// Protocol Buffers - Google's data interchange format // Copyright 2023 Google LLC. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd //! UPB FFI wrapper code for use by Rust Protobuf. use crate::__internal::{Enum, Private, PtrAndLen, RawArena, RawMap, RawMessage, RawRepeatedField}; use crate::{ Mut, ProtoStr, Proxied, ProxiedInRepeated, Repeated, RepeatedMut, RepeatedView, SettableValue, View, ViewProxy, }; use core::fmt::Debug; use paste::paste; use std::alloc; use std::alloc::Layout; use std::cell::UnsafeCell; use std::ffi::c_int; use std::fmt; use std::marker::PhantomData; use std::mem::{size_of, MaybeUninit}; use std::ops::Deref; use std::ptr::{self, NonNull}; use std::slice; use std::sync::{Once, OnceLock}; /// See `upb/port/def.inc`. const UPB_MALLOC_ALIGN: usize = 8; /// A wrapper over a `upb_Arena`. /// /// This is not a safe wrapper per se, because the allocation functions still /// have sharp edges (see their safety docs for more info). /// /// This is an owning type and will automatically free the arena when /// dropped. /// /// Note that this type is neither `Sync` nor `Send`. #[derive(Debug)] pub struct Arena { // Safety invariant: this must always be a valid arena raw: RawArena, _not_sync: PhantomData>, } extern "C" { // `Option>` is ABI-compatible with `*mut T` fn upb_Arena_New() -> Option; fn upb_Arena_Free(arena: RawArena); fn upb_Arena_Malloc(arena: RawArena, size: usize) -> *mut u8; fn upb_Arena_Realloc(arena: RawArena, ptr: *mut u8, old: usize, new: usize) -> *mut u8; } impl Arena { /// Allocates a fresh arena. #[inline] pub fn new() -> Self { #[inline(never)] #[cold] fn arena_new_failed() -> ! { panic!("Could not create a new UPB arena"); } // SAFETY: // - `upb_Arena_New` is assumed to be implemented correctly and always sound to // call; if it returned a non-null pointer, it is a valid arena. unsafe { let Some(raw) = upb_Arena_New() else { arena_new_failed() }; Self { raw, _not_sync: PhantomData } } } /// Returns the raw, UPB-managed pointer to the arena. #[inline] pub fn raw(&self) -> RawArena { self.raw } /// Allocates some memory on the arena. /// /// # Safety /// /// - `layout`'s alignment must be less than `UPB_MALLOC_ALIGN`. #[inline] pub unsafe fn alloc(&self, layout: Layout) -> &mut [MaybeUninit] { debug_assert!(layout.align() <= UPB_MALLOC_ALIGN); // SAFETY: `self.raw` is a valid UPB arena let ptr = unsafe { upb_Arena_Malloc(self.raw, layout.size()) }; if ptr.is_null() { alloc::handle_alloc_error(layout); } // SAFETY: // - `upb_Arena_Malloc` promises that if the return pointer is non-null, it is // dereferencable for `size` bytes and has an alignment of `UPB_MALLOC_ALIGN` // until the arena is destroyed. // - `[MaybeUninit]` has no alignment requirement, and `ptr` is aligned to a // `UPB_MALLOC_ALIGN` boundary. unsafe { slice::from_raw_parts_mut(ptr.cast(), layout.size()) } } /// Resizes some memory on the arena. /// /// # Safety /// /// - `ptr` must be the data pointer returned by a previous call to `alloc` /// or `resize` on `self`. /// - After calling this function, `ptr` is no longer dereferencable - it is /// zapped. /// - `old` must be the layout `ptr` was allocated with via `alloc` or /// `realloc`. /// - `new`'s alignment must be less than `UPB_MALLOC_ALIGN`. #[inline] pub unsafe fn resize(&self, ptr: *mut u8, old: Layout, new: Layout) -> &mut [MaybeUninit] { debug_assert!(new.align() <= UPB_MALLOC_ALIGN); // SAFETY: // - `self.raw` is a valid UPB arena // - `ptr` was allocated by a previous call to `alloc` or `realloc` as promised // by the caller. let ptr = unsafe { upb_Arena_Realloc(self.raw, ptr, old.size(), new.size()) }; if ptr.is_null() { alloc::handle_alloc_error(new); } // SAFETY: // - `upb_Arena_Realloc` promises that if the return pointer is non-null, it is // dereferencable for the new `size` in bytes until the arena is destroyed. // - `[MaybeUninit]` has no alignment requirement, and `ptr` is aligned to a // `UPB_MALLOC_ALIGN` boundary. unsafe { slice::from_raw_parts_mut(ptr.cast(), new.size()) } } } impl Drop for Arena { #[inline] fn drop(&mut self) { unsafe { upb_Arena_Free(self.raw); } } } static mut INTERNAL_PTR: Option = None; static INIT: Once = Once::new(); // TODO:(b/304577017) const ALIGN: usize = 32; const UPB_SCRATCH_SPACE_BYTES: usize = 64_000; /// Holds a zero-initialized block of memory for use by upb. /// By default, if a message is not set in cpp, a default message is created. /// upb departs from this and returns a null ptr. However, since contiguous /// chunks of memory filled with zeroes are legit messages from upb's point of /// view, we can allocate a large block and refer to that when dealing /// with readonly access. pub struct ScratchSpace; impl ScratchSpace { pub fn zeroed_block(_private: Private) -> RawMessage { unsafe { INIT.call_once(|| { let layout = std::alloc::Layout::from_size_align(UPB_SCRATCH_SPACE_BYTES, ALIGN).unwrap(); let Some(ptr) = crate::__internal::RawMessage::new(std::alloc::alloc_zeroed(layout).cast()) else { std::alloc::handle_alloc_error(layout) }; INTERNAL_PTR = Some(ptr) }); INTERNAL_PTR.unwrap() } } } /// Serialized Protobuf wire format data. /// /// It's typically produced by `::serialize()`. pub struct SerializedData { data: NonNull, len: usize, // The arena that owns `data`. _arena: Arena, } impl SerializedData { /// Construct `SerializedData` from raw pointers and its owning arena. /// /// # Safety /// - `arena` must be have allocated `data` /// - `data` must be readable for `len` bytes and not mutate while this /// struct exists pub unsafe fn from_raw_parts(arena: Arena, data: NonNull, len: usize) -> Self { SerializedData { _arena: arena, data, len } } /// Gets a raw slice pointer. pub fn as_ptr(&self) -> *const [u8] { ptr::slice_from_raw_parts(self.data.as_ptr(), self.len) } } impl Deref for SerializedData { type Target = [u8]; fn deref(&self) -> &Self::Target { // SAFETY: `data` is valid for `len` bytes as promised by // the caller of `SerializedData::from_raw_parts`. unsafe { slice::from_raw_parts(self.data.as_ptr(), self.len) } } } impl fmt::Debug for SerializedData { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fmt::Debug::fmt(self.deref(), f) } } impl SettableValue<[u8]> for SerializedData { fn set_on<'msg>(self, _private: Private, mut mutator: Mut<'msg, [u8]>) where [u8]: 'msg, { mutator.set(self.as_ref()) } } // TODO: Investigate replacing this with direct access to UPB bits. pub type BytesPresentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; pub type BytesAbsentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; pub type InnerBytesMut<'msg> = crate::vtable::RawVTableMutator<'msg, [u8]>; pub type InnerPrimitiveMut<'msg, T> = crate::vtable::RawVTableMutator<'msg, T>; /// The raw contents of every generated message. #[derive(Debug)] pub struct MessageInner { pub msg: RawMessage, pub arena: Arena, } /// Mutators that point to their original message use this to do so. /// /// Since UPB expects runtimes to manage their own arenas, this needs to have /// access to an `Arena`. /// /// This has two possible designs: /// - Store two pointers here, `RawMessage` and `&'msg Arena`. This doesn't /// place any restriction on the layout of generated messages and their /// mutators. This makes a vtable-based mutator three pointers, which can no /// longer be returned in registers on most platforms. /// - Store one pointer here, `&'msg MessageInner`, where `MessageInner` stores /// a `RawMessage` and an `Arena`. This would require all generated messages /// to store `MessageInner`, and since their mutators need to be able to /// generate `BytesMut`, would also require `BytesMut` to store a `&'msg /// MessageInner` since they can't store an owned `Arena`. /// /// Note: even though this type is `Copy`, it should only be copied by /// protobuf internals that can maintain mutation invariants: /// /// - No concurrent mutation for any two fields in a message: this means /// mutators cannot be `Send` but are `Sync`. /// - If there are multiple accessible `Mut` to a single message at a time, they /// must be different fields, and not be in the same oneof. As such, a `Mut` /// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which /// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`. #[derive(Clone, Copy, Debug)] pub struct MutatorMessageRef<'msg> { msg: RawMessage, arena: &'msg Arena, } impl<'msg> MutatorMessageRef<'msg> { #[doc(hidden)] #[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access. pub fn new(_private: Private, msg: &'msg mut MessageInner) -> Self { MutatorMessageRef { msg: msg.msg, arena: &msg.arena } } pub fn from_parent( _private: Private, parent_msg: &'msg mut MessageInner, message_field_ptr: RawMessage, ) -> Self { MutatorMessageRef { msg: message_field_ptr, arena: &parent_msg.arena } } pub fn msg(&self) -> RawMessage { self.msg } } pub fn copy_bytes_in_arena_if_needed_by_runtime<'msg>( msg_ref: MutatorMessageRef<'msg>, val: &'msg [u8], ) -> &'msg [u8] { // SAFETY: the alignment of `[u8]` is less than `UPB_MALLOC_ALIGN`. let new_alloc = unsafe { msg_ref.arena.alloc(Layout::for_value(val)) }; debug_assert_eq!(new_alloc.len(), val.len()); let start: *mut u8 = new_alloc.as_mut_ptr().cast(); // SAFETY: // - `new_alloc` is writeable for `val.len()` bytes. // - After the copy, `new_alloc` is initialized for `val.len()` bytes. unsafe { val.as_ptr().copy_to_nonoverlapping(start, val.len()); &*(new_alloc as *mut _ as *mut [u8]) } } /// The raw type-erased pointer version of `RepeatedMut`. /// /// Contains a `upb_Array*` as well as `RawArena`, most likely that of the /// containing message. upb requires a `RawArena` to perform mutations on /// a repeated field. /// /// An owned `Repeated` stores a `InnerRepeatedMut<'static>` and manages the /// contained `RawArena`. #[derive(Clone, Copy, Debug)] pub struct InnerRepeatedMut<'msg> { pub(crate) raw: RawRepeatedField, // Storing a `RawArena` instead of `&Arena` allows this to be used for // both `RepeatedMut` and `Repeated`. arena: RawArena, _phantom: PhantomData<&'msg Arena>, } impl<'msg> InnerRepeatedMut<'msg> { #[doc(hidden)] #[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access. pub fn new(_private: Private, raw: RawRepeatedField, arena: &'msg Arena) -> Self { InnerRepeatedMut { raw, arena: arena.raw(), _phantom: PhantomData } } } // Transcribed from google3/third_party/upb/upb/message/value.h #[repr(C)] #[derive(Clone, Copy)] pub union upb_MessageValue { bool_val: bool, float_val: std::ffi::c_float, double_val: std::ffi::c_double, uint32_val: u32, int32_val: i32, uint64_val: u64, int64_val: i64, array_val: *const std::ffi::c_void, map_val: *const std::ffi::c_void, msg_val: *const std::ffi::c_void, str_val: PtrAndLen, } // Transcribed from google3/third_party/upb/upb/base/descriptor_constants.h #[repr(C)] #[allow(dead_code)] pub enum UpbCType { Bool = 1, Float = 2, Int32 = 3, UInt32 = 4, Enum = 5, Message = 6, Double = 7, Int64 = 8, UInt64 = 9, String = 10, Bytes = 11, } extern "C" { fn upb_Array_New(a: RawArena, r#type: std::ffi::c_int) -> RawRepeatedField; fn upb_Array_Size(arr: RawRepeatedField) -> usize; fn upb_Array_Set(arr: RawRepeatedField, i: usize, val: upb_MessageValue); fn upb_Array_Get(arr: RawRepeatedField, i: usize) -> upb_MessageValue; fn upb_Array_Append(arr: RawRepeatedField, val: upb_MessageValue, arena: RawArena); fn upb_Array_Resize(arr: RawRepeatedField, size: usize, arena: RawArena) -> bool; fn upb_Array_MutableDataPtr(arr: RawRepeatedField) -> *mut std::ffi::c_void; fn upb_Array_DataPtr(arr: RawRepeatedField) -> *const std::ffi::c_void; } macro_rules! impl_repeated_primitives { ($(($t:ty, $ufield:ident, $upb_tag:expr)),* $(,)?) => { $( unsafe impl ProxiedInRepeated for $t { #[allow(dead_code)] fn repeated_new(_: Private) -> Repeated<$t> { let arena = Arena::new(); let raw_arena = arena.raw(); std::mem::forget(arena); unsafe { Repeated::from_inner(InnerRepeatedMut { raw: upb_Array_New(raw_arena, $upb_tag as c_int), arena: raw_arena, _phantom: PhantomData, }) } } #[allow(dead_code)] unsafe fn repeated_free(_: Private, f: &mut Repeated<$t>) { // Freeing the array itself is handled by `Arena::Drop` // SAFETY: // - `f.raw_arena()` is a live `upb_Arena*` as // - This function is only called once for `f` unsafe { upb_Arena_Free(f.inner().arena); } } fn repeated_len(f: View>) -> usize { unsafe { upb_Array_Size(f.as_raw(Private)) } } fn repeated_push(mut f: Mut>, v: View<$t>) { unsafe { upb_Array_Append( f.as_raw(Private), upb_MessageValue { $ufield: v }, f.raw_arena(Private)) } } fn repeated_clear(mut f: Mut>) { unsafe { upb_Array_Resize(f.as_raw(Private), 0, f.raw_arena(Private)); } } unsafe fn repeated_get_unchecked(f: View>, i: usize) -> View<$t> { unsafe { upb_Array_Get(f.as_raw(Private), i).$ufield } } unsafe fn repeated_set_unchecked(mut f: Mut>, i: usize, v: View<$t>) { unsafe { upb_Array_Set(f.as_raw(Private), i, upb_MessageValue { $ufield: v.into() }) } } fn repeated_copy_from(src: View>, mut dest: Mut>) { // SAFETY: // - `upb_Array_Resize` is unsafe but assumed to be always sound to call. // - `copy_nonoverlapping` is unsafe but here we guarantee that both pointers // are valid, the pointers are `#[repr(u8)]`, and the size is correct. unsafe { if (!upb_Array_Resize(dest.as_raw(Private), src.len(), dest.inner.arena)) { panic!("upb_Array_Resize failed."); } ptr::copy_nonoverlapping( upb_Array_DataPtr(src.as_raw(Private)).cast::(), upb_Array_MutableDataPtr(dest.as_raw(Private)).cast::(), size_of::<$t>() * src.len()); } } } )* } } impl<'msg, T: ?Sized> RepeatedMut<'msg, T> { // Returns a `RawArena` which is live for at least `'msg` #[doc(hidden)] pub fn raw_arena(&self, _private: Private) -> RawArena { self.inner.arena } } impl_repeated_primitives!( (bool, bool_val, UpbCType::Bool), (f32, float_val, UpbCType::Float), (f64, double_val, UpbCType::Double), (i32, int32_val, UpbCType::Int32), (u32, uint32_val, UpbCType::UInt32), (i64, int64_val, UpbCType::Int64), (u64, uint64_val, UpbCType::UInt64), ); /// Cast a `RepeatedView` to `RepeatedView`. pub fn cast_enum_repeated_view( private: Private, repeated: RepeatedView, ) -> RepeatedView { // SAFETY: Reading an enum array as an i32 array is sound. unsafe { RepeatedView::from_raw(private, repeated.as_raw(Private)) } } /// Cast a `RepeatedMut` to `RepeatedMut`. /// /// Writing an unknown value is sound because all enums /// are representationally open. pub fn cast_enum_repeated_mut( private: Private, repeated: RepeatedMut, ) -> RepeatedMut { // SAFETY: // - Reading an enum array as an i32 array is sound. // - No shared mutation is possible through the output. unsafe { let InnerRepeatedMut { arena, raw, .. } = repeated.into_inner(); RepeatedMut::from_inner(private, InnerRepeatedMut { arena, raw, _phantom: PhantomData }) } } /// Returns a static empty RepeatedView. pub fn empty_array() -> RepeatedView<'static, T> { // TODO: Consider creating a static empty array in C. // Use `i32` for a shared empty repeated for all repeated types on a thread. static EMPTY_REPEATED_VIEW: OnceLock> = OnceLock::new(); // SAFETY: // - Because the repeated is never mutated, the repeated type is unused and // therefore valid for `T`. // - The view is leaked for `'static`. unsafe { RepeatedView::from_raw( Private, EMPTY_REPEATED_VIEW .get_or_init(|| Box::leak(Box::new(Repeated::new())).as_mut().into_view()) .as_raw(Private), ) } } /// Returns a static thread-local empty MapInner for use in a /// MapView. /// /// # Safety /// The returned map must never be mutated. /// /// TODO: Split MapInner into mut and const variants to /// enforce safety. The returned array must never be mutated. pub unsafe fn empty_map() -> MapInner<'static, K, V> { fn new_map_inner() -> MapInner<'static, i32, i32> { // TODO: Consider creating empty map in C. let arena = Box::leak::<'static>(Box::new(Arena::new())); // Provide `i32` as a placeholder type. MapInner::<'static, i32, i32>::new(arena) } thread_local! { static MAP: MapInner<'static, i32, i32> = new_map_inner(); } MAP.with(|inner| MapInner { raw: inner.raw, arena: inner.arena, _phantom_key: PhantomData, _phantom_value: PhantomData, }) } #[derive(Debug)] pub struct MapInner<'msg, K: ?Sized, V: ?Sized> { pub raw: RawMap, pub arena: &'msg Arena, pub _phantom_key: PhantomData<&'msg mut K>, pub _phantom_value: PhantomData<&'msg mut V>, } impl<'msg, K: ?Sized, V: ?Sized> Copy for MapInner<'msg, K, V> {} impl<'msg, K: ?Sized, V: ?Sized> Clone for MapInner<'msg, K, V> { fn clone(&self) -> MapInner<'msg, K, V> { *self } } macro_rules! generate_map_key_ops_traits { ($($t:ty, $sized_t:ty;)*) => { paste! { $( pub trait [< MapWith $t:camel KeyOps >] : Proxied { fn new_map(a: RawArena) -> RawMap; fn clear(m: RawMap) { unsafe { upb_Map_Clear(m) } } fn size(m: RawMap) -> usize { unsafe { upb_Map_Size(m) } } fn insert(m: RawMap, a: RawArena, key: $sized_t, value: View<'_, Self>) -> bool; fn get<'msg>(m: RawMap, key: $sized_t) -> Option>; fn remove(m: RawMap, key: $sized_t) -> bool; } impl<'msg, V: [< MapWith $t:camel KeyOps >] + ?Sized> MapInner<'msg, $t, V> { pub fn new(arena: &'msg mut Arena) -> Self { MapInner { raw: V::new_map(arena.raw()), arena, _phantom_key: PhantomData, _phantom_value: PhantomData } } pub fn size(&self) -> usize { V::size(self.raw) } pub fn clear(&mut self) { V::clear(self.raw) } pub fn get<'a>(&self, key: $sized_t) -> Option> { V::get(self.raw, key) } pub fn remove(&mut self, key: $sized_t) -> bool { V::remove(self.raw, key) } pub fn insert(&mut self, key: $sized_t, value: View<'_, V>) -> bool { V::insert(self.raw, self.arena.raw(), key, value) } } )* } } } generate_map_key_ops_traits!( i32, i32; u32, u32; i64, i64; u64, u64; bool, bool; ProtoStr, &ProtoStr; ); macro_rules! impl_scalar_map_key_op_for_scalar_values { ($key_t:ty, $key_msg_val:expr, $key_upb_tag:expr, $trait:ident for $($t:ty, $msg_val:expr, $from_msg_val:expr, $upb_tag:expr, $zero_val:literal;)*) => { $( impl $trait for $t { fn new_map(a: RawArena) -> RawMap { unsafe { upb_Map_New(a, $key_upb_tag, $upb_tag) } } fn insert(m: RawMap, a: RawArena, key: $key_t, value: View<'_, Self>) -> bool { unsafe { upb_Map_Set( m, $key_msg_val(key), $msg_val(value), a ) } } fn get<'msg>(m: RawMap, key: $key_t) -> Option> { let mut val = $msg_val($zero_val); let found = unsafe { upb_Map_Get(m, $key_msg_val(key), &mut val) }; if !found { return None; } Some($from_msg_val(val)) } fn remove(m: RawMap, key: $key_t) -> bool { let mut val = $msg_val($zero_val); unsafe { upb_Map_Delete(m, $key_msg_val(key), &mut val) } } } )* } } macro_rules! scalar_to_msg { ($ufield:ident) => { |val| upb_MessageValue { $ufield: val } }; } macro_rules! scalar_from_msg { ($ufield:ident) => { |msg: upb_MessageValue| unsafe { msg.$ufield } }; } fn str_to_msg<'msg>(val: impl Into<&'msg ProtoStr>) -> upb_MessageValue { upb_MessageValue { str_val: val.into().as_bytes().into() } } fn msg_to_str<'msg>(msg: upb_MessageValue) -> &'msg ProtoStr { unsafe { ProtoStr::from_utf8_unchecked(msg.str_val.as_ref()) } } macro_rules! impl_map_key_ops_for_scalar_values { ($($t:ty, $t_sized:ty, $key_msg_val:expr, $upb_tag:expr;)*) => { paste! { $( impl_scalar_map_key_op_for_scalar_values!($t_sized, $key_msg_val, $upb_tag, [< MapWith $t:camel KeyOps >] for f32, scalar_to_msg!(float_val), scalar_from_msg!(float_val), UpbCType::Float, 0f32; f64, scalar_to_msg!(double_val), scalar_from_msg!(double_val), UpbCType::Double, 0f64; i32, scalar_to_msg!(int32_val), scalar_from_msg!(int32_val), UpbCType::Int32, 0i32; u32, scalar_to_msg!(uint32_val), scalar_from_msg!(uint32_val), UpbCType::UInt32, 0u32; i64, scalar_to_msg!(int64_val), scalar_from_msg!(int64_val), UpbCType::Int64, 0i64; u64, scalar_to_msg!(uint64_val), scalar_from_msg!(uint64_val), UpbCType::UInt64, 0u64; bool, scalar_to_msg!(bool_val), scalar_from_msg!(bool_val), UpbCType::Bool, false; ProtoStr, str_to_msg, msg_to_str, UpbCType::String, ""; ); )* } } } impl_map_key_ops_for_scalar_values!( i32, i32, scalar_to_msg!(int32_val), UpbCType::Int32; u32, u32, scalar_to_msg!(uint32_val), UpbCType::UInt32; i64, i64, scalar_to_msg!(int64_val), UpbCType::Int64; u64, u64, scalar_to_msg!(uint64_val), UpbCType::UInt64; bool, bool, scalar_to_msg!(bool_val), UpbCType::Bool; ProtoStr, &ProtoStr, |val: &ProtoStr| upb_MessageValue { str_val: val.as_bytes().into() }, UpbCType::String; ); extern "C" { fn upb_Map_New(arena: RawArena, key_type: UpbCType, value_type: UpbCType) -> RawMap; fn upb_Map_Size(map: RawMap) -> usize; fn upb_Map_Set( map: RawMap, key: upb_MessageValue, value: upb_MessageValue, arena: RawArena, ) -> bool; fn upb_Map_Get(map: RawMap, key: upb_MessageValue, value: *mut upb_MessageValue) -> bool; fn upb_Map_Delete( map: RawMap, key: upb_MessageValue, removed_value: *mut upb_MessageValue, ) -> bool; fn upb_Map_Clear(map: RawMap); } #[cfg(test)] pub(crate) fn new_map_i32_i64() -> MapInner<'static, i32, i64> { let arena = Box::leak::<'static>(Box::new(Arena::new())); MapInner::<'static, i32, i64>::new(arena) } #[cfg(test)] pub(crate) fn new_map_str_str() -> MapInner<'static, ProtoStr, ProtoStr> { let arena = Box::leak::<'static>(Box::new(Arena::new())); MapInner::<'static, ProtoStr, ProtoStr>::new(arena) } #[cfg(test)] mod tests { use super::*; use googletest::prelude::*; #[test] fn test_arena_new_and_free() { let arena = Arena::new(); drop(arena); } #[test] fn test_serialized_data_roundtrip() { let arena = Arena::new(); let original_data = b"Hello world"; let len = original_data.len(); let serialized_data = unsafe { SerializedData::from_raw_parts( arena, NonNull::new(original_data as *const _ as *mut _).unwrap(), len, ) }; assert_that!(&*serialized_data, eq(b"Hello world")); } #[test] fn i32_i32_map() { let mut arena = Arena::new(); let mut map = MapInner::<'_, i32, i32>::new(&mut arena); assert_that!(map.size(), eq(0)); assert_that!(map.insert(1, 2), eq(true)); assert_that!(map.get(1), eq(Some(2))); assert_that!(map.get(3), eq(None)); assert_that!(map.size(), eq(1)); assert_that!(map.remove(1), eq(true)); assert_that!(map.size(), eq(0)); assert_that!(map.remove(1), eq(false)); assert_that!(map.insert(4, 5), eq(true)); assert_that!(map.insert(6, 7), eq(true)); map.clear(); assert_that!(map.size(), eq(0)); } #[test] fn i64_f64_map() { let mut arena = Arena::new(); let mut map = MapInner::<'_, i64, f64>::new(&mut arena); assert_that!(map.size(), eq(0)); assert_that!(map.insert(1, 2.5), eq(true)); assert_that!(map.get(1), eq(Some(2.5))); assert_that!(map.get(3), eq(None)); assert_that!(map.size(), eq(1)); assert_that!(map.remove(1), eq(true)); assert_that!(map.size(), eq(0)); assert_that!(map.remove(1), eq(false)); assert_that!(map.insert(4, 5.1), eq(true)); assert_that!(map.insert(6, 7.2), eq(true)); map.clear(); assert_that!(map.size(), eq(0)); } #[test] fn str_str_map() { let mut arena = Arena::new(); let mut map = MapInner::<'_, ProtoStr, ProtoStr>::new(&mut arena); assert_that!(map.size(), eq(0)); map.insert("fizz".into(), "buzz".into()); assert_that!(map.size(), eq(1)); assert_that!(map.remove("fizz".into()), eq(true)); map.clear(); assert_that!(map.size(), eq(0)); } #[test] fn u64_str_map() { let mut arena = Arena::new(); let mut map = MapInner::<'_, u64, ProtoStr>::new(&mut arena); assert_that!(map.size(), eq(0)); map.insert(1, "fizz".into()); map.insert(2, "buzz".into()); assert_that!(map.size(), eq(2)); assert_that!(map.remove(1), eq(true)); map.clear(); assert_that!(map.size(), eq(0)); } #[test] fn test_all_maps_can_be_constructed() { macro_rules! gen_proto_values { ($key_t:ty, $($value_t:ty),*) => { let mut arena = Arena::new(); $( let map = MapInner::<'_, $key_t, $value_t>::new(&mut arena); assert_that!(map.size(), eq(0)); )* } } macro_rules! gen_proto_keys { ($($key_t:ty),*) => { $( gen_proto_values!($key_t, f32, f64, i32, u32, i64, bool, ProtoStr); )* } } gen_proto_keys!(i32, u32, i64, u64, bool, ProtoStr); } }