/* * Copyright (c) 2009-2021, Google LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Google LLC nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This file contains shared definitions that are widely used across upb. */ #ifndef UPB_H_ #define UPB_H_ #include #include #include #include #include #include #include "upb/port_def.inc" #ifdef __cplusplus extern "C" { #endif /* upb_Status *****************************************************************/ #define _kUpb_Status_MaxMessage 127 typedef struct { bool ok; char msg[_kUpb_Status_MaxMessage]; /* Error message; NULL-terminated. */ } upb_Status; const char* upb_Status_ErrorMessage(const upb_Status* status); bool upb_Status_IsOk(const upb_Status* status); /* These are no-op if |status| is NULL. */ void upb_Status_Clear(upb_Status* status); void upb_Status_SetErrorMessage(upb_Status* status, const char* msg); void upb_Status_SetErrorFormat(upb_Status* status, const char* fmt, ...) UPB_PRINTF(2, 3); void upb_Status_VSetErrorFormat(upb_Status* status, const char* fmt, va_list args) UPB_PRINTF(2, 0); void upb_Status_VAppendErrorFormat(upb_Status* status, const char* fmt, va_list args) UPB_PRINTF(2, 0); /** upb_StringView ************************************************************/ typedef struct { const char* data; size_t size; } upb_StringView; UPB_INLINE upb_StringView upb_StringView_FromDataAndSize(const char* data, size_t size) { upb_StringView ret; ret.data = data; ret.size = size; return ret; } UPB_INLINE upb_StringView upb_StringView_FromString(const char* data) { return upb_StringView_FromDataAndSize(data, strlen(data)); } UPB_INLINE bool upb_StringView_IsEqual(upb_StringView a, upb_StringView b) { return a.size == b.size && memcmp(a.data, b.data, a.size) == 0; } #define UPB_STRINGVIEW_INIT(ptr, len) \ { ptr, len } #define UPB_STRINGVIEW_FORMAT "%.*s" #define UPB_STRINGVIEW_ARGS(view) (int)(view).size, (view).data /** upb_alloc *****************************************************************/ /* A upb_alloc is a possibly-stateful allocator object. * * It could either be an arena allocator (which doesn't require individual * free() calls) or a regular malloc() (which does). The client must therefore * free memory unless it knows that the allocator is an arena allocator. */ struct upb_alloc; typedef struct upb_alloc upb_alloc; /* A malloc()/free() function. * If "size" is 0 then the function acts like free(), otherwise it acts like * realloc(). Only "oldsize" bytes from a previous allocation are preserved. */ typedef void* upb_alloc_func(upb_alloc* alloc, void* ptr, size_t oldsize, size_t size); struct upb_alloc { upb_alloc_func* func; }; UPB_INLINE void* upb_malloc(upb_alloc* alloc, size_t size) { UPB_ASSERT(alloc); return alloc->func(alloc, NULL, 0, size); } UPB_INLINE void* upb_realloc(upb_alloc* alloc, void* ptr, size_t oldsize, size_t size) { UPB_ASSERT(alloc); return alloc->func(alloc, ptr, oldsize, size); } UPB_INLINE void upb_free(upb_alloc* alloc, void* ptr) { assert(alloc); alloc->func(alloc, ptr, 0, 0); } /* The global allocator used by upb. Uses the standard malloc()/free(). */ extern upb_alloc upb_alloc_global; /* Functions that hard-code the global malloc. * * We still get benefit because we can put custom logic into our global * allocator, like injecting out-of-memory faults in debug/testing builds. */ UPB_INLINE void* upb_gmalloc(size_t size) { return upb_malloc(&upb_alloc_global, size); } UPB_INLINE void* upb_grealloc(void* ptr, size_t oldsize, size_t size) { return upb_realloc(&upb_alloc_global, ptr, oldsize, size); } UPB_INLINE void upb_gfree(void* ptr) { upb_free(&upb_alloc_global, ptr); } /* upb_Arena ******************************************************************/ /* upb_Arena is a specific allocator implementation that uses arena allocation. * The user provides an allocator that will be used to allocate the underlying * arena blocks. Arenas by nature do not require the individual allocations * to be freed. However the Arena does allow users to register cleanup * functions that will run when the arena is destroyed. * * A upb_Arena is *not* thread-safe. * * You could write a thread-safe arena allocator that satisfies the * upb_alloc interface, but it would not be as efficient for the * single-threaded case. */ typedef void upb_CleanupFunc(void* ud); struct upb_Arena; typedef struct upb_Arena upb_Arena; typedef struct { /* We implement the allocator interface. * This must be the first member of upb_Arena! * TODO(haberman): remove once handlers are gone. */ upb_alloc alloc; char *ptr, *end; } _upb_ArenaHead; /* Creates an arena from the given initial block (if any -- n may be 0). * Additional blocks will be allocated from |alloc|. If |alloc| is NULL, this * is a fixed-size arena and cannot grow. */ upb_Arena* upb_Arena_Init(void* mem, size_t n, upb_alloc* alloc); void upb_Arena_Free(upb_Arena* a); bool upb_Arena_AddCleanup(upb_Arena* a, void* ud, upb_CleanupFunc* func); bool upb_Arena_Fuse(upb_Arena* a, upb_Arena* b); void* _upb_Arena_SlowMalloc(upb_Arena* a, size_t size); UPB_INLINE upb_alloc* upb_Arena_Alloc(upb_Arena* a) { return (upb_alloc*)a; } UPB_INLINE size_t _upb_ArenaHas(upb_Arena* a) { _upb_ArenaHead* h = (_upb_ArenaHead*)a; return (size_t)(h->end - h->ptr); } UPB_INLINE void* _upb_Arena_FastMalloc(upb_Arena* a, size_t size) { _upb_ArenaHead* h = (_upb_ArenaHead*)a; void* ret = h->ptr; UPB_ASSERT(UPB_ALIGN_MALLOC((uintptr_t)ret) == (uintptr_t)ret); UPB_ASSERT(UPB_ALIGN_MALLOC(size) == size); UPB_UNPOISON_MEMORY_REGION(ret, size); h->ptr += size; #if UPB_ASAN { size_t guard_size = 32; if (_upb_ArenaHas(a) >= guard_size) { h->ptr += guard_size; } else { h->ptr = h->end; } } #endif return ret; } UPB_INLINE void* upb_Arena_Malloc(upb_Arena* a, size_t size) { size = UPB_ALIGN_MALLOC(size); if (UPB_UNLIKELY(_upb_ArenaHas(a) < size)) { return _upb_Arena_SlowMalloc(a, size); } return _upb_Arena_FastMalloc(a, size); } // Shrinks the last alloc from arena. // REQUIRES: (ptr, oldsize) was the last malloc/realloc from this arena. // We could also add a upb_Arena_TryShrinkLast() which is simply a no-op if // this was not the last alloc. UPB_INLINE void upb_Arena_ShrinkLast(upb_Arena* a, void* ptr, size_t oldsize, size_t size) { _upb_ArenaHead* h = (_upb_ArenaHead*)a; oldsize = UPB_ALIGN_MALLOC(oldsize); size = UPB_ALIGN_MALLOC(size); UPB_ASSERT((char*)ptr + oldsize == h->ptr); // Must be the last alloc. UPB_ASSERT(size <= oldsize); h->ptr = (char*)ptr + size; } UPB_INLINE void* upb_Arena_Realloc(upb_Arena* a, void* ptr, size_t oldsize, size_t size) { _upb_ArenaHead* h = (_upb_ArenaHead*)a; oldsize = UPB_ALIGN_MALLOC(oldsize); size = UPB_ALIGN_MALLOC(size); bool is_most_recent_alloc = (uintptr_t)ptr + oldsize == (uintptr_t)h->ptr; if (is_most_recent_alloc) { ptrdiff_t diff = size - oldsize; if ((ptrdiff_t)_upb_ArenaHas(a) >= diff) { h->ptr += diff; return ptr; } } else if (size <= oldsize) { return ptr; } void* ret = upb_Arena_Malloc(a, size); if (ret && oldsize > 0) { memcpy(ret, ptr, UPB_MIN(oldsize, size)); } return ret; } UPB_INLINE upb_Arena* upb_Arena_New(void) { return upb_Arena_Init(NULL, 0, &upb_alloc_global); } /* Constants ******************************************************************/ /* A list of types as they are encoded on-the-wire. */ typedef enum { kUpb_WireType_Varint = 0, kUpb_WireType_64Bit = 1, kUpb_WireType_Delimited = 2, kUpb_WireType_StartGroup = 3, kUpb_WireType_EndGroup = 4, kUpb_WireType_32Bit = 5 } upb_WireType; /* The types a field can have. Note that this list is not identical to the * types defined in descriptor.proto, which gives INT32 and SINT32 separate * types (we distinguish the two with the "integer encoding" enum below). */ typedef enum { kUpb_CType_Bool = 1, kUpb_CType_Float = 2, kUpb_CType_Int32 = 3, kUpb_CType_UInt32 = 4, kUpb_CType_Enum = 5, /* Enum values are int32. */ kUpb_CType_Message = 6, kUpb_CType_Double = 7, kUpb_CType_Int64 = 8, kUpb_CType_UInt64 = 9, kUpb_CType_String = 10, kUpb_CType_Bytes = 11 } upb_CType; /* The repeated-ness of each field; this matches descriptor.proto. */ typedef enum { kUpb_Label_Optional = 1, kUpb_Label_Required = 2, kUpb_Label_Repeated = 3 } upb_Label; /* Descriptor types, as defined in descriptor.proto. */ typedef enum { kUpb_FieldType_Double = 1, kUpb_FieldType_Float = 2, kUpb_FieldType_Int64 = 3, kUpb_FieldType_UInt64 = 4, kUpb_FieldType_Int32 = 5, kUpb_FieldType_Fixed64 = 6, kUpb_FieldType_Fixed32 = 7, kUpb_FieldType_Bool = 8, kUpb_FieldType_String = 9, kUpb_FieldType_Group = 10, kUpb_FieldType_Message = 11, kUpb_FieldType_Bytes = 12, kUpb_FieldType_UInt32 = 13, kUpb_FieldType_Enum = 14, kUpb_FieldType_SFixed32 = 15, kUpb_FieldType_SFixed64 = 16, kUpb_FieldType_SInt32 = 17, kUpb_FieldType_SInt64 = 18 } upb_FieldType; #define kUpb_Map_Begin ((size_t)-1) UPB_INLINE bool _upb_IsLittleEndian(void) { int x = 1; return *(char*)&x == 1; } UPB_INLINE uint32_t _upb_BigEndian_Swap32(uint32_t val) { if (_upb_IsLittleEndian()) { return val; } else { return ((val & 0xff) << 24) | ((val & 0xff00) << 8) | ((val & 0xff0000) >> 8) | ((val & 0xff000000) >> 24); } } UPB_INLINE uint64_t _upb_BigEndian_Swap64(uint64_t val) { if (_upb_IsLittleEndian()) { return val; } else { return ((uint64_t)_upb_BigEndian_Swap32((uint32_t)val) << 32) | _upb_BigEndian_Swap32((uint32_t)(val >> 32)); } } UPB_INLINE int _upb_Log2Ceiling(int x) { if (x <= 1) return 0; #ifdef __GNUC__ return 32 - __builtin_clz(x - 1); #else int lg2 = 0; while (1 << lg2 < x) lg2++; return lg2; #endif } UPB_INLINE int _upb_Log2CeilingSize(int x) { return 1 << _upb_Log2Ceiling(x); } #include "upb/port_undef.inc" #ifdef __cplusplus } /* extern "C" */ #endif #endif /* UPB_H_ */