/* * Copyright (c) 2009-2021, Google LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Google LLC nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "upb/mini_table/decode.h" #include #include #include "upb/base/log2.h" #include "upb/base/string_view.h" #include "upb/mem/arena.h" #include "upb/mini_table/common.h" #include "upb/mini_table/common_internal.h" #include "upb/mini_table/enum_internal.h" #include "upb/mini_table/extension_internal.h" // Must be last. #include "upb/port/def.inc" // Note: we sort by this number when calculating layout order. typedef enum { kUpb_LayoutItemType_OneofCase, // Oneof case. kUpb_LayoutItemType_OneofField, // Oneof field data. kUpb_LayoutItemType_Field, // Non-oneof field data. kUpb_LayoutItemType_Max = kUpb_LayoutItemType_Field, } upb_LayoutItemType; #define kUpb_LayoutItem_IndexSentinel ((uint16_t)-1) typedef struct { // Index of the corresponding field. When this is a oneof field, the field's // offset will be the index of the next field in a linked list. uint16_t field_index; uint16_t offset; upb_FieldRep rep; upb_LayoutItemType type; } upb_LayoutItem; typedef struct { upb_LayoutItem* data; size_t size; size_t capacity; } upb_LayoutItemVector; typedef struct { const char* end; upb_MiniTable* table; upb_MiniTableField* fields; upb_MiniTablePlatform platform; upb_LayoutItemVector vec; upb_Arena* arena; upb_Status* status; // When building enums. upb_MiniTableEnum* enum_table; uint32_t enum_value_count; uint32_t enum_data_count; uint32_t enum_data_capacity; jmp_buf err; } upb_MtDecoder; UPB_PRINTF(2, 3) UPB_NORETURN static void upb_MtDecoder_ErrorFormat(upb_MtDecoder* d, const char* fmt, ...) { if (d->status) { va_list argp; upb_Status_SetErrorMessage(d->status, "Error building mini table: "); va_start(argp, fmt); upb_Status_VAppendErrorFormat(d->status, fmt, argp); va_end(argp); } UPB_LONGJMP(d->err, 1); } static void upb_MtDecoder_CheckOutOfMemory(upb_MtDecoder* d, const void* ptr) { if (!ptr) upb_MtDecoder_ErrorFormat(d, "Out of memory"); } // In each field's offset, we temporarily store a presence classifier: enum PresenceClass { kNoPresence = 0, kHasbitPresence = 1, kRequiredPresence = 2, kOneofBase = 3, // Negative values refer to a specific oneof with that number. Positive // values >= kOneofBase indicate that this field is in a oneof, and specify // the next field in this oneof's linked list. }; static const char* upb_MiniTable_DecodeBase92Varint(upb_MtDecoder* d, const char* ptr, char first_ch, uint8_t min, uint8_t max, uint32_t* out_val) { uint32_t val = 0; uint32_t shift = 0; const int bits_per_char = upb_Log2Ceiling(_upb_FromBase92(max) - _upb_FromBase92(min)); char ch = first_ch; while (1) { uint32_t bits = _upb_FromBase92(ch) - _upb_FromBase92(min); val |= bits << shift; if (ptr == d->end || *ptr < min || max < *ptr) { *out_val = val; return ptr; } ch = *ptr++; shift += bits_per_char; if (shift >= 32) upb_MtDecoder_ErrorFormat(d, "Overlong varint"); } } static bool upb_MiniTable_HasSub(upb_MiniTableField* field, uint64_t msg_modifiers) { switch (field->descriptortype) { case kUpb_FieldType_Message: case kUpb_FieldType_Group: case kUpb_FieldType_Enum: return true; case kUpb_FieldType_String: if (!(msg_modifiers & kUpb_MessageModifier_ValidateUtf8)) { field->descriptortype = kUpb_FieldType_Bytes; field->mode |= kUpb_LabelFlags_IsAlternate; } return false; default: return false; } } static bool upb_MtDecoder_FieldIsPackable(upb_MiniTableField* field) { return (field->mode & kUpb_FieldMode_Array) && _upb_FieldType_IsPackable(field->descriptortype); } static void upb_MiniTable_SetTypeAndSub(upb_MiniTableField* field, upb_FieldType type, uint32_t* sub_count, uint64_t msg_modifiers, bool is_proto3_enum) { field->descriptortype = type; if (is_proto3_enum) { UPB_ASSERT(field->descriptortype == kUpb_FieldType_Enum); field->descriptortype = kUpb_FieldType_Int32; field->mode |= kUpb_LabelFlags_IsAlternate; } if (upb_MiniTable_HasSub(field, msg_modifiers)) { field->submsg_index = sub_count ? (*sub_count)++ : 0; } else { field->submsg_index = kUpb_NoSub; } if (upb_MtDecoder_FieldIsPackable(field) && (msg_modifiers & kUpb_MessageModifier_DefaultIsPacked)) { field->mode |= kUpb_LabelFlags_IsPacked; } } static const char kUpb_EncodedToType[] = { [kUpb_EncodedType_Double] = kUpb_FieldType_Double, [kUpb_EncodedType_Float] = kUpb_FieldType_Float, [kUpb_EncodedType_Int64] = kUpb_FieldType_Int64, [kUpb_EncodedType_UInt64] = kUpb_FieldType_UInt64, [kUpb_EncodedType_Int32] = kUpb_FieldType_Int32, [kUpb_EncodedType_Fixed64] = kUpb_FieldType_Fixed64, [kUpb_EncodedType_Fixed32] = kUpb_FieldType_Fixed32, [kUpb_EncodedType_Bool] = kUpb_FieldType_Bool, [kUpb_EncodedType_String] = kUpb_FieldType_String, [kUpb_EncodedType_Group] = kUpb_FieldType_Group, [kUpb_EncodedType_Message] = kUpb_FieldType_Message, [kUpb_EncodedType_Bytes] = kUpb_FieldType_Bytes, [kUpb_EncodedType_UInt32] = kUpb_FieldType_UInt32, [kUpb_EncodedType_OpenEnum] = kUpb_FieldType_Enum, [kUpb_EncodedType_SFixed32] = kUpb_FieldType_SFixed32, [kUpb_EncodedType_SFixed64] = kUpb_FieldType_SFixed64, [kUpb_EncodedType_SInt32] = kUpb_FieldType_SInt32, [kUpb_EncodedType_SInt64] = kUpb_FieldType_SInt64, [kUpb_EncodedType_ClosedEnum] = kUpb_FieldType_Enum, }; static void upb_MiniTable_SetField(upb_MtDecoder* d, uint8_t ch, upb_MiniTableField* field, uint64_t msg_modifiers, uint32_t* sub_count) { static const char kUpb_EncodedToFieldRep[] = { [kUpb_EncodedType_Double] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_Float] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_Int64] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_UInt64] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_Int32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_Fixed64] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_Fixed32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_Bool] = kUpb_FieldRep_1Byte, [kUpb_EncodedType_String] = kUpb_FieldRep_StringView, [kUpb_EncodedType_Bytes] = kUpb_FieldRep_StringView, [kUpb_EncodedType_UInt32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_OpenEnum] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_SFixed32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_SFixed64] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_SInt32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_SInt64] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_ClosedEnum] = kUpb_FieldRep_4Byte, }; char pointer_rep = d->platform == kUpb_MiniTablePlatform_32Bit ? kUpb_FieldRep_4Byte : kUpb_FieldRep_8Byte; int8_t type = _upb_FromBase92(ch); if (ch >= _upb_ToBase92(kUpb_EncodedType_RepeatedBase)) { type -= kUpb_EncodedType_RepeatedBase; field->mode = kUpb_FieldMode_Array; field->mode |= pointer_rep << kUpb_FieldRep_Shift; field->offset = kNoPresence; } else { field->mode = kUpb_FieldMode_Scalar; field->offset = kHasbitPresence; if (type == kUpb_EncodedType_Group || type == kUpb_EncodedType_Message) { field->mode |= pointer_rep << kUpb_FieldRep_Shift; } else if (type >= sizeof(kUpb_EncodedToFieldRep)) { upb_MtDecoder_ErrorFormat(d, "Invalid field type: %d", (int)type); UPB_UNREACHABLE(); } else { field->mode |= kUpb_EncodedToFieldRep[type] << kUpb_FieldRep_Shift; } } if (type >= sizeof(kUpb_EncodedToType)) { upb_MtDecoder_ErrorFormat(d, "Invalid field type: %d", (int)type); UPB_UNREACHABLE(); } upb_MiniTable_SetTypeAndSub(field, kUpb_EncodedToType[type], sub_count, msg_modifiers, type == kUpb_EncodedType_OpenEnum); } static void upb_MtDecoder_ModifyField(upb_MtDecoder* d, uint32_t message_modifiers, uint32_t field_modifiers, upb_MiniTableField* field) { if (field_modifiers & kUpb_EncodedFieldModifier_FlipPacked) { if (!upb_MtDecoder_FieldIsPackable(field)) { upb_MtDecoder_ErrorFormat( d, "Cannot flip packed on unpackable field %" PRIu32, field->number); UPB_UNREACHABLE(); } field->mode ^= kUpb_LabelFlags_IsPacked; } bool singular = field_modifiers & kUpb_EncodedFieldModifier_IsProto3Singular; bool required = field_modifiers & kUpb_EncodedFieldModifier_IsRequired; // Validate. if ((singular || required) && field->offset != kHasbitPresence) { upb_MtDecoder_ErrorFormat( d, "Invalid modifier(s) for repeated field %" PRIu32, field->number); UPB_UNREACHABLE(); } if (singular && required) { upb_MtDecoder_ErrorFormat( d, "Field %" PRIu32 " cannot be both singular and required", field->number); UPB_UNREACHABLE(); } if (singular) field->offset = kNoPresence; if (required) { field->offset = kRequiredPresence; } } static void upb_MtDecoder_PushItem(upb_MtDecoder* d, upb_LayoutItem item) { if (d->vec.size == d->vec.capacity) { size_t new_cap = UPB_MAX(8, d->vec.size * 2); d->vec.data = realloc(d->vec.data, new_cap * sizeof(*d->vec.data)); upb_MtDecoder_CheckOutOfMemory(d, d->vec.data); d->vec.capacity = new_cap; } d->vec.data[d->vec.size++] = item; } static void upb_MtDecoder_PushOneof(upb_MtDecoder* d, upb_LayoutItem item) { if (item.field_index == kUpb_LayoutItem_IndexSentinel) { upb_MtDecoder_ErrorFormat(d, "Empty oneof"); UPB_UNREACHABLE(); } item.field_index -= kOneofBase; // Push oneof data. item.type = kUpb_LayoutItemType_OneofField; upb_MtDecoder_PushItem(d, item); // Push oneof case. item.rep = kUpb_FieldRep_4Byte; // Field Number. item.type = kUpb_LayoutItemType_OneofCase; upb_MtDecoder_PushItem(d, item); } size_t upb_MtDecoder_SizeOfRep(upb_FieldRep rep, upb_MiniTablePlatform platform) { static const uint8_t kRepToSize32[] = { [kUpb_FieldRep_1Byte] = 1, [kUpb_FieldRep_4Byte] = 4, [kUpb_FieldRep_StringView] = 8, [kUpb_FieldRep_8Byte] = 8, }; static const uint8_t kRepToSize64[] = { [kUpb_FieldRep_1Byte] = 1, [kUpb_FieldRep_4Byte] = 4, [kUpb_FieldRep_StringView] = 16, [kUpb_FieldRep_8Byte] = 8, }; UPB_ASSERT(sizeof(upb_StringView) == UPB_SIZE(kRepToSize32, kRepToSize64)[kUpb_FieldRep_StringView]); return platform == kUpb_MiniTablePlatform_32Bit ? kRepToSize32[rep] : kRepToSize64[rep]; } size_t upb_MtDecoder_AlignOfRep(upb_FieldRep rep, upb_MiniTablePlatform platform) { static const uint8_t kRepToAlign32[] = { [kUpb_FieldRep_1Byte] = 1, [kUpb_FieldRep_4Byte] = 4, [kUpb_FieldRep_StringView] = 4, [kUpb_FieldRep_8Byte] = 8, }; static const uint8_t kRepToAlign64[] = { [kUpb_FieldRep_1Byte] = 1, [kUpb_FieldRep_4Byte] = 4, [kUpb_FieldRep_StringView] = 8, [kUpb_FieldRep_8Byte] = 8, }; UPB_ASSERT(UPB_ALIGN_OF(upb_StringView) == UPB_SIZE(kRepToAlign32, kRepToAlign64)[kUpb_FieldRep_StringView]); return platform == kUpb_MiniTablePlatform_32Bit ? kRepToAlign32[rep] : kRepToAlign64[rep]; } static const char* upb_MtDecoder_DecodeOneofField(upb_MtDecoder* d, const char* ptr, char first_ch, upb_LayoutItem* item) { uint32_t field_num; ptr = upb_MiniTable_DecodeBase92Varint( d, ptr, first_ch, kUpb_EncodedValue_MinOneofField, kUpb_EncodedValue_MaxOneofField, &field_num); upb_MiniTableField* f = (void*)upb_MiniTable_FindFieldByNumber(d->table, field_num); if (!f) { upb_MtDecoder_ErrorFormat(d, "Couldn't add field number %" PRIu32 " to oneof, no such field number.", field_num); UPB_UNREACHABLE(); } if (f->offset != kHasbitPresence) { upb_MtDecoder_ErrorFormat( d, "Cannot add repeated, required, or singular field %" PRIu32 " to oneof.", field_num); UPB_UNREACHABLE(); } // Oneof storage must be large enough to accommodate the largest member. int rep = f->mode >> kUpb_FieldRep_Shift; if (upb_MtDecoder_SizeOfRep(rep, d->platform) > upb_MtDecoder_SizeOfRep(item->rep, d->platform)) { item->rep = rep; } // Prepend this field to the linked list. f->offset = item->field_index; item->field_index = (f - d->fields) + kOneofBase; return ptr; } static const char* upb_MtDecoder_DecodeOneofs(upb_MtDecoder* d, const char* ptr) { upb_LayoutItem item = {.rep = 0, .field_index = kUpb_LayoutItem_IndexSentinel}; while (ptr < d->end) { char ch = *ptr++; if (ch == kUpb_EncodedValue_FieldSeparator) { // Field separator, no action needed. } else if (ch == kUpb_EncodedValue_OneofSeparator) { // End of oneof. upb_MtDecoder_PushOneof(d, item); item.field_index = kUpb_LayoutItem_IndexSentinel; // Move to next oneof. } else { ptr = upb_MtDecoder_DecodeOneofField(d, ptr, ch, &item); } } // Push final oneof. upb_MtDecoder_PushOneof(d, item); return ptr; } static const char* upb_MtDecoder_ParseModifier(upb_MtDecoder* d, const char* ptr, char first_ch, upb_MiniTableField* last_field, uint64_t* msg_modifiers) { uint32_t mod; ptr = upb_MiniTable_DecodeBase92Varint(d, ptr, first_ch, kUpb_EncodedValue_MinModifier, kUpb_EncodedValue_MaxModifier, &mod); if (last_field) { upb_MtDecoder_ModifyField(d, *msg_modifiers, mod, last_field); } else { if (!d->table) { upb_MtDecoder_ErrorFormat(d, "Extensions cannot have message modifiers"); UPB_UNREACHABLE(); } *msg_modifiers = mod; } return ptr; } static void upb_MtDecoder_AllocateSubs(upb_MtDecoder* d, uint32_t sub_count) { size_t subs_bytes = sizeof(*d->table->subs) * sub_count; void* subs = upb_Arena_Malloc(d->arena, subs_bytes); memset(subs, 0, subs_bytes); d->table->subs = subs; upb_MtDecoder_CheckOutOfMemory(d, d->table->subs); } static const char* upb_MtDecoder_Parse(upb_MtDecoder* d, const char* ptr, size_t len, void* fields, size_t field_size, uint16_t* field_count, uint32_t* sub_count) { uint64_t msg_modifiers = 0; uint32_t last_field_number = 0; upb_MiniTableField* last_field = NULL; bool need_dense_below = d->table != NULL; d->end = UPB_PTRADD(ptr, len); while (ptr < d->end) { char ch = *ptr++; if (ch <= kUpb_EncodedValue_MaxField) { if (!d->table && last_field) { // For extensions, consume only a single field and then return. return --ptr; } upb_MiniTableField* field = fields; *field_count += 1; fields = (char*)fields + field_size; field->number = ++last_field_number; last_field = field; upb_MiniTable_SetField(d, ch, field, msg_modifiers, sub_count); } else if (kUpb_EncodedValue_MinModifier <= ch && ch <= kUpb_EncodedValue_MaxModifier) { ptr = upb_MtDecoder_ParseModifier(d, ptr, ch, last_field, &msg_modifiers); if (msg_modifiers & kUpb_MessageModifier_IsExtendable) { d->table->ext |= kUpb_ExtMode_Extendable; } } else if (ch == kUpb_EncodedValue_End) { if (!d->table) { upb_MtDecoder_ErrorFormat(d, "Extensions cannot have oneofs."); UPB_UNREACHABLE(); } ptr = upb_MtDecoder_DecodeOneofs(d, ptr); } else if (kUpb_EncodedValue_MinSkip <= ch && ch <= kUpb_EncodedValue_MaxSkip) { if (need_dense_below) { d->table->dense_below = d->table->field_count; need_dense_below = false; } uint32_t skip; ptr = upb_MiniTable_DecodeBase92Varint(d, ptr, ch, kUpb_EncodedValue_MinSkip, kUpb_EncodedValue_MaxSkip, &skip); last_field_number += skip; last_field_number--; // Next field seen will increment. } else { upb_MtDecoder_ErrorFormat(d, "Invalid char: %c", ch); UPB_UNREACHABLE(); } } if (need_dense_below) { d->table->dense_below = d->table->field_count; } return ptr; } static void upb_MtDecoder_ParseMessage(upb_MtDecoder* d, const char* data, size_t len) { // Buffer length is an upper bound on the number of fields. We will return // what we don't use. d->fields = upb_Arena_Malloc(d->arena, sizeof(*d->fields) * len); upb_MtDecoder_CheckOutOfMemory(d, d->fields); uint32_t sub_count = 0; d->table->field_count = 0; d->table->fields = d->fields; upb_MtDecoder_Parse(d, data, len, d->fields, sizeof(*d->fields), &d->table->field_count, &sub_count); upb_Arena_ShrinkLast(d->arena, d->fields, sizeof(*d->fields) * len, sizeof(*d->fields) * d->table->field_count); d->table->fields = d->fields; upb_MtDecoder_AllocateSubs(d, sub_count); } int upb_MtDecoder_CompareFields(const void* _a, const void* _b) { const upb_LayoutItem* a = _a; const upb_LayoutItem* b = _b; // Currently we just sort by: // 1. rep (smallest fields first) // 2. type (oneof cases first) // 2. field_index (smallest numbers first) // The main goal of this is to reduce space lost to padding. // Later we may have more subtle reasons to prefer a different ordering. const int rep_bits = upb_Log2Ceiling(kUpb_FieldRep_Max); const int type_bits = upb_Log2Ceiling(kUpb_LayoutItemType_Max); const int idx_bits = (sizeof(a->field_index) * 8); UPB_ASSERT(idx_bits + rep_bits + type_bits < 32); #define UPB_COMBINE(rep, ty, idx) (((rep << type_bits) | ty) << idx_bits) | idx uint32_t a_packed = UPB_COMBINE(a->rep, a->type, a->field_index); uint32_t b_packed = UPB_COMBINE(b->rep, b->type, b->field_index); assert(a_packed != b_packed); #undef UPB_COMBINE return a_packed < b_packed ? -1 : 1; } static bool upb_MtDecoder_SortLayoutItems(upb_MtDecoder* d) { // Add items for all non-oneof fields (oneofs were already added). int n = d->table->field_count; for (int i = 0; i < n; i++) { upb_MiniTableField* f = &d->fields[i]; if (f->offset >= kOneofBase) continue; upb_LayoutItem item = {.field_index = i, .rep = f->mode >> kUpb_FieldRep_Shift, .type = kUpb_LayoutItemType_Field}; upb_MtDecoder_PushItem(d, item); } if (d->vec.size) { qsort(d->vec.data, d->vec.size, sizeof(*d->vec.data), upb_MtDecoder_CompareFields); } return true; } static size_t upb_MiniTable_DivideRoundUp(size_t n, size_t d) { return (n + d - 1) / d; } static void upb_MtDecoder_AssignHasbits(upb_MiniTable* ret) { int n = ret->field_count; int last_hasbit = 0; // 0 cannot be used. // First assign required fields, which must have the lowest hasbits. for (int i = 0; i < n; i++) { upb_MiniTableField* field = (upb_MiniTableField*)&ret->fields[i]; if (field->offset == kRequiredPresence) { field->presence = ++last_hasbit; } else if (field->offset == kNoPresence) { field->presence = 0; } } ret->required_count = last_hasbit; // Next assign non-required hasbit fields. for (int i = 0; i < n; i++) { upb_MiniTableField* field = (upb_MiniTableField*)&ret->fields[i]; if (field->offset == kHasbitPresence) { field->presence = ++last_hasbit; } } ret->size = last_hasbit ? upb_MiniTable_DivideRoundUp(last_hasbit + 1, 8) : 0; } size_t upb_MtDecoder_Place(upb_MtDecoder* d, upb_FieldRep rep) { size_t size = upb_MtDecoder_SizeOfRep(rep, d->platform); size_t align = upb_MtDecoder_AlignOfRep(rep, d->platform); size_t ret = UPB_ALIGN_UP(d->table->size, align); static const size_t max = UINT16_MAX; size_t new_size = ret + size; if (new_size > max) { upb_MtDecoder_ErrorFormat( d, "Message size exceeded maximum size of %zu bytes", max); } d->table->size = new_size; return ret; } static void upb_MtDecoder_AssignOffsets(upb_MtDecoder* d) { upb_LayoutItem* end = UPB_PTRADD(d->vec.data, d->vec.size); // Compute offsets. for (upb_LayoutItem* item = d->vec.data; item < end; item++) { item->offset = upb_MtDecoder_Place(d, item->rep); } // Assign oneof case offsets. We must do these first, since assigning // actual offsets will overwrite the links of the linked list. for (upb_LayoutItem* item = d->vec.data; item < end; item++) { if (item->type != kUpb_LayoutItemType_OneofCase) continue; upb_MiniTableField* f = &d->fields[item->field_index]; while (true) { f->presence = ~item->offset; if (f->offset == kUpb_LayoutItem_IndexSentinel) break; UPB_ASSERT(f->offset - kOneofBase < d->table->field_count); f = &d->fields[f->offset - kOneofBase]; } } // Assign offsets. for (upb_LayoutItem* item = d->vec.data; item < end; item++) { upb_MiniTableField* f = &d->fields[item->field_index]; switch (item->type) { case kUpb_LayoutItemType_OneofField: while (true) { uint16_t next_offset = f->offset; f->offset = item->offset; if (next_offset == kUpb_LayoutItem_IndexSentinel) break; f = &d->fields[next_offset - kOneofBase]; } break; case kUpb_LayoutItemType_Field: f->offset = item->offset; break; default: break; } } // The fasttable parser (supported on 64-bit only) depends on this being a // multiple of 8 in order to satisfy UPB_MALLOC_ALIGN, which is also 8. // // On 32-bit we could potentially make this smaller, but there is no // compelling reason to optimize this right now. d->table->size = UPB_ALIGN_UP(d->table->size, 8); } static void upb_MtDecoder_ValidateEntryField(upb_MtDecoder* d, const upb_MiniTableField* f, int expected_num) { const char* name = expected_num == 1 ? "key" : "val"; if (f->number != expected_num) { upb_MtDecoder_ErrorFormat(d, "map %s did not have expected number (%d vs %d)", name, expected_num, (int)f->number); } if (upb_IsRepeatedOrMap(f)) { upb_MtDecoder_ErrorFormat( d, "map %s cannot be repeated or map, or be in oneof", name); } uint32_t not_ok_types; if (expected_num == 1) { not_ok_types = (1 << kUpb_FieldType_Float) | (1 << kUpb_FieldType_Double) | (1 << kUpb_FieldType_Message) | (1 << kUpb_FieldType_Group) | (1 << kUpb_FieldType_Bytes) | (1 << kUpb_FieldType_Enum); } else { not_ok_types = 1 << kUpb_FieldType_Group; } if ((1 << upb_MiniTableField_Type(f)) & not_ok_types) { upb_MtDecoder_ErrorFormat(d, "map %s cannot have type %d", name, (int)f->descriptortype); } } static void upb_MtDecoder_ParseMap(upb_MtDecoder* d, const char* data, size_t len) { upb_MtDecoder_ParseMessage(d, data, len); upb_MtDecoder_AssignHasbits(d->table); if (UPB_UNLIKELY(d->table->field_count != 2)) { upb_MtDecoder_ErrorFormat(d, "%hu fields in map", d->table->field_count); UPB_UNREACHABLE(); } upb_LayoutItem* end = UPB_PTRADD(d->vec.data, d->vec.size); for (upb_LayoutItem* item = d->vec.data; item < end; item++) { if (item->type == kUpb_LayoutItemType_OneofCase) { upb_MtDecoder_ErrorFormat(d, "Map entry cannot have oneof"); } } upb_MtDecoder_ValidateEntryField(d, &d->table->fields[0], 1); upb_MtDecoder_ValidateEntryField(d, &d->table->fields[1], 2); // Map entries have a pre-determined layout, regardless of types. // NOTE: sync with mini_table/message_internal.h. const size_t kv_size = d->platform == kUpb_MiniTablePlatform_32Bit ? 8 : 16; const size_t hasbit_size = 8; d->fields[0].offset = hasbit_size; d->fields[1].offset = hasbit_size + kv_size; d->table->size = UPB_ALIGN_UP(hasbit_size + kv_size + kv_size, 8); // Map entries have a special bit set to signal it's a map entry, used in // upb_MiniTable_SetSubMessage() below. d->table->ext |= kUpb_ExtMode_IsMapEntry; } static void upb_MtDecoder_ParseMessageSet(upb_MtDecoder* d, const char* data, size_t len) { if (len > 0) { upb_MtDecoder_ErrorFormat(d, "Invalid message set encode length: %zu", len); UPB_UNREACHABLE(); } upb_MiniTable* ret = d->table; ret->size = 0; ret->field_count = 0; ret->ext = kUpb_ExtMode_IsMessageSet; ret->dense_below = 0; ret->table_mask = -1; ret->required_count = 0; } static upb_MiniTable* upb_MtDecoder_DoBuildMiniTableWithBuf( upb_MtDecoder* decoder, const char* data, size_t len, void** buf, size_t* buf_size) { upb_MtDecoder_CheckOutOfMemory(decoder, decoder->table); decoder->table->size = 0; decoder->table->field_count = 0; decoder->table->ext = kUpb_ExtMode_NonExtendable; decoder->table->dense_below = 0; decoder->table->table_mask = -1; decoder->table->required_count = 0; // Strip off and verify the version tag. if (!len--) goto done; const char vers = *data++; switch (vers) { case kUpb_EncodedVersion_MapV1: upb_MtDecoder_ParseMap(decoder, data, len); break; case kUpb_EncodedVersion_MessageV1: upb_MtDecoder_ParseMessage(decoder, data, len); upb_MtDecoder_AssignHasbits(decoder->table); upb_MtDecoder_SortLayoutItems(decoder); upb_MtDecoder_AssignOffsets(decoder); break; case kUpb_EncodedVersion_MessageSetV1: upb_MtDecoder_ParseMessageSet(decoder, data, len); break; default: upb_MtDecoder_ErrorFormat(decoder, "Invalid message version: %c", vers); UPB_UNREACHABLE(); } done: *buf = decoder->vec.data; *buf_size = decoder->vec.capacity * sizeof(*decoder->vec.data); return decoder->table; } static upb_MiniTable* upb_MtDecoder_BuildMiniTableWithBuf( upb_MtDecoder* const decoder, const char* const data, const size_t len, void** const buf, size_t* const buf_size) { if (UPB_SETJMP(decoder->err) != 0) { *buf = decoder->vec.data; *buf_size = decoder->vec.capacity * sizeof(*decoder->vec.data); return NULL; } return upb_MtDecoder_DoBuildMiniTableWithBuf(decoder, data, len, buf, buf_size); } upb_MiniTable* upb_MiniTable_BuildWithBuf(const char* data, size_t len, upb_MiniTablePlatform platform, upb_Arena* arena, void** buf, size_t* buf_size, upb_Status* status) { upb_MtDecoder decoder = { .platform = platform, .vec = { .data = *buf, .capacity = *buf_size / sizeof(*decoder.vec.data), .size = 0, }, .arena = arena, .status = status, .table = upb_Arena_Malloc(arena, sizeof(*decoder.table)), }; return upb_MtDecoder_BuildMiniTableWithBuf(&decoder, data, len, buf, buf_size); } static size_t upb_MiniTableEnum_Size(size_t count) { return sizeof(upb_MiniTableEnum) + count * sizeof(uint32_t); } static upb_MiniTableEnum* _upb_MiniTable_AddEnumDataMember(upb_MtDecoder* d, uint32_t val) { if (d->enum_data_count == d->enum_data_capacity) { size_t old_sz = upb_MiniTableEnum_Size(d->enum_data_capacity); d->enum_data_capacity = UPB_MAX(2, d->enum_data_capacity * 2); size_t new_sz = upb_MiniTableEnum_Size(d->enum_data_capacity); d->enum_table = upb_Arena_Realloc(d->arena, d->enum_table, old_sz, new_sz); upb_MtDecoder_CheckOutOfMemory(d, d->enum_table); } d->enum_table->data[d->enum_data_count++] = val; return d->enum_table; } static void upb_MiniTableEnum_BuildValue(upb_MtDecoder* d, uint32_t val) { upb_MiniTableEnum* table = d->enum_table; d->enum_value_count++; if (table->value_count || (val > 512 && d->enum_value_count < val / 32)) { if (table->value_count == 0) { assert(d->enum_data_count == table->mask_limit / 32); } table = _upb_MiniTable_AddEnumDataMember(d, val); table->value_count++; } else { uint32_t new_mask_limit = ((val / 32) + 1) * 32; while (table->mask_limit < new_mask_limit) { table = _upb_MiniTable_AddEnumDataMember(d, 0); table->mask_limit += 32; } table->data[val / 32] |= 1ULL << (val % 32); } } static upb_MiniTableEnum* upb_MtDecoder_DoBuildMiniTableEnum( upb_MtDecoder* decoder, const char* data, size_t len) { // If the string is non-empty then it must begin with a version tag. if (len) { if (*data != kUpb_EncodedVersion_EnumV1) { upb_MtDecoder_ErrorFormat(decoder, "Invalid enum version: %c", *data); UPB_UNREACHABLE(); } data++; len--; } upb_MtDecoder_CheckOutOfMemory(decoder, decoder->enum_table); // Guarantee at least 64 bits of mask without checking mask size. decoder->enum_table->mask_limit = 64; decoder->enum_table = _upb_MiniTable_AddEnumDataMember(decoder, 0); decoder->enum_table = _upb_MiniTable_AddEnumDataMember(decoder, 0); decoder->enum_table->value_count = 0; const char* ptr = data; uint32_t base = 0; while (ptr < decoder->end) { char ch = *ptr++; if (ch <= kUpb_EncodedValue_MaxEnumMask) { uint32_t mask = _upb_FromBase92(ch); for (int i = 0; i < 5; i++, base++, mask >>= 1) { if (mask & 1) upb_MiniTableEnum_BuildValue(decoder, base); } } else if (kUpb_EncodedValue_MinSkip <= ch && ch <= kUpb_EncodedValue_MaxSkip) { uint32_t skip; ptr = upb_MiniTable_DecodeBase92Varint(decoder, ptr, ch, kUpb_EncodedValue_MinSkip, kUpb_EncodedValue_MaxSkip, &skip); base += skip; } else { upb_MtDecoder_ErrorFormat(decoder, "Unexpected character: %c", ch); return NULL; } } return decoder->enum_table; } static upb_MiniTableEnum* upb_MtDecoder_BuildMiniTableEnum( upb_MtDecoder* const decoder, const char* const data, size_t const len) { if (UPB_SETJMP(decoder->err) != 0) return NULL; return upb_MtDecoder_DoBuildMiniTableEnum(decoder, data, len); } upb_MiniTableEnum* upb_MiniTableEnum_Build(const char* data, size_t len, upb_Arena* arena, upb_Status* status) { upb_MtDecoder decoder = { .enum_table = upb_Arena_Malloc(arena, upb_MiniTableEnum_Size(2)), .enum_value_count = 0, .enum_data_count = 0, .enum_data_capacity = 1, .status = status, .end = UPB_PTRADD(data, len), .arena = arena, }; return upb_MtDecoder_BuildMiniTableEnum(&decoder, data, len); } static const char* upb_MtDecoder_DoBuildMiniTableExtension( upb_MtDecoder* decoder, const char* data, size_t len, upb_MiniTableExtension* ext, const upb_MiniTable* extendee, upb_MiniTableSub sub) { // If the string is non-empty then it must begin with a version tag. if (len) { if (*data != kUpb_EncodedVersion_ExtensionV1) { upb_MtDecoder_ErrorFormat(decoder, "Invalid ext version: %c", *data); UPB_UNREACHABLE(); } data++; len--; } uint16_t count = 0; const char* ret = upb_MtDecoder_Parse(decoder, data, len, ext, sizeof(*ext), &count, NULL); if (!ret || count != 1) return NULL; upb_MiniTableField* f = &ext->field; f->mode |= kUpb_LabelFlags_IsExtension; f->offset = 0; f->presence = 0; if (extendee->ext & kUpb_ExtMode_IsMessageSet) { // Extensions of MessageSet must be messages. if (!upb_IsSubMessage(f)) return NULL; // Extensions of MessageSet must be non-repeating. if ((f->mode & kUpb_FieldMode_Mask) == kUpb_FieldMode_Array) return NULL; } ext->extendee = extendee; ext->sub = sub; return ret; } static const char* upb_MtDecoder_BuildMiniTableExtension( upb_MtDecoder* const decoder, const char* const data, const size_t len, upb_MiniTableExtension* const ext, const upb_MiniTable* const extendee, const upb_MiniTableSub sub) { if (UPB_SETJMP(decoder->err) != 0) return NULL; return upb_MtDecoder_DoBuildMiniTableExtension(decoder, data, len, ext, extendee, sub); } const char* _upb_MiniTableExtension_Build(const char* data, size_t len, upb_MiniTableExtension* ext, const upb_MiniTable* extendee, upb_MiniTableSub sub, upb_MiniTablePlatform platform, upb_Status* status) { upb_MtDecoder decoder = { .arena = NULL, .status = status, .table = NULL, .platform = platform, }; return upb_MtDecoder_BuildMiniTableExtension(&decoder, data, len, ext, extendee, sub); } upb_MiniTable* _upb_MiniTable_Build(const char* data, size_t len, upb_MiniTablePlatform platform, upb_Arena* arena, upb_Status* status) { void* buf = NULL; size_t size = 0; upb_MiniTable* ret = upb_MiniTable_BuildWithBuf(data, len, platform, arena, &buf, &size, status); free(buf); return ret; } bool upb_MiniTable_SetSubMessage(upb_MiniTable* table, upb_MiniTableField* field, const upb_MiniTable* sub) { UPB_ASSERT((uintptr_t)table->fields <= (uintptr_t)field && (uintptr_t)field < (uintptr_t)(table->fields + table->field_count)); UPB_ASSERT(sub); const bool sub_is_map = sub->ext & kUpb_ExtMode_IsMapEntry; switch (field->descriptortype) { case kUpb_FieldType_Message: if (sub_is_map) { const bool table_is_map = table->ext & kUpb_ExtMode_IsMapEntry; if (UPB_UNLIKELY(table_is_map)) return false; field->mode = (field->mode & ~kUpb_FieldMode_Mask) | kUpb_FieldMode_Map; } break; case kUpb_FieldType_Group: if (UPB_UNLIKELY(sub_is_map)) return false; break; default: return false; } upb_MiniTableSub* table_sub = (void*)&table->subs[field->submsg_index]; table_sub->submsg = sub; return true; } bool upb_MiniTable_SetSubEnum(upb_MiniTable* table, upb_MiniTableField* field, const upb_MiniTableEnum* sub) { UPB_ASSERT((uintptr_t)table->fields <= (uintptr_t)field && (uintptr_t)field < (uintptr_t)(table->fields + table->field_count)); UPB_ASSERT(sub); upb_MiniTableSub* table_sub = (void*)&table->subs[field->submsg_index]; table_sub->subenum = sub; return true; }