fuse(self->arena, arena); upb_MessageValue key, val; while (upb_Map_Next(self->map, &key, &val, &iter)) { upb_Map_Set(new_map, key, val, arena); } return new_map_rb; } /* * call-seq: * Map.==(other) => boolean * * Compares this map to another. Maps are equal if they have identical key sets, * and for each key, the values in both maps compare equal. Elements are * compared as per normal Ruby semantics, by calling their :== methods (or * performing a more efficient comparison for primitive types). * * Maps with dissimilar key types or value types/typeclasses are never equal, * even if value comparison (for example, between integers and floats) would * have otherwise indicated that every element has equal value. */ VALUE Map_eq(VALUE _self, VALUE _other) { Map* self = ruby_to_Map(_self); Map* other; // Allow comparisons to Ruby hashmaps by converting to a temporary Map // instance. Slow, but workable. if (TYPE(_other) == T_HASH) { VALUE other_map = Map_new_this_type(self); Map_merge_into_self(other_map, _other); _other = other_map; } other = ruby_to_Map(_other); if (self == other) { return Qtrue; } if (self->key_type != other->key_type || self->value_type_info.type != other->value_type_info.type || self->value_type_class != other->value_type_class) { return Qfalse; } if (upb_Map_Size(self->map) != upb_Map_Size(other->map)) { return Qfalse; } // For each member of self, check that an equal member exists at the same key // in other. size_t iter = kUpb_Map_Begin; upb_MessageValue key, val; while (upb_Map_Next(self->map, &key, &val, &iter)) { upb_MessageValue other_val; if (!upb_Map_Get(other->map, key, &other_val)) { // Not present in other map. return Qfalse; } if (!Msgval_IsEqual(val, other_val, self->value_type_info)) { // Present but different value. return Qfalse; } } return Qtrue; } /* * call-seq: * Message.freeze => self * * Freezes the message object. We have to intercept this so we can pin the * Ruby object into memory so we don't forget it's frozen. */ static VALUE Map_freeze(VALUE _self) { Map* self = ruby_to_Map(_self); if (!RB_OBJ_FROZEN(_self)) { Arena_Pin(self->arena, _self); RB_OBJ_FREEZE(_self); } return _self; } /* * call-seq: * Map.hash => hash_value * * Returns a hash value based on this map's contents. */ VALUE Map_hash(VALUE _self) { Map* self = ruby_to_Map(_self); uint64_t hash = 0; size_t iter = kUpb_Map_Begin; TypeInfo key_info = {self->key_type}; upb_MessageValue key, val; while (upb_Map_Next(self->map, &key, &val, &iter)) { hash = Msgval_GetHash(key, key_info, hash); hash = Msgval_GetHash(val, self->value_type_info, hash); } return LL2NUM(hash); } /* * call-seq: * Map.to_h => {} * * Returns a Ruby Hash object containing all the values within the map */ VALUE Map_to_h(VALUE _self) { Map* self = ruby_to_Map(_self); return Map_CreateHash(self->map, self->key_type, self->value_type_info); } /* * call-seq: * Map.inspect => string * * Returns a string representing this map's elements. It will be formatted as * "{key => value, key => value, ...}", with each key and value string * representation computed by its own #inspect method. */ VALUE Map_inspect(VALUE _self) { Map* self = ruby_to_Map(_self); StringBuilder* builder = StringBuilder_New(); Map_Inspect(builder, self->map, self->key_type, self->value_type_info); VALUE ret = StringBuilder_ToRubyString(builder); StringBuilder_Free(builder); return ret; } /* * call-seq: * Map.merge(other_map) => map * * Copies key/value pairs from other_map into a copy of this map. If a key is * set in other_map and this map, the value from other_map overwrites the value * in the new copy of this map. Returns the new copy of this map with merged * contents. */ static VALUE Map_merge(VALUE _self, VALUE hashmap) { VALUE dupped = Map_dup(_self); return Map_merge_into_self(dupped, hashmap); } void Map_register(VALUE module) { VALUE klass = rb_define_class_under(module, "Map", rb_cObject); rb_define_alloc_func(klass, Map_alloc); rb_gc_register_address(&cMap); cMap = klass; rb_define_method(klass, "initialize", Map_init, -1); rb_define_method(klass, "each", Map_each, 0); rb_define_method(klass, "keys", Map_keys, 0); rb_define_method(klass, "values", Map_values, 0); rb_define_method(klass, "[]", Map_index, 1); rb_define_method(klass, "[]=", Map_index_set, 2); rb_define_method(klass, "has_key?", Map_has_key, 1); rb_define_method(klass, "delete", Map_delete, 1); rb_define_method(klass, "clear", Map_clear, 0); rb_define_method(klass, "length", Map_length, 0); rb_define_method(klass, "size", Map_length, 0); rb_define_method(klass, "dup", Map_dup, 0); // Also define #clone so that we don't inherit Object#clone. rb_define_method(klass, "clone", Map_dup, 0); rb_define_method(klass, "==", Map_eq, 1); rb_define_method(klass, "freeze", Map_freeze, 0); rb_define_method(klass, "hash", Map_hash, 0); rb_define_method(klass, "to_h", Map_to_h, 0); rb_define_method(klass, "inspect", Map_inspect, 0); rb_define_method(klass, "merge", Map_merge, 1); rb_include_module(klass, rb_mEnumerable); }