// Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. /** * @fileoverview This file contains helper code used by jspb.BinaryReader * and BinaryWriter. * * @author aappleby@google.com (Austin Appleby) */ goog.provide('jspb.utils'); goog.require('goog.asserts'); goog.require('goog.crypt'); goog.require('goog.crypt.base64'); goog.require('goog.string'); goog.require('jspb.BinaryConstants'); /** * Javascript can't natively handle 64-bit data types, so to manipulate them we * have to split them into two 32-bit halves and do the math manually. * * Instead of instantiating and passing small structures around to do this, we * instead just use two global temporary values. This one stores the low 32 * bits of a split value - for example, if the original value was a 64-bit * integer, this temporary value will contain the low 32 bits of that integer. * If the original value was a double, this temporary value will contain the * low 32 bits of the binary representation of that double, etcetera. * @type {number} */ jspb.utils.split64Low = 0; /** * And correspondingly, this temporary variable will contain the high 32 bits * of whatever value was split. * @type {number} */ jspb.utils.split64High = 0; /** * Splits an unsigned Javascript integer into two 32-bit halves and stores it * in the temp values above. * @param {number} value The number to split. */ jspb.utils.splitUint64 = function(value) { // Extract low 32 bits and high 32 bits as unsigned integers. var lowBits = value >>> 0; var highBits = Math.floor((value - lowBits) / jspb.BinaryConstants.TWO_TO_32) >>> 0; jspb.utils.split64Low = lowBits; jspb.utils.split64High = highBits; }; /** * Splits a signed Javascript integer into two 32-bit halves and stores it in * the temp values above. * @param {number} value The number to split. */ jspb.utils.splitInt64 = function(value) { // Convert to sign-magnitude representation. var sign = (value < 0); value = Math.abs(value); // Extract low 32 bits and high 32 bits as unsigned integers. var lowBits = value >>> 0; var highBits = Math.floor((value - lowBits) / jspb.BinaryConstants.TWO_TO_32); highBits = highBits >>> 0; // Perform two's complement conversion if the sign bit was set. if (sign) { highBits = ~highBits >>> 0; lowBits = ~lowBits >>> 0; lowBits += 1; if (lowBits > 0xFFFFFFFF) { lowBits = 0; highBits++; if (highBits > 0xFFFFFFFF) highBits = 0; } } jspb.utils.split64Low = lowBits; jspb.utils.split64High = highBits; }; /** * Converts a signed Javascript integer into zigzag format, splits it into two * 32-bit halves, and stores it in the temp values above. * @param {number} value The number to split. */ jspb.utils.splitZigzag64 = function(value) { // Convert to sign-magnitude and scale by 2 before we split the value. var sign = (value < 0); value = Math.abs(value) * 2; jspb.utils.splitUint64(value); var lowBits = jspb.utils.split64Low; var highBits = jspb.utils.split64High; // If the value is negative, subtract 1 from the split representation so we // don't lose the sign bit due to precision issues. if (sign) { if (lowBits == 0) { if (highBits == 0) { lowBits = 0xFFFFFFFF; highBits = 0xFFFFFFFF; } else { highBits--; lowBits = 0xFFFFFFFF; } } else { lowBits--; } } jspb.utils.split64Low = lowBits; jspb.utils.split64High = highBits; }; /** * Converts a floating-point number into 32-bit IEEE representation and stores * it in the temp values above. * @param {number} value */ jspb.utils.splitFloat32 = function(value) { var sign = (value < 0) ? 1 : 0; value = sign ? -value : value; var exp; var mant; // Handle zeros. if (value === 0) { if ((1 / value) > 0) { // Positive zero. jspb.utils.split64High = 0; jspb.utils.split64Low = 0x00000000; } else { // Negative zero. jspb.utils.split64High = 0; jspb.utils.split64Low = 0x80000000; } return; } // Handle nans. if (isNaN(value)) { jspb.utils.split64High = 0; jspb.utils.split64Low = 0x7FFFFFFF; return; } // Handle infinities. if (value > jspb.BinaryConstants.FLOAT32_MAX) { jspb.utils.split64High = 0; jspb.utils.split64Low = ((sign << 31) | (0x7F800000)) >>> 0; return; } // Handle denormals. if (value < jspb.BinaryConstants.FLOAT32_MIN) { // Number is a denormal. mant = Math.round(value / Math.pow(2, -149)); jspb.utils.split64High = 0; jspb.utils.split64Low = ((sign << 31) | mant) >>> 0; return; } exp = Math.floor(Math.log(value) / Math.LN2); mant = value * Math.pow(2, -exp); mant = Math.round(mant * jspb.BinaryConstants.TWO_TO_23) & 0x7FFFFF; jspb.utils.split64High = 0; jspb.utils.split64Low = ((sign << 31) | ((exp + 127) << 23) | mant) >>> 0; }; /** * Converts a floating-point number into 64-bit IEEE representation and stores * it in the temp values above. * @param {number} value */ jspb.utils.splitFloat64 = function(value) { var sign = (value < 0) ? 1 : 0; value = sign ? -value : value; // Handle zeros. if (value === 0) { if ((1 / value) > 0) { // Positive zero. jspb.utils.split64High = 0x00000000; jspb.utils.split64Low = 0x00000000; } else { // Negative zero. jspb.utils.split64High = 0x80000000; jspb.utils.split64Low = 0x00000000; } return; } // Handle nans. if (isNaN(value)) { jspb.utils.split64High = 0x7FFFFFFF; jspb.utils.split64Low = 0xFFFFFFFF; return; } // Handle infinities. if (value > jspb.BinaryConstants.FLOAT64_MAX) { jspb.utils.split64High = ((sign << 31) | (0x7FF00000)) >>> 0; jspb.utils.split64Low = 0; return; } // Handle denormals. if (value < jspb.BinaryConstants.FLOAT64_MIN) { // Number is a denormal. var mant = value / Math.pow(2, -1074); var mantHigh = (mant / jspb.BinaryConstants.TWO_TO_32); jspb.utils.split64High = ((sign << 31) | mantHigh) >>> 0; jspb.utils.split64Low = (mant >>> 0); return; } // Compute the least significant exponent needed to represent the magnitude of // the value by repeadly dividing/multiplying by 2 until the magnitude // crosses 2. While tempting to use log math to find the exponent, at the // bounadaries of precision, the result can be off by one. var maxDoubleExponent = 1023; var minDoubleExponent = -1022; var x = value; var exp = 0; if (x >= 2) { while (x >= 2 && exp < maxDoubleExponent) { exp++; x = x / 2; } } else { while (x < 1 && exp > minDoubleExponent) { x = x * 2; exp--; } } var mant = value * Math.pow(2, -exp); var mantHigh = (mant * jspb.BinaryConstants.TWO_TO_20) & 0xFFFFF; var mantLow = (mant * jspb.BinaryConstants.TWO_TO_52) >>> 0; jspb.utils.split64High = ((sign << 31) | ((exp + 1023) << 20) | mantHigh) >>> 0; jspb.utils.split64Low = mantLow; }; /** * Converts an 8-character hash string into two 32-bit numbers and stores them * in the temp values above. * @param {string} hash */ jspb.utils.splitHash64 = function(hash) { var a = hash.charCodeAt(0); var b = hash.charCodeAt(1); var c = hash.charCodeAt(2); var d = hash.charCodeAt(3); var e = hash.charCodeAt(4); var f = hash.charCodeAt(5); var g = hash.charCodeAt(6); var h = hash.charCodeAt(7); jspb.utils.split64Low = (a + (b << 8) + (c << 16) + (d << 24)) >>> 0; jspb.utils.split64High = (e + (f << 8) + (g << 16) + (h << 24)) >>> 0; }; /** * Joins two 32-bit values into a 64-bit unsigned integer. Precision will be * lost if the result is greater than 2^52. * @param {number} bitsLow * @param {number} bitsHigh * @return {number} */ jspb.utils.joinUint64 = function(bitsLow, bitsHigh) { return bitsHigh * jspb.BinaryConstants.TWO_TO_32 + (bitsLow >>> 0); }; /** * Joins two 32-bit values into a 64-bit signed integer. Precision will be lost * if the result is greater than 2^52. * @param {number} bitsLow * @param {number} bitsHigh * @return {number} */ jspb.utils.joinInt64 = function(bitsLow, bitsHigh) { // If the high bit is set, do a manual two's complement conversion. var sign = (bitsHigh & 0x80000000); if (sign) { bitsLow = (~bitsLow + 1) >>> 0; bitsHigh = ~bitsHigh >>> 0; if (bitsLow == 0) { bitsHigh = (bitsHigh + 1) >>> 0; } } var result = jspb.utils.joinUint64(bitsLow, bitsHigh); return sign ? -result : result; }; /** * Converts split 64-bit values from standard two's complement encoding to * zig-zag encoding. Invokes the provided function to produce final result. * * @param {number} bitsLow * @param {number} bitsHigh * @param {function(number, number): T} convert Conversion function to produce * the result value, takes parameters (lowBits, highBits). * @return {T} * @template T */ jspb.utils.toZigzag64 = function(bitsLow, bitsHigh, convert) { // See // https://engdoc.corp.google.com/eng/howto/protocolbuffers/developerguide/encoding.shtml?cl=head#types // 64-bit math is: (n << 1) ^ (n >> 63) // // To do this in 32 bits, we can get a 32-bit sign-flipping mask from the // high word. // Then we can operate on each word individually, with the addition of the // "carry" to get the most significant bit from the low word into the high // word. var signFlipMask = bitsHigh >> 31; bitsHigh = (bitsHigh << 1 | bitsLow >>> 31) ^ signFlipMask; bitsLow = (bitsLow << 1) ^ signFlipMask; return convert(bitsLow, bitsHigh); }; /** * Joins two 32-bit values into a 64-bit unsigned integer and applies zigzag * decoding. Precision will be lost if the result is greater than 2^52. * @param {number} bitsLow * @param {number} bitsHigh * @return {number} */ jspb.utils.joinZigzag64 = function(bitsLow, bitsHigh) { return jspb.utils.fromZigzag64(bitsLow, bitsHigh, jspb.utils.joinInt64); }; /** * Converts split 64-bit values from zigzag encoding to standard two's * complement encoding. Invokes the provided function to produce final result. * * @param {number} bitsLow * @param {number} bitsHigh * @param {function(number, number): T} convert Conversion function to produce * the result value, takes parameters (lowBits, highBits). * @return {T} * @template T */ jspb.utils.fromZigzag64 = function(bitsLow, bitsHigh, convert) { // 64 bit math is: // signmask = (zigzag & 1) ? -1 : 0; // twosComplement = (zigzag >> 1) ^ signmask; // // To work with 32 bit, we can operate on both but "carry" the lowest bit // from the high word by shifting it up 31 bits to be the most significant bit // of the low word. var signFlipMask = -(bitsLow & 1); bitsLow = ((bitsLow >>> 1) | (bitsHigh << 31)) ^ signFlipMask; bitsHigh = (bitsHigh >>> 1) ^ signFlipMask; return convert(bitsLow, bitsHigh); }; /** * Joins two 32-bit values into a 32-bit IEEE floating point number and * converts it back into a Javascript number. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {number} */ jspb.utils.joinFloat32 = function(bitsLow, bitsHigh) { var sign = ((bitsLow >> 31) * 2 + 1); var exp = (bitsLow >>> 23) & 0xFF; var mant = bitsLow & 0x7FFFFF; if (exp == 0xFF) { if (mant) { return NaN; } else { return sign * Infinity; } } if (exp == 0) { // Denormal. return sign * Math.pow(2, -149) * mant; } else { return sign * Math.pow(2, exp - 150) * (mant + Math.pow(2, 23)); } }; /** * Joins two 32-bit values into a 64-bit IEEE floating point number and * converts it back into a Javascript number. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {number} */ jspb.utils.joinFloat64 = function(bitsLow, bitsHigh) { var sign = ((bitsHigh >> 31) * 2 + 1); var exp = (bitsHigh >>> 20) & 0x7FF; var mant = jspb.BinaryConstants.TWO_TO_32 * (bitsHigh & 0xFFFFF) + bitsLow; if (exp == 0x7FF) { if (mant) { return NaN; } else { return sign * Infinity; } } if (exp == 0) { // Denormal. return sign * Math.pow(2, -1074) * mant; } else { return sign * Math.pow(2, exp - 1075) * (mant + jspb.BinaryConstants.TWO_TO_52); } }; /** * Joins two 32-bit values into an 8-character hash string. * @param {number} bitsLow * @param {number} bitsHigh * @return {string} */ jspb.utils.joinHash64 = function(bitsLow, bitsHigh) { var a = (bitsLow >>> 0) & 0xFF; var b = (bitsLow >>> 8) & 0xFF; var c = (bitsLow >>> 16) & 0xFF; var d = (bitsLow >>> 24) & 0xFF; var e = (bitsHigh >>> 0) & 0xFF; var f = (bitsHigh >>> 8) & 0xFF; var g = (bitsHigh >>> 16) & 0xFF; var h = (bitsHigh >>> 24) & 0xFF; return String.fromCharCode(a, b, c, d, e, f, g, h); }; /** * Individual digits for number->string conversion. * @const {!Array} */ jspb.utils.DIGITS = [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f' ]; /** @const @private {number} '0' */ jspb.utils.ZERO_CHAR_CODE_ = 48; /** @const @private {number} 'a' */ jspb.utils.A_CHAR_CODE_ = 97; /** * Losslessly converts a 64-bit unsigned integer in 32:32 split representation * into a decimal string. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {string} The binary number represented as a string. */ jspb.utils.joinUnsignedDecimalString = function(bitsLow, bitsHigh) { // Skip the expensive conversion if the number is small enough to use the // built-in conversions. if (bitsHigh <= 0x1FFFFF) { return '' + (jspb.BinaryConstants.TWO_TO_32 * bitsHigh + bitsLow); } // What this code is doing is essentially converting the input number from // base-2 to base-1e7, which allows us to represent the 64-bit range with // only 3 (very large) digits. Those digits are then trivial to convert to // a base-10 string. // The magic numbers used here are - // 2^24 = 16777216 = (1,6777216) in base-1e7. // 2^48 = 281474976710656 = (2,8147497,6710656) in base-1e7. // Split 32:32 representation into 16:24:24 representation so our // intermediate digits don't overflow. var low = bitsLow & 0xFFFFFF; var mid = (((bitsLow >>> 24) | (bitsHigh << 8)) >>> 0) & 0xFFFFFF; var high = (bitsHigh >> 16) & 0xFFFF; // Assemble our three base-1e7 digits, ignoring carries. The maximum // value in a digit at this step is representable as a 48-bit integer, which // can be stored in a 64-bit floating point number. var digitA = low + (mid * 6777216) + (high * 6710656); var digitB = mid + (high * 8147497); var digitC = (high * 2); // Apply carries from A to B and from B to C. var base = 10000000; if (digitA >= base) { digitB += Math.floor(digitA / base); digitA %= base; } if (digitB >= base) { digitC += Math.floor(digitB / base); digitB %= base; } // Convert base-1e7 digits to base-10, with optional leading zeroes. function decimalFrom1e7(digit1e7, needLeadingZeros) { var partial = digit1e7 ? String(digit1e7) : ''; if (needLeadingZeros) { return '0000000'.slice(partial.length) + partial; } return partial; } return decimalFrom1e7(digitC, /*needLeadingZeros=*/ 0) + decimalFrom1e7(digitB, /*needLeadingZeros=*/ digitC) + // If the final 1e7 digit didn't need leading zeros, we would have // returned via the trivial code path at the top. decimalFrom1e7(digitA, /*needLeadingZeros=*/ 1); }; /** * Losslessly converts a 64-bit signed integer in 32:32 split representation * into a decimal string. * @param {number} bitsLow The low 32 bits of the binary number; * @param {number} bitsHigh The high 32 bits of the binary number. * @return {string} The binary number represented as a string. */ jspb.utils.joinSignedDecimalString = function(bitsLow, bitsHigh) { // If we're treating the input as a signed value and the high bit is set, do // a manual two's complement conversion before the decimal conversion. var negative = (bitsHigh & 0x80000000); if (negative) { bitsLow = (~bitsLow + 1) >>> 0; var carry = (bitsLow == 0) ? 1 : 0; bitsHigh = (~bitsHigh + carry) >>> 0; } var result = jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); return negative ? '-' + result : result; }; /** * Convert an 8-character hash string representing either a signed or unsigned * 64-bit integer into its decimal representation without losing accuracy. * @param {string} hash The hash string to convert. * @param {boolean} signed True if we should treat the hash string as encoding * a signed integer. * @return {string} */ jspb.utils.hash64ToDecimalString = function(hash, signed) { jspb.utils.splitHash64(hash); var bitsLow = jspb.utils.split64Low; var bitsHigh = jspb.utils.split64High; return signed ? jspb.utils.joinSignedDecimalString(bitsLow, bitsHigh) : jspb.utils.joinUnsignedDecimalString(bitsLow, bitsHigh); }; /** * Converts an array of 8-character hash strings into their decimal * representations. * @param {!Array} hashes The array of hash strings to convert. * @param {boolean} signed True if we should treat the hash string as encoding * a signed integer. * @return {!Array} */ jspb.utils.hash64ArrayToDecimalStrings = function(hashes, signed) { var result = new Array(hashes.length); for (var i = 0; i < hashes.length; i++) { result[i] = jspb.utils.hash64ToDecimalString(hashes[i], signed); } return result; }; /** * Converts a signed or unsigned decimal string into its hash string * representation. * @param {string} dec * @return {string} */ jspb.utils.decimalStringToHash64 = function(dec) { goog.asserts.assert(dec.length > 0); // Check for minus sign. var minus = false; if (dec[0] === '-') { minus = true; dec = dec.slice(1); } // Store result as a byte array. var resultBytes = [0, 0, 0, 0, 0, 0, 0, 0]; // Set result to m*result + c. function muladd(m, c) { for (var i = 0; i < 8 && (m !== 1 || c > 0); i++) { var r = m * resultBytes[i] + c; resultBytes[i] = r & 0xFF; c = r >>> 8; } } // Negate the result bits. function neg() { for (var i = 0; i < 8; i++) { resultBytes[i] = (~resultBytes[i]) & 0xFF; } } // For each decimal digit, set result to 10*result + digit. for (var i = 0; i < dec.length; i++) { muladd(10, dec.charCodeAt(i) - jspb.utils.ZERO_CHAR_CODE_); } // If there's a minus sign, convert into two's complement. if (minus) { neg(); muladd(1, 1); } return goog.crypt.byteArrayToString(resultBytes); }; /** * Converts a signed or unsigned decimal string into two 32-bit halves, and * stores them in the temp variables listed above. * @param {string} value The decimal string to convert. */ jspb.utils.splitDecimalString = function(value) { jspb.utils.splitHash64(jspb.utils.decimalStringToHash64(value)); }; /** * @param {number} nibble A 4-bit integer. * @return {string} * @private */ jspb.utils.toHexDigit_ = function(nibble) { return String.fromCharCode( nibble < 10 ? jspb.utils.ZERO_CHAR_CODE_ + nibble : jspb.utils.A_CHAR_CODE_ - 10 + nibble); }; /** * @param {number} hexCharCode * @return {number} * @private */ jspb.utils.fromHexCharCode_ = function(hexCharCode) { if (hexCharCode >= jspb.utils.A_CHAR_CODE_) { return hexCharCode - jspb.utils.A_CHAR_CODE_ + 10; } return hexCharCode - jspb.utils.ZERO_CHAR_CODE_; }; /** * Converts an 8-character hash string into its hexadecimal representation. * @param {string} hash * @return {string} */ jspb.utils.hash64ToHexString = function(hash) { var temp = new Array(18); temp[0] = '0'; temp[1] = 'x'; for (var i = 0; i < 8; i++) { var c = hash.charCodeAt(7 - i); temp[i * 2 + 2] = jspb.utils.toHexDigit_(c >> 4); temp[i * 2 + 3] = jspb.utils.toHexDigit_(c & 0xF); } var result = temp.join(''); return result; }; /** * Converts a '0x<16 digits>' hex string into its hash string representation. * @param {string} hex * @return {string} */ jspb.utils.hexStringToHash64 = function(hex) { hex = hex.toLowerCase(); goog.asserts.assert(hex.length == 18); goog.asserts.assert(hex[0] == '0'); goog.asserts.assert(hex[1] == 'x'); var result = ''; for (var i = 0; i < 8; i++) { var hi = jspb.utils.fromHexCharCode_(hex.charCodeAt(i * 2 + 2)); var lo = jspb.utils.fromHexCharCode_(hex.charCodeAt(i * 2 + 3)); result = String.fromCharCode(hi * 16 + lo) + result; } return result; }; /** * Convert an 8-character hash string representing either a signed or unsigned * 64-bit integer into a Javascript number. Will lose accuracy if the result is * larger than 2^52. * @param {string} hash The hash string to convert. * @param {boolean} signed True if the has should be interpreted as a signed * number. * @return {number} */ jspb.utils.hash64ToNumber = function(hash, signed) { jspb.utils.splitHash64(hash); var bitsLow = jspb.utils.split64Low; var bitsHigh = jspb.utils.split64High; return signed ? jspb.utils.joinInt64(bitsLow, bitsHigh) : jspb.utils.joinUint64(bitsLow, bitsHigh); }; /** * Convert a Javascript number into an 8-character hash string. Will lose * precision if the value is non-integral or greater than 2^64. * @param {number} value The integer to convert. * @return {string} */ jspb.utils.numberToHash64 = function(value) { jspb.utils.splitInt64(value); return jspb.utils.joinHash64(jspb.utils.split64Low, jspb.utils.split64High); }; /** * Counts the number of contiguous varints in a buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @return {number} The number of varints in the buffer. */ jspb.utils.countVarints = function(buffer, start, end) { // Count how many high bits of each byte were set in the buffer. var count = 0; for (var i = start; i < end; i++) { count += buffer[i] >> 7; } // The number of varints in the buffer equals the size of the buffer minus // the number of non-terminal bytes in the buffer (those with the high bit // set). return (end - start) - count; }; /** * Counts the number of contiguous varint fields with the given field number in * the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count. * @return {number} The number of matching fields in the buffer. */ jspb.utils.countVarintFields = function(buffer, start, end, field) { var count = 0; var cursor = start; var tag = field * 8 + jspb.BinaryConstants.WireType.VARINT; if (tag < 128) { // Single-byte field tag, we can use a slightly quicker count. while (cursor < end) { // Skip the field tag, or exit if we find a non-matching tag. if (buffer[cursor++] != tag) return count; // Field tag matches, we've found a valid field. count++; // Skip the varint. while (1) { var x = buffer[cursor++]; if ((x & 0x80) == 0) break; } } } else { while (cursor < end) { // Skip the field tag, or exit if we find a non-matching tag. var temp = tag; while (temp > 128) { if (buffer[cursor] != ((temp & 0x7F) | 0x80)) return count; cursor++; temp >>= 7; } if (buffer[cursor++] != temp) return count; // Field tag matches, we've found a valid field. count++; // Skip the varint. while (1) { var x = buffer[cursor++]; if ((x & 0x80) == 0) break; } } } return count; }; /** * Counts the number of contiguous fixed32 fields with the given tag in the * buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} tag The tag value to count. * @param {number} stride The number of bytes to skip per field. * @return {number} The number of fields with a matching tag in the buffer. * @private */ jspb.utils.countFixedFields_ = function(buffer, start, end, tag, stride) { var count = 0; var cursor = start; if (tag < 128) { // Single-byte field tag, we can use a slightly quicker count. while (cursor < end) { // Skip the field tag, or exit if we find a non-matching tag. if (buffer[cursor++] != tag) return count; // Field tag matches, we've found a valid field. count++; // Skip the value. cursor += stride; } } else { while (cursor < end) { // Skip the field tag, or exit if we find a non-matching tag. var temp = tag; while (temp > 128) { if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; temp >>= 7; } if (buffer[cursor++] != temp) return count; // Field tag matches, we've found a valid field. count++; // Skip the value. cursor += stride; } } return count; }; /** * Counts the number of contiguous fixed32 fields with the given field number * in the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count. * @return {number} The number of matching fields in the buffer. */ jspb.utils.countFixed32Fields = function(buffer, start, end, field) { var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED32; return jspb.utils.countFixedFields_(buffer, start, end, tag, 4); }; /** * Counts the number of contiguous fixed64 fields with the given field number * in the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count * @return {number} The number of matching fields in the buffer. */ jspb.utils.countFixed64Fields = function(buffer, start, end, field) { var tag = field * 8 + jspb.BinaryConstants.WireType.FIXED64; return jspb.utils.countFixedFields_(buffer, start, end, tag, 8); }; /** * Counts the number of contiguous delimited fields with the given field number * in the buffer. * @param {!Uint8Array} buffer The buffer to scan. * @param {number} start The starting point in the buffer to scan. * @param {number} end The end point in the buffer to scan. * @param {number} field The field number to count. * @return {number} The number of matching fields in the buffer. */ jspb.utils.countDelimitedFields = function(buffer, start, end, field) { var count = 0; var cursor = start; var tag = field * 8 + jspb.BinaryConstants.WireType.DELIMITED; while (cursor < end) { // Skip the field tag, or exit if we find a non-matching tag. var temp = tag; while (temp > 128) { if (buffer[cursor++] != ((temp & 0x7F) | 0x80)) return count; temp >>= 7; } if (buffer[cursor++] != temp) return count; // Field tag matches, we've found a valid field. count++; // Decode the length prefix. var length = 0; var shift = 1; while (1) { temp = buffer[cursor++]; length += (temp & 0x7f) * shift; shift *= 128; if ((temp & 0x80) == 0) break; } // Advance the cursor past the blob. cursor += length; } return count; }; /** * String-ify bytes for text format. Should be optimized away in non-debug. * The returned string uses \xXX escapes for all values and is itself quoted. * [1, 31] serializes to '"\x01\x1f"'. * @param {jspb.ByteSource} byteSource The bytes to serialize. * @return {string} Stringified bytes for text format. */ jspb.utils.debugBytesToTextFormat = function(byteSource) { var s = '"'; if (byteSource) { var bytes = jspb.utils.byteSourceToUint8Array(byteSource); for (var i = 0; i < bytes.length; i++) { s += '\\x'; if (bytes[i] < 16) s += '0'; s += bytes[i].toString(16); } } return s + '"'; }; /** * String-ify a scalar for text format. Should be optimized away in non-debug. * @param {string|number|boolean} scalar The scalar to stringify. * @return {string} Stringified scalar for text format. */ jspb.utils.debugScalarToTextFormat = function(scalar) { if (typeof scalar === 'string') { return goog.string.quote(scalar); } else { return scalar.toString(); } }; /** * Utility function: convert a string with codepoints 0--255 inclusive to a * Uint8Array. If any codepoints greater than 255 exist in the string, throws an * exception. * @param {string} str * @return {!Uint8Array} */ jspb.utils.stringToByteArray = function(str) { var arr = new Uint8Array(str.length); for (var i = 0; i < str.length; i++) { var codepoint = str.charCodeAt(i); if (codepoint > 255) { throw new Error('Conversion error: string contains codepoint ' + 'outside of byte range'); } arr[i] = codepoint; } return arr; }; /** * Converts any type defined in jspb.ByteSource into a Uint8Array. * @param {!jspb.ByteSource} data * @return {!Uint8Array} * @suppress {invalidCasts} */ jspb.utils.byteSourceToUint8Array = function(data) { if (data.constructor === Uint8Array) { return /** @type {!Uint8Array} */(data); } if (data.constructor === ArrayBuffer) { data = /** @type {!ArrayBuffer} */(data); return /** @type {!Uint8Array} */(new Uint8Array(data)); } if (typeof Buffer != 'undefined' && data.constructor === Buffer) { return /** @type {!Uint8Array} */ ( new Uint8Array(/** @type {?} */ (data))); } if (data.constructor === Array) { data = /** @type {!Array} */(data); return /** @type {!Uint8Array} */(new Uint8Array(data)); } if (data.constructor === String) { data = /** @type {string} */(data); return goog.crypt.base64.decodeStringToUint8Array(data); } goog.asserts.fail('Type not convertible to Uint8Array.'); return /** @type {!Uint8Array} */(new Uint8Array(0)); };