// Generated by the protocol buffer compiler. DO NOT EDIT! // clang-format off // source: google/protobuf/duration.proto #import "GPBDescriptor.h" #import "GPBMessage.h" #import "GPBRootObject.h" #if GOOGLE_PROTOBUF_OBJC_VERSION < 30004 #error This file was generated by a newer version of protoc which is incompatible with your Protocol Buffer library sources. #endif #if 30004 < GOOGLE_PROTOBUF_OBJC_MIN_SUPPORTED_VERSION #error This file was generated by an older version of protoc which is incompatible with your Protocol Buffer library sources. #endif // @@protoc_insertion_point(imports) #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wdeprecated-declarations" CF_EXTERN_C_BEGIN NS_ASSUME_NONNULL_BEGIN #pragma mark - GPBDurationRoot /** * Exposes the extension registry for this file. * * The base class provides: * @code * + (GPBExtensionRegistry *)extensionRegistry; * @endcode * which is a @c GPBExtensionRegistry that includes all the extensions defined by * this file and all files that it depends on. **/ GPB_FINAL @interface GPBDurationRoot : GPBRootObject @end #pragma mark - GPBDuration typedef GPB_ENUM(GPBDuration_FieldNumber) { GPBDuration_FieldNumber_Seconds = 1, GPBDuration_FieldNumber_Nanos = 2, }; /** * A Duration represents a signed, fixed-length span of time represented * as a count of seconds and fractions of seconds at nanosecond * resolution. It is independent of any calendar and concepts like "day" * or "month". It is related to Timestamp in that the difference between * two Timestamp values is a Duration and it can be added or subtracted * from a Timestamp. Range is approximately +-10,000 years. * * # Examples * * Example 1: Compute Duration from two Timestamps in pseudo code. * * Timestamp start = ...; * Timestamp end = ...; * Duration duration = ...; * * duration.seconds = end.seconds - start.seconds; * duration.nanos = end.nanos - start.nanos; * * if (duration.seconds < 0 && duration.nanos > 0) { * duration.seconds += 1; * duration.nanos -= 1000000000; * } else if (duration.seconds > 0 && duration.nanos < 0) { * duration.seconds -= 1; * duration.nanos += 1000000000; * } * * Example 2: Compute Timestamp from Timestamp + Duration in pseudo code. * * Timestamp start = ...; * Duration duration = ...; * Timestamp end = ...; * * end.seconds = start.seconds + duration.seconds; * end.nanos = start.nanos + duration.nanos; * * if (end.nanos < 0) { * end.seconds -= 1; * end.nanos += 1000000000; * } else if (end.nanos >= 1000000000) { * end.seconds += 1; * end.nanos -= 1000000000; * } * * Example 3: Compute Duration from datetime.timedelta in Python. * * td = datetime.timedelta(days=3, minutes=10) * duration = Duration() * duration.FromTimedelta(td) * * # JSON Mapping * * In JSON format, the Duration type is encoded as a string rather than an * object, where the string ends in the suffix "s" (indicating seconds) and * is preceded by the number of seconds, with nanoseconds expressed as * fractional seconds. For example, 3 seconds with 0 nanoseconds should be * encoded in JSON format as "3s", while 3 seconds and 1 nanosecond should * be expressed in JSON format as "3.000000001s", and 3 seconds and 1 * microsecond should be expressed in JSON format as "3.000001s". **/ GPB_FINAL @interface GPBDuration : GPBMessage /** * Signed seconds of the span of time. Must be from -315,576,000,000 * to +315,576,000,000 inclusive. Note: these bounds are computed from: * 60 sec/min * 60 min/hr * 24 hr/day * 365.25 days/year * 10000 years **/ @property(nonatomic, readwrite) int64_t seconds; /** * Signed fractions of a second at nanosecond resolution of the span * of time. Durations less than one second are represented with a 0 * `seconds` field and a positive or negative `nanos` field. For durations * of one second or more, a non-zero value for the `nanos` field must be * of the same sign as the `seconds` field. Must be from -999,999,999 * to +999,999,999 inclusive. **/ @property(nonatomic, readwrite) int32_t nanos; @end NS_ASSUME_NONNULL_END CF_EXTERN_C_END #pragma clang diagnostic pop // @@protoc_insertion_point(global_scope) // clange-format on