/* * Copyright (c) 2009-2021, Google LLC * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Google LLC nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY DIRECT, * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "upb/mini_table.h" #include #include #include "upb/msg_internal.h" #include "upb/upb.h" // Must be last. #include "upb/port_def.inc" typedef enum { kUpb_EncodedType_Double = 0, kUpb_EncodedType_Float = 1, kUpb_EncodedType_Fixed32 = 2, kUpb_EncodedType_Fixed64 = 3, kUpb_EncodedType_SFixed32 = 4, kUpb_EncodedType_SFixed64 = 5, kUpb_EncodedType_Int32 = 6, kUpb_EncodedType_UInt32 = 7, kUpb_EncodedType_SInt32 = 8, kUpb_EncodedType_Int64 = 9, kUpb_EncodedType_UInt64 = 10, kUpb_EncodedType_SInt64 = 11, kUpb_EncodedType_Enum = 12, kUpb_EncodedType_Bool = 13, kUpb_EncodedType_Bytes = 14, kUpb_EncodedType_String = 15, kUpb_EncodedType_Group = 16, kUpb_EncodedType_Message = 17, kUpb_EncodedType_RepeatedBase = 20, } upb_EncodedType; typedef enum { kUpb_EncodedFieldModifier_IsUnpacked = 1, kUpb_EncodedFieldModifier_JspbString = 2, // upb only. kUpb_EncodedFieldModifier_IsProto3Singular = 4, kUpb_EncodedFieldModifier_IsRequired = 8, } upb_EncodedFieldModifier; enum { kUpb_EncodedValue_MinField = ' ', kUpb_EncodedValue_MaxField = 'K', kUpb_EncodedValue_MinModifier = 'L', kUpb_EncodedValue_MaxModifier = '[', kUpb_EncodedValue_End = '^', kUpb_EncodedValue_MinSkip = '_', kUpb_EncodedValue_MaxSkip = '~', kUpb_EncodedValue_OneofSeparator = '~', kUpb_EncodedValue_FieldSeparator = '|', }; char upb_ToBase92(int8_t ch) { static const char kUpb_ToBase92[] = { ' ', '!', '#', '$', '%', '&', '(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '[', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~', }; assert(0 <= ch && ch < 92); return kUpb_ToBase92[ch]; } char upb_FromBase92(uint8_t ch) { static const int8_t kUpb_FromBase92[] = { 0, 1, -1, 2, 3, 4, 5, -1, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, -1, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, }; if (' ' > ch || ch > '~') return -1; return kUpb_FromBase92[ch - ' ']; } /** upb_MtDataEncoder *********************************************************/ typedef struct { char* buf_start; // Only for checking kUpb_MtDataEncoder_MinSize. uint64_t msg_mod; uint32_t last_field_num; enum { kUpb_OneofState_NotStarted, kUpb_OneofState_StartedOneof, kUpb_OneofState_EmittedOneofField, } oneof_state; } upb_MtDataEncoderInternal; static upb_MtDataEncoderInternal* upb_MtDataEncoder_GetInternal( upb_MtDataEncoder* e, char* buf_start) { upb_MtDataEncoderInternal* ret = (upb_MtDataEncoderInternal*)e->internal; ret->buf_start = buf_start; return ret; } static char* upb_MtDataEncoder_Put(upb_MtDataEncoder* e, char* ptr, char ch) { upb_MtDataEncoderInternal* in = (upb_MtDataEncoderInternal*)e->internal; UPB_ASSERT(ptr - in->buf_start < kUpb_MtDataEncoder_MinSize); if (ptr == e->end) return NULL; *ptr++ = upb_ToBase92(ch); return ptr; } static char* upb_MtDataEncoder_PutBase92Varint(upb_MtDataEncoder* e, char* ptr, uint32_t val, int min, int max) { int shift = _upb_Log2Ceiling(upb_FromBase92(max) - upb_FromBase92(min) + 1); uint32_t mask = (1 << shift) - 1; do { uint32_t bits = val & mask; ptr = upb_MtDataEncoder_Put(e, ptr, bits + upb_FromBase92(min)); if (!ptr) return NULL; val >>= shift; } while (val); return ptr; } char* upb_MtDataEncoder_StartMessage(upb_MtDataEncoder* e, char* ptr, uint64_t msg_mod) { upb_MtDataEncoderInternal* in = upb_MtDataEncoder_GetInternal(e, ptr); in->msg_mod = msg_mod; in->last_field_num = 0; in->oneof_state = kUpb_OneofState_NotStarted; return ptr; } char* upb_MtDataEncoder_PutField(upb_MtDataEncoder* e, char* ptr, upb_FieldType type, uint32_t field_num, uint64_t modifiers) { static const char kUpb_TypeToEncoded[] = { [kUpb_FieldType_Double] = kUpb_EncodedType_Double, [kUpb_FieldType_Float] = kUpb_EncodedType_Float, [kUpb_FieldType_Int64] = kUpb_EncodedType_Int64, [kUpb_FieldType_UInt64] = kUpb_EncodedType_UInt64, [kUpb_FieldType_Int32] = kUpb_EncodedType_Int32, [kUpb_FieldType_Fixed64] = kUpb_EncodedType_Fixed64, [kUpb_FieldType_Fixed32] = kUpb_EncodedType_Fixed32, [kUpb_FieldType_Bool] = kUpb_EncodedType_Bool, [kUpb_FieldType_String] = kUpb_EncodedType_String, [kUpb_FieldType_Group] = kUpb_EncodedType_Group, [kUpb_FieldType_Message] = kUpb_EncodedType_Message, [kUpb_FieldType_Bytes] = kUpb_EncodedType_Bytes, [kUpb_FieldType_UInt32] = kUpb_EncodedType_UInt32, [kUpb_FieldType_Enum] = kUpb_EncodedType_Enum, [kUpb_FieldType_SFixed32] = kUpb_EncodedType_SFixed32, [kUpb_FieldType_SFixed64] = kUpb_EncodedType_SFixed64, [kUpb_FieldType_SInt32] = kUpb_EncodedType_SInt32, [kUpb_FieldType_SInt64] = kUpb_EncodedType_SInt64, }; upb_MtDataEncoderInternal* in = upb_MtDataEncoder_GetInternal(e, ptr); if (field_num <= in->last_field_num) return NULL; if (in->last_field_num + 1 != field_num) { // Put skip. assert(field_num > in->last_field_num); uint32_t skip = field_num - in->last_field_num; ptr = upb_MtDataEncoder_PutBase92Varint( e, ptr, skip, kUpb_EncodedValue_MinSkip, kUpb_EncodedValue_MaxSkip); if (!ptr) return NULL; } in->last_field_num = field_num; // Put field type. int encoded_type = kUpb_TypeToEncoded[type]; if (modifiers & kUpb_FieldModifier_IsRepeated) { encoded_type += kUpb_EncodedType_RepeatedBase; } ptr = upb_MtDataEncoder_Put(e, ptr, encoded_type); if (!ptr) return NULL; uint32_t encoded_modifiers = 0; if (modifiers & kUpb_FieldModifier_IsProto3Singular) { encoded_modifiers |= kUpb_EncodedFieldModifier_IsProto3Singular; } if (modifiers & kUpb_FieldModifier_IsRequired) { encoded_modifiers |= kUpb_EncodedFieldModifier_IsRequired; } if ((modifiers & kUpb_FieldModifier_IsPacked) != (in->msg_mod & kUpb_MessageModifier_DefaultIsPacked)) { encoded_modifiers |= kUpb_EncodedFieldModifier_IsUnpacked; } if (encoded_modifiers) { ptr = upb_MtDataEncoder_PutBase92Varint(e, ptr, encoded_modifiers, kUpb_EncodedValue_MinModifier, kUpb_EncodedValue_MaxModifier); } return ptr; } char* upb_MtDataEncoder_StartOneof(upb_MtDataEncoder* e, char* ptr) { upb_MtDataEncoderInternal* in = upb_MtDataEncoder_GetInternal(e, ptr); if (in->oneof_state == kUpb_OneofState_NotStarted) { ptr = upb_MtDataEncoder_Put(e, ptr, upb_FromBase92(kUpb_EncodedValue_End)); } else { ptr = upb_MtDataEncoder_Put( e, ptr, upb_FromBase92(kUpb_EncodedValue_OneofSeparator)); } in->oneof_state = kUpb_OneofState_StartedOneof; return ptr; } char* upb_MtDataEncoder_PutOneofField(upb_MtDataEncoder* e, char* ptr, uint32_t field_num) { upb_MtDataEncoderInternal* in = upb_MtDataEncoder_GetInternal(e, ptr); if (in->oneof_state == kUpb_OneofState_EmittedOneofField) { ptr = upb_MtDataEncoder_Put( e, ptr, upb_FromBase92(kUpb_EncodedValue_FieldSeparator)); if (!ptr) return NULL; } ptr = upb_MtDataEncoder_PutBase92Varint(e, ptr, field_num, upb_ToBase92(0), upb_ToBase92(63)); in->oneof_state = kUpb_OneofState_EmittedOneofField; return ptr; } const upb_MiniTable_Field* upb_MiniTable_FindFieldByNumber( const upb_MiniTable* table, uint32_t number) { int n = table->field_count; for (int i = 0; i < n; i++) { if (table->fields[i].number == number) { return &table->fields[i]; } } return NULL; } /** Data decoder **************************************************************/ typedef enum { kUpb_LayoutItemType_Field, // Non-oneof field data. kUpb_LayoutItemType_OneofField, // Oneof field data. kUpb_LayoutItemType_OneofCase, // Oneof case. } upb_LayoutItemType; #define kUpb_LayoutItem_IndexSentinel ((uint16_t)-1) typedef struct { // Index of the corresponding field. When this is a oneof field, the field's // offset will be the index of the next field in a linked list. uint16_t field_index; upb_FieldRep rep; upb_LayoutItemType type; // Used for temporary storage while assigning offsets (internal only). uint16_t offset; } upb_LayoutItem; typedef struct { upb_LayoutItem* data; size_t size; size_t capacity; } upb_LayoutItemVector; typedef struct { const char* end; upb_MiniTable* table; upb_MiniTable_Field* fields; upb_MiniTablePlatform platform; upb_LayoutItemVector vec; upb_Arena* arena; upb_Status* status; jmp_buf err; } upb_MtDecoder; UPB_PRINTF(2, 3) UPB_NORETURN static void upb_MtDecoder_ErrorFormat(upb_MtDecoder* d, const char* fmt, ...) { va_list argp; upb_Status_SetErrorMessage(d->status, "Error building mini table: "); va_start(argp, fmt); upb_Status_VAppendErrorFormat(d->status, fmt, argp); va_end(argp); UPB_LONGJMP(d->err, 1); } static void upb_MtDecoder_CheckOutOfMemory(upb_MtDecoder* d, const void* ptr) { if (!ptr) upb_MtDecoder_ErrorFormat(d, "Out of memory"); } // In each field's offset, we temporarily store a presence classifier: enum PresenceClass { kNoPresence = 0, kHasbitPresence = 1, kRequiredPresence = 2, kOneofBase = 3, // Negative values refer to a specific oneof with that number. Positive // values >= kOneofBase indicate that this field is in a oneof, and specify // the next field in this oneof's linked list. }; static const char* upb_MiniTable_DecodeBase92Varint(upb_MtDecoder* d, const char* ptr, char first_ch, uint8_t min, uint8_t max, uint32_t* out_val) { uint32_t val = 0; uint32_t shift = 0; char ch = first_ch; while (1) { uint32_t bits = upb_FromBase92(ch) - upb_FromBase92(min); val |= bits << shift; if (ptr == d->end || *ptr < min || max < *ptr) { *out_val = val; return ptr; } ch = *ptr++; shift += _upb_Log2Ceiling(upb_FromBase92(max) - upb_FromBase92(min)); } } static bool upb_MiniTable_HasSub(char type, uint64_t msg_modifiers) { return type == kUpb_EncodedType_Message || type == kUpb_EncodedType_Group || (type == kUpb_EncodedType_Enum && (msg_modifiers & kUpb_MessageModifier_HasClosedEnums)); } static void upb_MiniTable_SetField(upb_MtDecoder* d, uint8_t ch, upb_MiniTable_Field* field, uint64_t msg_modifiers, uint32_t* sub_count) { static const char kUpb_EncodedToFieldRep[] = { [kUpb_EncodedType_Double] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_Float] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_Int64] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_UInt64] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_Int32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_Fixed64] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_Fixed32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_Bool] = kUpb_FieldRep_1Byte, [kUpb_EncodedType_String] = kUpb_FieldRep_StringView, [kUpb_EncodedType_Group] = kUpb_FieldRep_Pointer, [kUpb_EncodedType_Message] = kUpb_FieldRep_Pointer, [kUpb_EncodedType_Bytes] = kUpb_FieldRep_StringView, [kUpb_EncodedType_UInt32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_Enum] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_SFixed32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_SFixed64] = kUpb_FieldRep_8Byte, [kUpb_EncodedType_SInt32] = kUpb_FieldRep_4Byte, [kUpb_EncodedType_SInt64] = kUpb_FieldRep_8Byte, }; static const char kUpb_EncodedToType[] = { [kUpb_EncodedType_Double] = kUpb_FieldType_Double, [kUpb_EncodedType_Float] = kUpb_FieldType_Float, [kUpb_EncodedType_Int64] = kUpb_FieldType_Int64, [kUpb_EncodedType_UInt64] = kUpb_FieldType_UInt64, [kUpb_EncodedType_Int32] = kUpb_FieldType_Int32, [kUpb_EncodedType_Fixed64] = kUpb_FieldType_Fixed64, [kUpb_EncodedType_Fixed32] = kUpb_FieldType_Fixed32, [kUpb_EncodedType_Bool] = kUpb_FieldType_Bool, [kUpb_EncodedType_String] = kUpb_FieldType_String, [kUpb_EncodedType_Group] = kUpb_FieldType_Group, [kUpb_EncodedType_Message] = kUpb_FieldType_Message, [kUpb_EncodedType_Bytes] = kUpb_FieldType_Bytes, [kUpb_EncodedType_UInt32] = kUpb_FieldType_UInt32, [kUpb_EncodedType_Enum] = kUpb_FieldType_Enum, [kUpb_EncodedType_SFixed32] = kUpb_FieldType_SFixed32, [kUpb_EncodedType_SFixed64] = kUpb_FieldType_SFixed64, [kUpb_EncodedType_SInt32] = kUpb_FieldType_SInt32, [kUpb_EncodedType_SInt64] = kUpb_FieldType_SInt64, }; int8_t type = upb_FromBase92(ch); if (ch >= upb_ToBase92(kUpb_EncodedType_RepeatedBase)) { type -= kUpb_EncodedType_RepeatedBase; field->mode = kUpb_FieldMode_Array; field->mode |= kUpb_FieldRep_Pointer << kUpb_FieldRep_Shift; field->offset = kNoPresence; } else { field->mode = kUpb_FieldMode_Scalar; field->mode |= kUpb_EncodedToFieldRep[type] << kUpb_FieldRep_Shift; field->offset = kHasbitPresence; } if (type >= 18) { upb_MtDecoder_ErrorFormat(d, "Invalid field type: %d", (int)type); UPB_UNREACHABLE(); } field->descriptortype = kUpb_EncodedToType[type]; if (upb_MiniTable_HasSub(type, msg_modifiers)) { field->submsg_index = sub_count ? (*sub_count)++ : 0; } } static void upb_MtDecoder_ModifyField(upb_MtDecoder* d, uint32_t mod, upb_MiniTable_Field* field) { if (mod & kUpb_EncodedFieldModifier_IsUnpacked) { field->mode &= ~kUpb_LabelFlags_IsPacked; } else { field->mode |= kUpb_LabelFlags_IsPacked; } bool singular = mod & kUpb_EncodedFieldModifier_IsProto3Singular; bool required = mod & kUpb_EncodedFieldModifier_IsRequired; // Validate. if ((singular || required) && field->offset != kHasbitPresence) { upb_MtDecoder_ErrorFormat( d, "Invalid modifier(s) for repeated field %" PRIu32, field->number); UPB_UNREACHABLE(); } if (singular && required) { upb_MtDecoder_ErrorFormat( d, "Field %" PRIu32 " cannot be both singular and required", field->number); UPB_UNREACHABLE(); } if (singular) field->offset = kNoPresence; if (required) field->offset = kRequiredPresence; } static void upb_MtDecoder_PushItem(upb_MtDecoder* d, upb_LayoutItem item) { if (d->vec.size == d->vec.capacity) { size_t new_cap = UPB_MAX(8, d->vec.size * 2); d->vec.data = realloc(d->vec.data, new_cap * sizeof(*d->vec.data)); upb_MtDecoder_CheckOutOfMemory(d, d->vec.data); d->vec.capacity = new_cap; } d->vec.data[d->vec.size++] = item; } static void upb_MtDecoder_PushOneof(upb_MtDecoder* d, upb_LayoutItem item) { if (item.field_index == kUpb_LayoutItem_IndexSentinel) { upb_MtDecoder_ErrorFormat(d, "Empty oneof"); UPB_UNREACHABLE(); } item.field_index -= kOneofBase; // Push oneof data. item.type = kUpb_LayoutItemType_OneofField; upb_MtDecoder_PushItem(d, item); // Push oneof case. item.rep = kUpb_FieldRep_4Byte; // Field Number. item.type = kUpb_LayoutItemType_OneofCase; upb_MtDecoder_PushItem(d, item); } static const char* upb_MtDecoder_DecodeOneofField(upb_MtDecoder* d, const char* ptr, char first_ch, upb_LayoutItem* item) { uint32_t field_num; ptr = upb_MiniTable_DecodeBase92Varint(d, ptr, first_ch, upb_ToBase92(0), upb_ToBase92(63), &field_num); upb_MiniTable_Field* f = (void*)upb_MiniTable_FindFieldByNumber(d->table, field_num); if (!f) { upb_MtDecoder_ErrorFormat(d, "Couldn't add field number %" PRIu32 " to oneof, no such field number.", field_num); UPB_UNREACHABLE(); } if (f->offset != kHasbitPresence) { upb_MtDecoder_ErrorFormat( d, "Cannot add repeated, required, or singular field %" PRIu32 " to oneof.", field_num); UPB_UNREACHABLE(); } // Oneof storage must be large enough to accommodate the largest member. item->rep = UPB_MAX(item->rep, f->mode >> kUpb_FieldRep_Shift); // Prepend this field to the linked list. f->offset = item->field_index; item->field_index = (f - d->fields) + kOneofBase; return ptr; } static const char* upb_MtDecoder_DecodeOneofs(upb_MtDecoder* d, const char* ptr) { upb_LayoutItem item = {.rep = 0, .field_index = kUpb_LayoutItem_IndexSentinel}; while (ptr < d->end) { char ch = *ptr++; if (ch == kUpb_EncodedValue_FieldSeparator) { // Field separator, no action needed. } else if (ch == kUpb_EncodedValue_OneofSeparator) { // End of oneof. upb_MtDecoder_PushOneof(d, item); item.field_index = kUpb_LayoutItem_IndexSentinel; // Move to next oneof. } else { ptr = upb_MtDecoder_DecodeOneofField(d, ptr, ch, &item); } } // Push final oneof. upb_MtDecoder_PushOneof(d, item); return ptr; } static const char* upb_MtDecoder_ParseModifier(upb_MtDecoder* d, const char* ptr, char first_ch, uint16_t field_count, uint64_t* msg_modifiers) { uint32_t mod; ptr = upb_MiniTable_DecodeBase92Varint(d, ptr, first_ch, kUpb_EncodedValue_MinModifier, kUpb_EncodedValue_MaxModifier, &mod); if (field_count == 0) { if (!d->table) { upb_MtDecoder_ErrorFormat(d, "Extensions cannot have message modifiers"); UPB_UNREACHABLE(); } *msg_modifiers = mod; } else { upb_MiniTable_Field* field = &d->fields[field_count - 1]; upb_MtDecoder_ModifyField(d, mod, field); } return ptr; } static void upb_MtDecoder_AllocateSubs(upb_MtDecoder* d, uint32_t sub_count) { size_t subs_bytes = sizeof(*d->table->subs) * sub_count; d->table->subs = upb_Arena_Malloc(d->arena, subs_bytes); upb_MtDecoder_CheckOutOfMemory(d, d->table->subs); } static void upb_MtDecoder_Parse(upb_MtDecoder* d, const char* ptr, size_t len, void* fields, size_t field_size, uint16_t* field_count, uint32_t* sub_count) { uint64_t msg_modifiers = 0; uint32_t last_field_number = 0; bool need_dense_below = d->table != NULL; d->end = ptr + len; while (ptr < d->end) { char ch = *ptr++; if (ch <= kUpb_EncodedValue_MaxField) { upb_MiniTable_Field* field = fields; *field_count += 1; fields = (char*)fields + field_size; field->number = ++last_field_number; upb_MiniTable_SetField(d, ch, field, msg_modifiers, sub_count); } else if (kUpb_EncodedValue_MinModifier <= ch && ch <= kUpb_EncodedValue_MaxModifier) { ptr = upb_MtDecoder_ParseModifier(d, ptr, ch, *field_count, &msg_modifiers); } else if (ch == kUpb_EncodedValue_End) { if (!d->table) { upb_MtDecoder_ErrorFormat(d, "Extensions cannot have oneofs."); UPB_UNREACHABLE(); } ptr = upb_MtDecoder_DecodeOneofs(d, ptr); } else if (kUpb_EncodedValue_MinSkip <= ch && ch <= kUpb_EncodedValue_MaxSkip) { if (need_dense_below) { d->table->dense_below = d->table->field_count; need_dense_below = false; } uint32_t skip; ptr = upb_MiniTable_DecodeBase92Varint(d, ptr, ch, kUpb_EncodedValue_MinSkip, kUpb_EncodedValue_MaxSkip, &skip); last_field_number += skip; last_field_number--; // Next field seen will increment. } } if (need_dense_below) { d->table->dense_below = d->table->field_count; } } static void upb_MtDecoder_ParseMessage(upb_MtDecoder* d, const char* data, size_t len) { // Buffer length is an upper bound on the number of fields. We will return // what we don't use. d->fields = upb_Arena_Malloc(d->arena, sizeof(*d->fields) * len); upb_MtDecoder_CheckOutOfMemory(d, d->fields); uint32_t sub_count = 0; d->table->field_count = 0; d->table->fields = d->fields; upb_MtDecoder_Parse(d, data, len, d->fields, sizeof(*d->fields), &d->table->field_count, &sub_count); // Return unused memory from fields array. assert(d->table->field_count <= len); d->fields = upb_Arena_Realloc(d->arena, d->fields, sizeof(*d->fields) * len, sizeof(*d->fields) * d->table->field_count); d->table->fields = d->fields; upb_MtDecoder_AllocateSubs(d, sub_count); } #define UPB_COMPARE_INTEGERS(a, b) ((a) < (b) ? -1 : ((a) == (b) ? 0 : 1)) int upb_MtDecoder_CompareFields(const void* _a, const void* _b) { const upb_LayoutItem* a = _a; const upb_LayoutItem* b = _b; // Currently we just sort by: // 1. rep (descending, so largest fields are first) // 2. is_case (descending, so oneof cases are first) // 2. field_number (ascending, so smallest numbers are first) // // The main goal of this is to reduce space lost to padding. if (a->rep != b->rep) return UPB_COMPARE_INTEGERS(a->rep, b->rep); if (a->type != b->type) return UPB_COMPARE_INTEGERS(a->type, b->type); return UPB_COMPARE_INTEGERS(b->field_index, a->field_index); } #undef UPB_COMPARE_INTEGERS static bool upb_MtDecoder_SortLayoutItems(upb_MtDecoder* d) { // Add items for all non-oneof fields (oneofs were already added). int n = d->table->field_count; for (int i = 0; i < n; i++) { upb_MiniTable_Field* f = &d->fields[i]; if (f->offset >= kOneofBase) continue; upb_LayoutItem item = {.field_index = i, .rep = f->mode >> kUpb_FieldRep_Shift}; upb_MtDecoder_PushItem(d, item); } qsort(d->vec.data, d->vec.size, sizeof(*d->vec.data), upb_MtDecoder_CompareFields); return true; } static size_t upb_MiniTable_DivideRoundUp(size_t n, size_t d) { return (n + d - 1) / d; } static void upb_MtDecoder_AssignHasbits(upb_MiniTable* ret) { int n = ret->field_count; int last_hasbit = 0; // 0 cannot be used. // First assign required fields, which must have the lowest hasbits. for (int i = 0; i < n; i++) { upb_MiniTable_Field* field = (upb_MiniTable_Field*)&ret->fields[i]; if (field->offset == kRequiredPresence) { field->presence = ++last_hasbit; } } ret->required_count = last_hasbit; // Next assign non-required hasbit fields. for (int i = 0; i < n; i++) { upb_MiniTable_Field* field = (upb_MiniTable_Field*)&ret->fields[i]; if (field->offset == kHasbitPresence) { field->presence = ++last_hasbit; } } ret->size = upb_MiniTable_DivideRoundUp(last_hasbit, 8); } size_t upb_MtDecoder_SizeOfRep(upb_FieldRep rep, upb_MiniTablePlatform platform) { static const uint8_t kRepToSize32[] = { [kUpb_FieldRep_1Byte] = 1, [kUpb_FieldRep_4Byte] = 4, [kUpb_FieldRep_Pointer] = 4, [kUpb_FieldRep_StringView] = 8, [kUpb_FieldRep_8Byte] = 8, }; static const uint8_t kRepToSize64[] = { [kUpb_FieldRep_1Byte] = 1, [kUpb_FieldRep_4Byte] = 4, [kUpb_FieldRep_Pointer] = 8, [kUpb_FieldRep_StringView] = 16, [kUpb_FieldRep_8Byte] = 8, }; assert(sizeof(upb_StringView) == UPB_SIZE(kRepToSize32, kRepToSize64)[kUpb_FieldRep_StringView]); return platform == kUpb_MiniTablePlatform_32Bit ? kRepToSize32[rep] : kRepToSize64[rep]; } size_t upb_MtDecoder_AlignOfRep(upb_FieldRep rep, upb_MiniTablePlatform platform) { static const uint8_t kRepToAlign32[] = { [kUpb_FieldRep_1Byte] = 1, [kUpb_FieldRep_4Byte] = 4, [kUpb_FieldRep_Pointer] = 4, [kUpb_FieldRep_StringView] = 4, [kUpb_FieldRep_8Byte] = 8, }; static const uint8_t kRepToAlign64[] = { [kUpb_FieldRep_1Byte] = 1, [kUpb_FieldRep_4Byte] = 4, [kUpb_FieldRep_Pointer] = 8, [kUpb_FieldRep_StringView] = 8, [kUpb_FieldRep_8Byte] = 8, }; assert(UPB_ALIGN_OF(upb_StringView) == UPB_SIZE(kRepToAlign32, kRepToAlign64)[kUpb_FieldRep_StringView]); return platform == kUpb_MiniTablePlatform_32Bit ? kRepToAlign32[rep] : kRepToAlign64[rep]; } size_t upb_MtDecoder_Place(upb_MtDecoder* d, upb_FieldRep rep) { size_t size = upb_MtDecoder_SizeOfRep(rep, d->platform); size_t align = upb_MtDecoder_AlignOfRep(rep, d->platform); size_t ret = UPB_ALIGN_UP(d->table->size, align); d->table->size = ret + size; return ret; } static bool upb_MtDecoder_AssignOffsets(upb_MtDecoder* d) { upb_LayoutItem* end = d->vec.data + d->vec.size; // Compute offsets. for (upb_LayoutItem* item = d->vec.data; item < end; item++) { item->offset = upb_MtDecoder_Place(d, item->rep); } // Assign oneof case offsets. We must do these first, since assigning // actual offsets will overwrite the links of the linked list. for (upb_LayoutItem* item = d->vec.data; item < end; item++) { if (item->type != kUpb_LayoutItemType_OneofCase) continue; upb_MiniTable_Field* f = &d->fields[item->field_index]; while (true) { f->presence = ~item->offset; if (f->offset == kUpb_LayoutItem_IndexSentinel) break; f = &d->fields[f->offset - kOneofBase]; } } // Assign offsets. for (upb_LayoutItem* item = d->vec.data; item < end; item++) { upb_MiniTable_Field* f = &d->fields[item->field_index]; switch (item->type) { case kUpb_LayoutItemType_OneofField: while (true) { uint16_t next_offset = f->offset; f->offset = item->offset; if (next_offset == kUpb_LayoutItem_IndexSentinel) break; f = &d->fields[next_offset - kOneofBase]; } break; case kUpb_LayoutItemType_Field: f->offset = item->offset; break; default: break; } } return true; } upb_MiniTable* upb_MiniTable_BuildWithBuf(const char* data, size_t len, upb_MiniTablePlatform platform, upb_Arena* arena, void** buf, size_t* buf_size, upb_Status* status) { upb_MtDecoder decoder = { .platform = platform, .vec = { .data = *buf, .capacity = *buf_size / sizeof(*decoder.vec.data), .size = 0, }, .arena = arena, .status = status, .table = upb_Arena_Malloc(arena, sizeof(*decoder.table)), }; if (UPB_SETJMP(decoder.err)) { decoder.table = NULL; goto done; } upb_MtDecoder_CheckOutOfMemory(&decoder, decoder.table); decoder.table->size = 0; decoder.table->field_count = 0; decoder.table->ext = kUpb_ExtMode_NonExtendable; decoder.table->dense_below = 0; decoder.table->table_mask = 0; decoder.table->required_count = 0; upb_MtDecoder_ParseMessage(&decoder, data, len); upb_MtDecoder_AssignHasbits(decoder.table); upb_MtDecoder_SortLayoutItems(&decoder); upb_MtDecoder_AssignOffsets(&decoder); done: *buf = decoder.vec.data; *buf_size = decoder.vec.capacity / sizeof(*decoder.vec.data); return decoder.table; } upb_MiniTable* upb_MiniTable_BuildMessageSet(upb_MiniTablePlatform platform, upb_Arena* arena) { upb_MiniTable* ret = upb_Arena_Malloc(arena, sizeof(*ret)); if (!ret) return NULL; ret->size = 0; ret->field_count = 0; ret->ext = kUpb_ExtMode_IsMessageSet; ret->dense_below = 0; ret->table_mask = 0; ret->required_count = 0; return ret; } upb_MiniTable* upb_MiniTable_BuildMapEntry(upb_FieldType key_type, upb_FieldType value_type, upb_MiniTablePlatform platform, upb_Arena* arena) { upb_MiniTable* ret = upb_Arena_Malloc(arena, sizeof(*ret)); upb_MiniTable_Field* fields = upb_Arena_Malloc(arena, sizeof(*fields) * 2); if (!ret || !fields) return NULL; upb_MiniTable_Sub* subs = NULL; if (value_type == kUpb_FieldType_Message || value_type == kUpb_FieldType_Group) { subs = upb_Arena_Malloc(arena, sizeof(*subs)); if (!subs) return NULL; } size_t field_size = upb_MtDecoder_SizeOfRep(kUpb_FieldRep_StringView, platform); fields[0].number = 1; fields[1].number = 2; fields[0].mode = kUpb_FieldMode_Scalar; fields[1].mode = kUpb_FieldMode_Scalar; fields[0].presence = 0; fields[1].presence = 0; fields[0].descriptortype = key_type; fields[1].descriptortype = value_type; fields[0].offset = 0; fields[1].offset = field_size; fields[1].submsg_index = 0; ret->size = UPB_ALIGN_UP(2 * field_size, 8); ret->field_count = 2; ret->ext = kUpb_ExtMode_NonExtendable | kUpb_ExtMode_IsMapEntry; ret->dense_below = 2; ret->table_mask = 0; ret->required_count = 0; ret->subs = subs; ret->fields = fields; return ret; } upb_MiniTable_Extension* upb_MiniTable_BuildExtensions(const char* data, size_t len, size_t* ext_count, upb_Arena* arena, upb_Status* status) { upb_MtDecoder decoder = { .arena = arena, .status = status, .table = NULL, }; upb_MiniTable_Extension* exts; if (UPB_SETJMP(decoder.err)) { exts = NULL; *ext_count = 0; goto done; } uint16_t count = 0; exts = upb_Arena_Malloc(arena, len); upb_MtDecoder_CheckOutOfMemory(&decoder, exts); upb_MtDecoder_Parse(&decoder, data, len, exts, sizeof(*exts), &count, NULL); exts = upb_Arena_Realloc(arena, exts, sizeof(*exts) * len, sizeof(*exts) * count); done: *ext_count = count; return exts; } upb_MiniTable* upb_MiniTable_Build(const char* data, size_t len, upb_MiniTablePlatform platform, upb_Arena* arena, upb_Status* status) { void* buf = NULL; size_t size = 0; upb_MiniTable* ret = upb_MiniTable_BuildWithBuf(data, len, platform, arena, &buf, &size, status); free(buf); return ret; } void upb_MiniTable_SetSubMessage(upb_MiniTable* table, upb_MiniTable_Field* field, const upb_MiniTable* sub) { assert((uintptr_t)table->fields <= (uintptr_t)field && (uintptr_t)field < (uintptr_t)(table->fields + table->field_count)); if (sub->ext & kUpb_ExtMode_IsMapEntry) { field->mode = (kUpb_FieldRep_Pointer << kUpb_FieldRep_Shift) | kUpb_FieldMode_Map; } upb_MiniTable_Sub* table_sub = (void*)&table->subs[field->submsg_index]; table_sub->submsg = sub; } void upb_MiniTable_SetSubEnum(upb_MiniTable* table, upb_MiniTable_Field* field, const upb_MiniTable_Enum* sub) { assert((uintptr_t)table->fields <= (uintptr_t)field && (uintptr_t)field < (uintptr_t)(table->fields + table->field_count)); upb_MiniTable_Sub* table_sub = (void*)&table->subs[field->submsg_index]; table_sub->subenum = sub; }