// Protocol Buffers - Google's data interchange format // Copyright 2023 Google LLC. All rights reserved. // // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file or at // https://developers.google.com/open-source/licenses/bsd //! UPB FFI wrapper code for use by Rust Protobuf. use crate::__internal::{Enum, Private, SealedInternal}; use crate::{ IntoProxied, Map, MapIter, MapMut, MapView, Mut, ProtoBytes, ProtoStr, ProtoString, Proxied, ProxiedInMapValue, ProxiedInRepeated, Repeated, RepeatedMut, RepeatedView, View, }; use std::slice; use core::fmt::Debug; use std::alloc::Layout; use std::sync::OnceLock; use std::ptr::{self, NonNull}; use std::mem::{size_of, ManuallyDrop, MaybeUninit}; #[cfg(bzl)] extern crate upb; #[cfg(not(bzl))] use crate::upb; // Temporarily 'pub' since a lot of gencode is directly calling any of the ffi // fns. pub use upb::*; pub type RawArena = upb::RawArena; pub type RawMessage = upb::RawMessage; pub type RawRepeatedField = upb::RawArray; pub type RawMap = upb::RawMap; pub type PtrAndLen = upb::StringView; impl From<&ProtoStr> for PtrAndLen { fn from(s: &ProtoStr) -> Self { let bytes = s.as_bytes(); Self { ptr: bytes.as_ptr(), len: bytes.len() } } } /// The scratch size of 64 KiB matches the maximum supported size that a /// upb_Message can possibly be. const UPB_SCRATCH_SPACE_BYTES: usize = 65_536; /// Holds a zero-initialized block of memory for use by upb. /// /// By default, if a message is not set in cpp, a default message is created. /// upb departs from this and returns a null ptr. However, since contiguous /// chunks of memory filled with zeroes are legit messages from upb's point of /// view, we can allocate a large block and refer to that when dealing /// with readonly access. #[repr(C, align(8))] // align to UPB_MALLOC_ALIGN = 8 #[doc(hidden)] pub struct ScratchSpace([u8; UPB_SCRATCH_SPACE_BYTES]); impl ScratchSpace { pub fn zeroed_block() -> RawMessage { static ZEROED_BLOCK: ScratchSpace = ScratchSpace([0; UPB_SCRATCH_SPACE_BYTES]); NonNull::from(&ZEROED_BLOCK).cast() } } #[doc(hidden)] pub type SerializedData = upb::OwnedArenaBox<[u8]>; impl SealedInternal for SerializedData {} impl IntoProxied for SerializedData { fn into_proxied(self, _private: Private) -> ProtoBytes { ProtoBytes { inner: InnerProtoString(self) } } } /// The raw contents of every generated message. #[derive(Debug)] #[doc(hidden)] pub struct MessageInner { pub msg: RawMessage, pub arena: Arena, } /// Mutators that point to their original message use this to do so. /// /// Since UPB expects runtimes to manage their own arenas, this needs to have /// access to an `Arena`. /// /// This has two possible designs: /// - Store two pointers here, `RawMessage` and `&'msg Arena`. This doesn't /// place any restriction on the layout of generated messages and their /// mutators. This makes a vtable-based mutator three pointers, which can no /// longer be returned in registers on most platforms. /// - Store one pointer here, `&'msg MessageInner`, where `MessageInner` stores /// a `RawMessage` and an `Arena`. This would require all generated messages /// to store `MessageInner`, and since their mutators need to be able to /// generate `BytesMut`, would also require `BytesMut` to store a `&'msg /// MessageInner` since they can't store an owned `Arena`. /// /// Note: even though this type is `Copy`, it should only be copied by /// protobuf internals that can maintain mutation invariants: /// /// - No concurrent mutation for any two fields in a message: this means /// mutators cannot be `Send` but are `Sync`. /// - If there are multiple accessible `Mut` to a single message at a time, they /// must be different fields, and not be in the same oneof. As such, a `Mut` /// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which /// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`. #[derive(Clone, Copy, Debug)] #[doc(hidden)] pub struct MutatorMessageRef<'msg> { msg: RawMessage, arena: &'msg Arena, } impl<'msg> MutatorMessageRef<'msg> { #[doc(hidden)] #[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access. pub fn new(msg: &'msg mut MessageInner) -> Self { MutatorMessageRef { msg: msg.msg, arena: &msg.arena } } pub fn from_parent(parent_msg: MutatorMessageRef<'msg>, message_field_ptr: RawMessage) -> Self { MutatorMessageRef { msg: message_field_ptr, arena: parent_msg.arena } } pub fn msg(&self) -> RawMessage { self.msg } pub fn arena(&self) -> &Arena { self.arena } } fn copy_bytes_in_arena<'msg>(arena: &'msg Arena, val: &'msg [u8]) -> &'msg [u8] { // SAFETY: the alignment of `[u8]` is less than `UPB_MALLOC_ALIGN`. let new_alloc = unsafe { arena.alloc(Layout::for_value(val)) }; debug_assert_eq!(new_alloc.len(), val.len()); let start: *mut u8 = new_alloc.as_mut_ptr().cast(); // SAFETY: // - `new_alloc` is writeable for `val.len()` bytes. // - After the copy, `new_alloc` is initialized for `val.len()` bytes. unsafe { val.as_ptr().copy_to_nonoverlapping(start, val.len()); &*(new_alloc as *mut _ as *mut [u8]) } } /// Kernel-specific owned `string` and `bytes` field type. #[doc(hidden)] pub struct InnerProtoString(OwnedArenaBox<[u8]>); impl InnerProtoString { pub(crate) fn as_bytes(&self) -> &[u8] { &self.0 } #[doc(hidden)] pub fn into_raw_parts(self) -> (PtrAndLen, Arena) { let (data_ptr, arena) = self.0.into_parts(); (unsafe { data_ptr.as_ref().into() }, arena) } } impl From<&[u8]> for InnerProtoString { fn from(val: &[u8]) -> InnerProtoString { let arena = Arena::new(); let in_arena_copy = arena.copy_slice_in(val); // SAFETY: // - `in_arena_copy` is valid slice that will live for `arena`'s lifetime and // this is the only reference in the program to it. // - `in_arena_copy` is a pointer into an allocation on `arena` InnerProtoString(unsafe { OwnedArenaBox::new(Into::into(in_arena_copy), arena) }) } } /// The raw type-erased version of an owned `Repeated`. #[derive(Debug)] #[doc(hidden)] pub struct InnerRepeated { raw: RawRepeatedField, arena: Arena, } impl InnerRepeated { pub fn as_mut(&mut self) -> InnerRepeatedMut<'_> { InnerRepeatedMut::new(self.raw, &self.arena) } pub fn raw(&self) -> RawRepeatedField { self.raw } pub fn arena(&self) -> &Arena { &self.arena } /// # Safety /// - `raw` must be a valid `RawRepeatedField` pub unsafe fn from_raw_parts(raw: RawRepeatedField, arena: Arena) -> Self { Self { raw, arena } } } /// The raw type-erased pointer version of `RepeatedMut`. #[derive(Clone, Copy, Debug)] #[doc(hidden)] pub struct InnerRepeatedMut<'msg> { pub(crate) raw: RawRepeatedField, arena: &'msg Arena, } impl<'msg> InnerRepeatedMut<'msg> { #[doc(hidden)] pub fn new(raw: RawRepeatedField, arena: &'msg Arena) -> Self { InnerRepeatedMut { raw, arena } } } macro_rules! impl_repeated_base { ($t:ty, $elem_t:ty, $ufield:ident, $upb_tag:expr) => { #[allow(dead_code)] #[inline] fn repeated_new(_: Private) -> Repeated<$t> { let arena = Arena::new(); Repeated::from_inner( Private, InnerRepeated { raw: unsafe { upb_Array_New(arena.raw(), $upb_tag) }, arena }, ) } #[allow(dead_code)] unsafe fn repeated_free(_: Private, _f: &mut Repeated<$t>) { // No-op: the memory will be dropped by the arena. } #[inline] fn repeated_len(f: View>) -> usize { unsafe { upb_Array_Size(f.as_raw(Private)) } } #[inline] fn repeated_push(mut f: Mut>, v: impl IntoProxied<$t>) { let arena = f.raw_arena(Private); unsafe { assert!(upb_Array_Append( f.as_raw(Private), <$t as UpbTypeConversions>::into_message_value_fuse_if_required( arena, v.into_proxied(Private) ), arena, )); } } #[inline] fn repeated_clear(mut f: Mut>) { unsafe { upb_Array_Resize(f.as_raw(Private), 0, f.raw_arena(Private)); } } #[inline] unsafe fn repeated_get_unchecked(f: View>, i: usize) -> View<$t> { unsafe { <$t as UpbTypeConversions>::from_message_value(upb_Array_Get(f.as_raw(Private), i)) } } #[inline] unsafe fn repeated_set_unchecked( mut f: Mut>, i: usize, v: impl IntoProxied<$t>, ) { let arena = f.raw_arena(Private); unsafe { upb_Array_Set( f.as_raw(Private), i, <$t as UpbTypeConversions>::into_message_value_fuse_if_required( arena, v.into_proxied(Private), ), ) } } #[inline] fn repeated_reserve(mut f: Mut>, additional: usize) { // SAFETY: // - `upb_Array_Reserve` is unsafe but assumed to be sound when called on a // valid array. unsafe { let arena = f.raw_arena(Private); let size = upb_Array_Size(f.as_raw(Private)); assert!(upb_Array_Reserve(f.as_raw(Private), size + additional, arena)); } } }; } macro_rules! impl_repeated_primitives { ($(($t:ty, $elem_t:ty, $ufield:ident, $upb_tag:expr)),* $(,)?) => { $( unsafe impl ProxiedInRepeated for $t { impl_repeated_base!($t, $elem_t, $ufield, $upb_tag); fn repeated_copy_from(src: View>, mut dest: Mut>) { let arena = dest.raw_arena(Private); // SAFETY: // - `upb_Array_Resize` is unsafe but assumed to be always sound to call. // - `copy_nonoverlapping` is unsafe but here we guarantee that both pointers // are valid, the pointers are `#[repr(u8)]`, and the size is correct. unsafe { if (!upb_Array_Resize(dest.as_raw(Private), src.len(), arena)) { panic!("upb_Array_Resize failed."); } ptr::copy_nonoverlapping( upb_Array_DataPtr(src.as_raw(Private)).cast::(), upb_Array_MutableDataPtr(dest.as_raw(Private)).cast::(), size_of::<$elem_t>() * src.len()); } } } )* } } macro_rules! impl_repeated_bytes { ($(($t:ty, $upb_tag:expr)),* $(,)?) => { $( unsafe impl ProxiedInRepeated for $t { impl_repeated_base!($t, PtrAndLen, str_val, $upb_tag); #[inline] fn repeated_copy_from(src: View>, mut dest: Mut>) { let len = src.len(); // SAFETY: // - `upb_Array_Resize` is unsafe but assumed to be always sound to call. // - `upb_Array` ensures its elements are never uninitialized memory. // - The `DataPtr` and `MutableDataPtr` functions return pointers to spans // of memory that are valid for at least `len` elements of PtrAndLen. // - `copy_nonoverlapping` is unsafe but here we guarantee that both pointers // are valid, the pointers are `#[repr(u8)]`, and the size is correct. // - The bytes held within a valid array are valid. unsafe { let arena = ManuallyDrop::new(Arena::from_raw(dest.raw_arena(Private))); if (!upb_Array_Resize(dest.as_raw(Private), src.len(), arena.raw())) { panic!("upb_Array_Resize failed."); } let src_ptrs: &[PtrAndLen] = slice::from_raw_parts( upb_Array_DataPtr(src.as_raw(Private)).cast(), len ); let dest_ptrs: &mut [PtrAndLen] = slice::from_raw_parts_mut( upb_Array_MutableDataPtr(dest.as_raw(Private)).cast(), len ); for (src_ptr, dest_ptr) in src_ptrs.iter().zip(dest_ptrs) { *dest_ptr = copy_bytes_in_arena(&arena, src_ptr.as_ref()).into(); } } } } )* } } impl<'msg, T> RepeatedMut<'msg, T> { // Returns a `RawArena` which is live for at least `'msg` #[doc(hidden)] pub fn raw_arena(&mut self, _private: Private) -> RawArena { self.inner.arena.raw() } } impl_repeated_primitives!( // proxied type, element type, upb_MessageValue field name, upb::CType variant (bool, bool, bool_val, upb::CType::Bool), (f32, f32, float_val, upb::CType::Float), (f64, f64, double_val, upb::CType::Double), (i32, i32, int32_val, upb::CType::Int32), (u32, u32, uint32_val, upb::CType::UInt32), (i64, i64, int64_val, upb::CType::Int64), (u64, u64, uint64_val, upb::CType::UInt64), ); impl_repeated_bytes!((ProtoString, upb::CType::String), (ProtoBytes, upb::CType::Bytes),); /// Copy the contents of `src` into `dest`. /// /// # Safety /// - `minitable` must be a pointer to the minitable for message `T`. pub unsafe fn repeated_message_copy_from( src: View>, mut dest: Mut>, minitable: *const upb_MiniTable, ) { // SAFETY: // - `src.as_raw()` is a valid `const upb_Array*`. // - `dest.as_raw()` is a valid `upb_Array*`. // - Elements of `src` and have message minitable `$minitable$`. unsafe { let size = upb_Array_Size(src.as_raw(Private)); if !upb_Array_Resize(dest.as_raw(Private), size, dest.raw_arena(Private)) { panic!("upb_Array_Resize failed."); } for i in 0..size { let src_msg = upb_Array_Get(src.as_raw(Private), i) .msg_val .expect("upb_Array* element should not be NULL"); // Avoid the use of `upb_Array_DeepClone` as it creates an // entirely new `upb_Array*` at a new memory address. let cloned_msg = upb_Message_DeepClone(src_msg, minitable, dest.raw_arena(Private)) .expect("upb_Message_DeepClone failed."); upb_Array_Set(dest.as_raw(Private), i, upb_MessageValue { msg_val: Some(cloned_msg) }); } } } /// Cast a `RepeatedView` to `RepeatedView`. pub fn cast_enum_repeated_view( repeated: RepeatedView, ) -> RepeatedView { // SAFETY: Reading an enum array as an i32 array is sound. unsafe { RepeatedView::from_raw(Private, repeated.as_raw(Private)) } } /// Cast a `RepeatedMut` to `RepeatedMut`. /// /// Writing an unknown value is sound because all enums /// are representationally open. pub fn cast_enum_repeated_mut( repeated: RepeatedMut, ) -> RepeatedMut { // SAFETY: // - Reading an enum array as an i32 array is sound. // - No shared mutation is possible through the output. unsafe { let InnerRepeatedMut { arena, raw, .. } = repeated.inner; RepeatedMut::from_inner(Private, InnerRepeatedMut { arena, raw }) } } /// Cast a `RepeatedMut` to `RepeatedMut` and call /// repeated_reserve. pub fn reserve_enum_repeated_mut( repeated: RepeatedMut, additional: usize, ) { let int_repeated = cast_enum_repeated_mut(repeated); ProxiedInRepeated::repeated_reserve(int_repeated, additional); } pub fn new_enum_repeated() -> Repeated { let arena = Arena::new(); // SAFETY: // - `upb_Array_New` is unsafe but assumed to be sound when called on a valid // arena. unsafe { let raw = upb_Array_New(arena.raw(), upb::CType::Int32); Repeated::from_inner(Private, InnerRepeated::from_raw_parts(raw, arena)) } } pub fn free_enum_repeated(_repeated: &mut Repeated) { // No-op: the memory will be dropped by the arena. } /// Returns a static empty RepeatedView. pub fn empty_array() -> RepeatedView<'static, T> { // TODO: Consider creating a static empty array in C. // Use `i32` for a shared empty repeated for all repeated types in the program. static EMPTY_REPEATED_VIEW: OnceLock> = OnceLock::new(); // SAFETY: // - Because the repeated is never mutated, the repeated type is unused and // therefore valid for `T`. unsafe { RepeatedView::from_raw( Private, EMPTY_REPEATED_VIEW.get_or_init(Repeated::new).as_view().as_raw(Private), ) } } /// Returns a static empty MapView. pub fn empty_map() -> MapView<'static, K, V> where K: Proxied, V: ProxiedInMapValue, { // TODO: Consider creating a static empty map in C. // Use `` for a shared empty map for all map types. // // This relies on an implicit contract with UPB that it is OK to use an empty // Map as an empty map of all other types. The only const // function on `upb_Map` that will care about the size of key or value is // `get()` where it will hash the appropriate number of bytes of the // provided `upb_MessageValue`, and that bool being the smallest type in the // union means it will happen to work for all possible key types. // // If we used a larger key, then UPB would hash more bytes of the key than Rust // initialized. static EMPTY_MAP_VIEW: OnceLock> = OnceLock::new(); // SAFETY: // - The map is empty and never mutated. // - The value type is never used. // - The size of the key type is used when `get()` computes the hash of the key. // The map is empty, therefore it doesn't matter what hash is computed, but we // have to use `bool` type as the smallest key possible (otherwise UPB would // read more bytes than Rust allocated). unsafe { MapView::from_raw(Private, EMPTY_MAP_VIEW.get_or_init(Map::new).as_view().as_raw(Private)) } } impl<'msg, K: ?Sized, V: ?Sized> MapMut<'msg, K, V> { // Returns a `RawArena` which is live for at least `'msg` #[doc(hidden)] pub fn raw_arena(&mut self, _private: Private) -> RawArena { self.inner.arena.raw() } } #[derive(Debug)] #[doc(hidden)] pub struct InnerMap { pub(crate) raw: RawMap, arena: Arena, } impl InnerMap { pub fn new(raw: RawMap, arena: Arena) -> Self { Self { raw, arena } } pub fn as_mut(&mut self) -> InnerMapMut<'_> { InnerMapMut { raw: self.raw, arena: &self.arena } } } #[derive(Clone, Copy, Debug)] #[doc(hidden)] pub struct InnerMapMut<'msg> { pub(crate) raw: RawMap, arena: &'msg Arena, } #[doc(hidden)] impl<'msg> InnerMapMut<'msg> { pub fn new(raw: RawMap, arena: &'msg Arena) -> Self { InnerMapMut { raw, arena } } #[doc(hidden)] pub fn as_raw(&self) -> RawMap { self.raw } #[doc(hidden)] pub fn raw_arena(&self) -> RawArena { self.arena.raw() } } pub trait UpbTypeConversions: Proxied { fn upb_type() -> upb::CType; fn to_message_value(val: View<'_, Self>) -> upb_MessageValue; /// # Safety /// - `raw_arena` must point to a valid upb arena. unsafe fn into_message_value_fuse_if_required( raw_arena: RawArena, val: Self, ) -> upb_MessageValue; /// # Safety /// - `msg` must be the correct variant for `Self`. /// - `msg` pointers must point to memory valid for `'msg` lifetime. unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, Self>; } macro_rules! impl_upb_type_conversions_for_scalars { ($($t:ty, $ufield:ident, $upb_tag:expr, $zero_val:literal;)*) => { $( impl UpbTypeConversions for $t { #[inline(always)] fn upb_type() -> upb::CType { $upb_tag } #[inline(always)] fn to_message_value(val: View<'_, $t>) -> upb_MessageValue { upb_MessageValue { $ufield: val } } #[inline(always)] unsafe fn into_message_value_fuse_if_required(_: RawArena, val: $t) -> upb_MessageValue { Self::to_message_value(val) } #[inline(always)] unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, $t> { unsafe { msg.$ufield } } } )* }; } impl_upb_type_conversions_for_scalars!( f32, float_val, upb::CType::Float, 0f32; f64, double_val, upb::CType::Double, 0f64; i32, int32_val, upb::CType::Int32, 0i32; u32, uint32_val, upb::CType::UInt32, 0u32; i64, int64_val, upb::CType::Int64, 0i64; u64, uint64_val, upb::CType::UInt64, 0u64; bool, bool_val, upb::CType::Bool, false; ); impl UpbTypeConversions for ProtoBytes { fn upb_type() -> upb::CType { upb::CType::Bytes } fn to_message_value(val: View<'_, ProtoBytes>) -> upb_MessageValue { upb_MessageValue { str_val: val.into() } } unsafe fn into_message_value_fuse_if_required( raw_parent_arena: RawArena, val: ProtoBytes, ) -> upb_MessageValue { // SAFETY: The arena memory is not freed due to `ManuallyDrop`. let parent_arena = ManuallyDrop::new(unsafe { Arena::from_raw(raw_parent_arena) }); let (view, arena) = val.inner.into_raw_parts(); parent_arena.fuse(&arena); upb_MessageValue { str_val: view } } unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, ProtoBytes> { unsafe { msg.str_val.as_ref() } } } impl UpbTypeConversions for ProtoString { fn upb_type() -> upb::CType { upb::CType::String } fn to_message_value(val: View<'_, ProtoString>) -> upb_MessageValue { upb_MessageValue { str_val: val.as_bytes().into() } } unsafe fn into_message_value_fuse_if_required( raw_arena: RawArena, val: ProtoString, ) -> upb_MessageValue { // SAFETY: `raw_arena` is valid as promised by the caller unsafe { ::into_message_value_fuse_if_required( raw_arena, val.into(), ) } } unsafe fn from_message_value<'msg>(msg: upb_MessageValue) -> View<'msg, ProtoString> { unsafe { ProtoStr::from_utf8_unchecked(msg.str_val.as_ref()) } } } #[doc(hidden)] pub struct RawMapIter { // TODO: Replace this `RawMap` with the const type. map: RawMap, iter: usize, } impl RawMapIter { pub fn new(map: RawMap) -> Self { RawMapIter { map, iter: UPB_MAP_BEGIN } } /// # Safety /// - `self.map` must be valid, and remain valid while the return value is /// in use. pub unsafe fn next_unchecked(&mut self) -> Option<(upb_MessageValue, upb_MessageValue)> { let mut key = MaybeUninit::uninit(); let mut value = MaybeUninit::uninit(); // SAFETY: the `map` is valid as promised by the caller unsafe { upb_Map_Next(self.map, key.as_mut_ptr(), value.as_mut_ptr(), &mut self.iter) } // SAFETY: if upb_Map_Next returns true, then key and value have been populated. .then(|| unsafe { (key.assume_init(), value.assume_init()) }) } } macro_rules! impl_ProxiedInMapValue_for_non_generated_value_types { ($key_t:ty ; $($t:ty),*) => { $( impl ProxiedInMapValue<$key_t> for $t { fn map_new(_private: Private) -> Map<$key_t, Self> { let arena = Arena::new(); let raw = unsafe { upb_Map_New(arena.raw(), <$key_t as UpbTypeConversions>::upb_type(), <$t as UpbTypeConversions>::upb_type()) }; Map::from_inner(Private, InnerMap { raw, arena }) } unsafe fn map_free(_private: Private, _map: &mut Map<$key_t, Self>) { // No-op: the memory will be dropped by the arena. } fn map_clear(mut map: MapMut<$key_t, Self>) { unsafe { upb_Map_Clear(map.as_raw(Private)); } } fn map_len(map: MapView<$key_t, Self>) -> usize { unsafe { upb_Map_Size(map.as_raw(Private)) } } fn map_insert(mut map: MapMut<$key_t, Self>, key: View<'_, $key_t>, value: impl IntoProxied) -> bool { let arena = map.raw_arena(Private); unsafe { upb_Map_InsertAndReturnIfInserted( map.as_raw(Private), <$key_t as UpbTypeConversions>::to_message_value(key), <$t as UpbTypeConversions>::into_message_value_fuse_if_required(arena, value.into_proxied(Private)), arena ) } } fn map_get<'a>(map: MapView<'a, $key_t, Self>, key: View<'_, $key_t>) -> Option> { let mut val = MaybeUninit::uninit(); let found = unsafe { upb_Map_Get(map.as_raw(Private), <$key_t as UpbTypeConversions>::to_message_value(key), val.as_mut_ptr()) }; if !found { return None; } Some(unsafe { <$t as UpbTypeConversions>::from_message_value(val.assume_init()) }) } fn map_remove(mut map: MapMut<$key_t, Self>, key: View<'_, $key_t>) -> bool { unsafe { upb_Map_Delete(map.as_raw(Private), <$key_t as UpbTypeConversions>::to_message_value(key), ptr::null_mut()) } } fn map_iter(map: MapView<$key_t, Self>) -> MapIter<$key_t, Self> { // SAFETY: View> guarantees its RawMap outlives '_. unsafe { MapIter::from_raw(Private, RawMapIter::new(map.as_raw(Private))) } } fn map_iter_next<'a>( iter: &mut MapIter<'a, $key_t, Self> ) -> Option<(View<'a, $key_t>, View<'a, Self>)> { // SAFETY: MapIter<'a, ..> guarantees its RawMapIter outlives 'a. unsafe { iter.as_raw_mut(Private).next_unchecked() } // SAFETY: MapIter returns key and values message values // with the variants for K and V active. .map(|(k, v)| unsafe {( <$key_t as UpbTypeConversions>::from_message_value(k), <$t as UpbTypeConversions>::from_message_value(v), )}) } } )* } } macro_rules! impl_ProxiedInMapValue_for_key_types { ($($t:ty),*) => { $( impl_ProxiedInMapValue_for_non_generated_value_types!( $t ; f32, f64, i32, u32, i64, u64, bool, ProtoString, ProtoBytes ); )* } } impl_ProxiedInMapValue_for_key_types!(i32, u32, i64, u64, bool, ProtoString); /// `upb_Map_Insert`, but returns a `bool` for whether insert occurred. /// /// Returns `true` if the entry was newly inserted. /// /// # Panics /// Panics if the arena is out of memory. /// /// # Safety /// The same as `upb_Map_Insert`: /// - `map` must be a valid map. /// - The `arena` must be valid and outlive the map. /// - The inserted value must outlive the map. #[allow(non_snake_case)] pub unsafe fn upb_Map_InsertAndReturnIfInserted( map: RawMap, key: upb_MessageValue, value: upb_MessageValue, arena: RawArena, ) -> bool { match unsafe { upb_Map_Insert(map, key, value, arena) } { upb::MapInsertStatus::Inserted => true, upb::MapInsertStatus::Replaced => false, upb::MapInsertStatus::OutOfMemory => panic!("map arena is out of memory"), } }